
CS148

Building Intelligent Robots

Week 5 : PID Control Out: 2 Mar 2004

Preliminary Tasks before 4 Mar 2004, 9am

The purpose of this week’s lab and project is implement a simple but powerful control system
called a PID controller. You will be implmenting a cruise control for your robot in lab and then
a wall following robot for your project. You should complete the follwing before coming to lab on
Wednesday.

• Read Robotic Explorations, pp. 174–190 by Fred Martin

• Build a robust tankbot with treads/wheels with a motor controlling each tread/wheel. Attach
a rotation sensor to each motor by using some gear ratio.

• Bring a ruler that can measure cm. (We won’t have enough rulers for the entire class.)

PID Review

PID stands for Proportional Integral Derivative control (after the formula that uses these compo-
nents to calculate the control parameter.) It is used in a wide variety of real life situations - cruise
control in cars is an example that comes to mind. When talking about PID control, there are some
terms we need to define. The set point is defined as the goal of the system or the position where
you want your system to be, this is denoted as s(t), the set point at time t. For cruise control,
it would be the desired speed you want. The process variable is the position where your system
currently is, denoted as v(t), the process variable at time t. The difference between the set point
(goal) and process variable is your error, denoted as e(t), the error at time t. You would like for
your controller to force the error to zero.

The basic idea is that the output of a PID controller should be, in theory a linear combination of
the error, the integral of the error, and the derivative of the error. But in practice, we usually take
the derivative of the process variable instead. We do this because the derivative of the difference
between two variables is the same as the sum of the derivatives and the derivative of a constant
(s(t) in this case) is zero.

The PID controller attempts to control the process variable (current state of the system) according
to the formula:

output(t) = Kproportional

[

e(t) +
1

Kintegral

∫ t

0

e(t) dt −
1

Kderivative

d

dt
v(t)

]

1

The term output(t) is the output applied to your system at time t. The constants K are used to
weigh the sum of the three terms to produce an output that steadily drives the error to 0.

2

Lab 5: PID Control 4 Mar 2004

The tricky part of PID control is tuning these constants appropriately so they eventually eliminate
the error. The output is applied to the process variable, hopefully correcting the error. In the case
of cruise control, the output would be applied to the motors to either speed up or slow down the car.
The proportional part of the formula (e(t)) helps to correct the error by applying an output that
is proportional to the amount of error but does not reduce the steady-state error, that is the error
that has accumulated over time and that is why we have the part of the equation, (1

Kintegral

∫ t

0
e(t)),

which sums (integrates) the error over time. The differential part, (1

Kderivative

d

dt
v(t)) is mainly there

to tame down the overshoot (after proportional and integral correction), since the differential reacts
to the rate of change of the process variable.

Lab

In this week’s lab you will implement a cruise control for your tankbot. You will need to measure
the velocity of your tankbot by using the rotation sensors and then adjust the robot’s motor power
accordingly.

0.1

We first need to find a goal or set point for our robot. In this case, it will be some set velocity. We
will measure the speed of our tankbot by measuring it in clicks/sec. We can measure this by using
our rotation sensors that are attached to the motors of the tankbot.

a) We will first need to calculate the distance traveled for one rotation of the wheel shaft. You
will need to measure how much distance the robot travels—you can assume no slipping and
use the formula 2πr where r is the radius of the wheel, thereby figuring out what distance
your robot travels for a single rotation of the wheel shaft. Then you need to figure out your
gear ratio between the wheel shaft and the rotation sensor. From here, you can use simple
arithmetic to calculate how many clicks of the rotation sensor occurred for one rotation of
the drive shaft. This will give you the number of clicks of the rotation sensor for one rotation
of the wheel shaft in clicks/cm.

b) Now we must figure out what velocity the robot can maintain. The best way to determine this
is to make a trial run of the robot. Let the robot travel a distance of say a meter (100 cm) and
record the time it takes. This will be the velocity the robot can maintin which is measured
in cm/sec. Remember to set the motor at a medium power level. You do not want the power
level to be too high because then the robot will not be able to increase the power level to
maintain the same velocity when challenged with a ramp.

c) Now take the value from part b and mulitply it by your answer from part a. This will give
you your desired set point in the appropriate units clicks/sec.

