CS148
Building Intelligent Robots

Week 1 : LEGO Design and Intro to brickOS Out: 14 Spt 200/

Preliminary Tasks before 16 Spt 2004, 9am
You will be given 2 weeks to complete this lab to both build your robot and implement a simple
program. The purpose of this week’s lab and project is to get you acquainted with the subtleties
involved in building structures with LEGO, as well as to get you acquainted with programming in
brickOS. You will only be introduced to a limited set of commands in this lab, and will be expected
to read through the documentation and understand the rest on your own. Complete the following
before coming to lab on Thursday:

e Read Martin, MIT 6.270 Notes

e Read Martin, The Art of LEGO Design, Chapter 4.2 and 4.5

e Read Martin, Obstacle Avoidance, Chapter 2.3.2

e Refrence Martin, The HandyBug, Chapter 2.2

e Refrence Mataric, Gearing, Chapter 4.3.2

e Refrence Mataric, Move it!, Chapter 5

e Be fairly comfortable with programming in C and using C syntax. If you need assistance,

talk to a TA.

Done during lab:

e Install brickOS on your own computer (only one per group is necessary). You will need to
follow the HOWTO / QuickStart guide, available on the web.

e You will need to download the helloworld program from your own computer
(C:\brick0S\demo\helloworld.1lx) to your RCX and run it.

e Build a robust tankbot with two treads, one motor controlling each tread, and a touch sensor.
Look at the sample tankbot on the webpage for inspiration:

http://www.cs.brown.edu/courses/cs148 /tankbot.shtml



Lab 1: LEGO Design and Intro to brickOS 16 Spt 200/

Lego Design

After completing the readings, work through the following problems with your partner to gain some
experience with the concepts presented there and to become familiar with the different LEGO pieces
at your disposal.

0.1

Make sure you know the difference between the black and grey connector pegs. Connect two beams
with a single grey connector peg and rotate one of the beams. Then do the same with a black
connector peg: which one is more flexible?

Build a 40 x 2 beam. It should be very sturdy, and only give a millimeter or two when flexed in
any direction.

0.2

Review the section ‘Fundamental LEGO Lengths’ from the MIT 6.270 notes. Spend time experi-
menting with the beams and connector pegs, using cross beams (and the 6:5 ratio) to make your
structures sturdy. Now build a braced vertical structure that is at least 6 x 6.

Look at how diagonal beams can be used as supports. Build a right triangle using integral ratios
(3:4:5, 9:12:15, etc). A piece that may be useful is the black connector that is 1.5 times the length
of the standard connector.

0.3

We will be using gearing a lot throughout the semester. Two examples of its use are slowing
down the speed of a motor and making the rotation sensor’s measurements more precise. Spend a
few minutes getting familiar with the different gears—how many teeth they have, how they mesh
together, etc. Experiment with different vertical, horizontal, and diagonal spacings.

Program 1 on the RCX brick will run motor A straight forward. Attach a 24-tooth gear to the
motor and then attach the motor to the brick. Run program 1 and observe how easy it is to stop
the motor with your fingers.

Build a gear train that uses at least four different gear pairs and has a motor on one end and a
tire on the other. Use the bushings and half bushings to secure the shafts that the gears rotate on,
and make sure to support the beams well. Write down all of the gear reduction ratios and the final
ratio. Now run the program again, and note how difficult it is to stop the tire.



0.4

Build the caster wheel in figure 28 of The Art of LEGO Design, noting which ‘clichés’ you use.
Wheels like this can be useful in stabilizing your robot.

0.5

Making sure the RCX brick is firmly attached to your robot can be a little tricky sometimes. It
is difficult to attach things to the grey bottom of the brick—pieces continually pop off. One way
around this is to take advantage of the two small holes on either side of the brick to attach vertical
beams which secure the brick to the base.

Build a platform with beams and attach the brick to it, using beams and the short grey connectors
(they are about three-quarters of the length of the standard grey connector pegs).



1 Setup

Introduction to brickOS
Pick a computer in the MS lab.

First you need to map the cs148 course directory to the 'L’ drive. To do this, open up 'My
Computer’ and click on Tools -> Map Network Drive. Select 'L’ fro m the Drive menu. In the
folder type:

"\ \maytag\course0\cs148 "
and click finished.

We have configured brickOS in the MS Lab to be a little different from your dorm room installation.
There should be an icon called “Cygwin” on the desktop aft er you log in. This is the bash shell
that you want to use. Start it up.

You'll notice that when you open up Cygwin it looks and works like a shell on Linux. Right now
you are in your home directory, the same home directory you would be on a Linux machine. Create
a directory to work in. Then ’cd’ into tha t directory and copy the brickOS lab files from the course
directory with

cp -r 1l:/asgn/brick0S/* .

Some general reminds about using the Makefile.

e To download the brickOS kernel to the RCX: make brick
e To compile a down a program: make install

e The Makefile works exactly the same if its on a Windows or Linux machine.



Lab 1: LEGO Design and Intro to brickOS 16 Spt 200/

1.1

You will need to know how to control the motors so that the robot will go (approximately) where
you want it to go.

Review the documentation on the course web site about using motors, timing, and playing sounds.

Task: Make the robot go forward for one second, then turn approximately 180 degrees and stop.
After the robot has stopped moving, make it play a short tune of your own choice. If you want,
you can use the skeleton file provided in step1.c that you already copied from the course directory.

You may find the following commands helpful in this section:

e motor_X_speed
e motor X dir
e msleep, sleep

e dsound_play

1.2

Multitasking is a crucial ability that your robots will need to be able to do.
Review the web site documentation on task management.

The concept of threading is fairly simple. The idea is that you want to do multiple things at the
same time, so to do this, you spawn(create) a new thread. When a new thread is created, it begins
execution at a specified point, and runs concurrently with other threads that are currently running
(including the thread that created it).

We have provided a skeleton file for you in step2.c. Feel free to use this or write your own.

Task: Write a multi-threaded program. Your program should do the following:

e The main thread should create two child threads and then enter an endless loop.

e The first child thread should make your robot turn counterclockwise in place for one second,
then turn clockwise in place for one second, and then repeat endlessly.

e The second child thread should play a tune (at least 4 notes), then play it again and again
and again... Keep a global variable that keeps track of how many times the tune has been
played.

You will probably want to use the execi command



1.3

Much of what your robot will do is to wait for things to happen. brickOS provides a wait_event ()
command that allows you to do just that - wait for something to happen. Review the web site
documentation and make sure you understand the sample files. The sample files are also located
in the course directory in a directory called samples. This step will get you acquianted with events
and handling them.

There are two steps involved in creating an event. First, you need the wakeup function. This is
just a function that returns zero when your event hasn’t happened yet, and a non-zero value when
your event has happened. For example:

wakeup_t dkey pressed(wakeup_t data);

This function will return non-zero only when a key has been pressed. To wait for this event, we
would use the command wait_event (dkey_pressed, 0);

One thing to note about using wait_event is that it always takes a second parameter of type
wakeup_t, but it almost never means anything. In almost all cases, you can safely use 0 as the
value you pass to the wait_event function. The data value you pass it is passed to the wakeup
function, but few of them actually use it.

Task: Modify your program from part two so that it does the following.

e The main thread should once again create two child threads. The two threads should do the
same thing as before (turn back and forth endlessly, play a tune endlessly).

e Instead of having the main thread enter an endless loop, however, it should wait until the
tune has been played 5 times. After the tune has been played five times, the main thread
should kill the two child threads and then exit. You must use wait_event for this part. (hint:
write a wakeup_t function that returns true when the tune has been played enough times)

1.4

For the final step, you will learn how to use a touch sensor. The touch sensor is the simplest of all
sensors. Other, more advanced, sensors will be introduced next week.

You can read a touch sensor by using the macro TOUCH_X, where X is the number of the input port
to which your touch sensor is attached. This macro will evaluate to 1 if the touch sensor is pressed
down, and 0 otherwise.

Task: Modify your program from part three so that it doesn’t start until you’ve pressed the touch
Sensor.



Project 1: LEGO Design and Intro to brickOS due 50 Spt 2004, in class

Specification: The exercises in this lab have covered some of the more important aspects of
brickOS programming. As the semester progresses, you will be expected to learn the rest of what
you need on your own. The documentation for everything is provided on the course website and
course directory, and feel free to ask a TA for help if you need it.

For this lab, you will experiment with both of your touch sensors, and implement a simple obstacle-
avoiding robot.

The most basic robot you can use for this project is a tankbot. However, you will be awarded 5
points for building a robot with a more advanced drive system.

We recommend using a tankbot for ease of turning (you will need to navigate around several
objects).

If you want to try some different wheel designs other than the treads, this Dartmouth site has some
good designs. (Note we do NOT recommend building any of the legged robots on this website for
this project.)

http://www.cs.dartmouth.edu/ rus/courses/Robotics/CS54-S03 /RoboRats/locomotion.html

Build a wheeled or tracked robot, not a legged robot. Note that the tankbot uses skid-steer drive,
so this system is not considered a “more advanced” drive system. Some of these drives are easier
implemented with legos than others, so choose wisely. (This web site provides a good outline of
the pros and cons of each drive system.)

Your robot will be placed in the center of an “arena,” surrounded by several layers of obstacles such
as walls and boxes of different shapes. You will not know the placement of the obstacles beforehand,
so it will be impossible to simply program the robot to avoid without using the sensors. In addition,
your robot should be able to find it’s way out of the enclosure of obstacles more than once (we
should be able to pick it up after it clears the obstacles, put it back in the center facing a different
direction, and it should be able to find its way out again). Finally, your robot should assume that
it has cleared all the obstacles if neither bump sensor has been activated for 15 seconds, and the
program should end (motors off).

e How are you going to use your sensors? Do you want two front sensors that can differentiate
between left and right, or a front and rear sensor? How will this scheme work with your
chosen drive system?

¢ You should make good use of abstractions when coding the turnRight() or turnLeft() functions
(called when the bumpers are toggled).

e Consider how the robot is going to account for corners—this is tricky, and very important.



Paper Handin: This week’s project is a chance for you to become comfortable building with
LEGO and learn about the pieces available to you. In the future building will not be the focus so
take advantage of this opportunity and spend time experimenting. It will be valuable later.

Be sure to discuss the following items in your writeup:

e Briefly explain the design of your robot and drive mechanism. If you based the design on
material you found on a web site, in a book, etc., cite those sources.

e Explain in detail your choices for bumpers, and the underlying code.

e Give a general overview of the flow of control of your program. Don’t forget to mention any
subroutines or tasks that run simultaneously. (Pseudocode is acceptable, but not required.)

e Be sure to include explanations of any nontrivial code, or special procedures.
e Include a diagram or picture of your robot.
e Keep it brief! The text portion of your writeup should be no more than two pages.

e Of course, include the original (nicely commented!) code at the end of the report.

Grading: At the beginning of class on Thursday, September 30th, we will expect a short demon-
stration of your obstacle avoiding robot.

You will be graded on equally on the functionality and design of your robot (50%) and on your report
(50%). The robot will be graded according to how effectively it circumnavigates the obstacles. For
example, it is a better design choice to make a robot that hits the obstacles more times but has
a better idea of the size/shape of the obstacle than it is to make a robot that, after hitting the
obstacle once, attempts to move around it without any idea of it’s size/shape. In addition, your
robot should be able to find it’s way out of the enclosure of obstacles more than once.

You should handin your code for the robot by running
/course/cs148/bin/cs148_handin brickOS from the directory containing your source code.

Robot
Obstacle avoidance 30%
Bumper design  10%

Drive mechanism 10%
Report 50%