3

0.2

You are given a stencil to write your cruise control system in. Copy it into your directory.

cp l:/asgn/pid/* .

The code given is a basic skeleton for writing your cruise control for your robot. Pay particular
attention to the PID portion of the code (actually just the proportional part), where it calculates
the output for the motor. Replace the TARGET VELOCITY with your set point that you got in step
1.

0.3

As a further adjustment you may now have to tweak the proportional constant. Now why might
we need to tweak the proportional constant? Consider the different scenarios shown in the graphs
below: (The horizontal line labeled SP is the set point (target).

Velocity

Time

Figure 1

SP

Velocity

Time

Figure 2

SP

Velocity

Time

Figure 3

SP

In the first figure the velocity fluctuates wildly for a long time before setting on to the set point.
This is clearly not desirable. In the second figure the velocity does not fluctuate that wildly but it
takes a long time to settle down and in the third figure, the velocity fluctuates wildly but settles in
a short time. We want your robot to display, ideally, behavior which could cause it to quickly reach
the set point without much deviation. Practically it will probably be somewhere between figure 2
and figure 3. The way to manipulate the graphs is by adjusting the proportionality constant. You
can narrow your search down to the perfect proportionality constant by doing a kind of a binary
search. Start with a large extremes of values (a very large value and a very low value) and keep
decreasing the difference between the values till the two extreme values become the same. That
will be your desired proportionality constant.

One way to see how long it takes to settle on the set point is to print out to the lcd of the RCX the
process variable and see how long it takes to get to the set point. You can also display the error
and see how long it reaches 0. Doing this will also give you some idea how the control sometimes
corrects itself but then overshoots the goal.

Task

Make a cruise control system for your robot. It should maintain the same velocity when going up a
ramp as it would traveling along a flat surface. If you have additional time you can add an integral

4

controller to the cruise control system which will control the difference in speed between the left
and right motors. You can try to make the robot perform turns.

5

Project 5: PID Control due 11 Mar 2004, in class

Specification: This week’s project is to build a wallfollowing robot. You will need to build
something similar to the bend sensor described in the Martin book (p. 176). The bend sensor
should be geared to your rotation sensor so that it can measure the distance the robot is from the
wall effectively. You must use PID control (actually just the proportional and derivative parts) in
your wallfollowing algorithm. You will want to implement the proportional part first before adding
the derivative part to your controller. For extra credit you can also implment the integral part to
your controller. The motors should react depending on whether the bend sensor detects that the
robot is going too close or moving away from the wall. Support code for the wallfollower can be
found at

/course/cs148/asgn/pid/wallfollower.c

When finished your robot should be able to

• Move parallel along a wall after some error correcting (PID control)

• Be able to turn corners and keep following the wall.

Some things to think about before starting this project:

Bend Sensor. You will need to construct a bend sensor that performs the same functionality as
the bend sensor in the Martin book. The rotation sensor should be attached to your bend sensor
to measure how far away your robot is from the wall. The closer the robot is to the wall, the more
“bent” the bend sensor should get and thus more clicks should occur on the rotation sensor. Thus
you will need to gear up your bend sensor such that the rotation sensor will be able to detect small
changes to the bend sensor.

Two suggestions for building the bend sensor for PID control. The first way is with one bend
sensor. Your set point or goal will be a predefined distance away from the wall. Your error will be
the set point minus the current status of the bend sensor. This is pretty simple except for some
drawbacks. It will be hard for the robot to detect corners and deal with them effectively. Also it
will be difficult to tell when the robot is moving into the wall or away from the wall. The other way
for building the bend sensor for PID control will be to use two bend sensors. The process variable
or the current state of the sensors will be their difference. Thus the set point will be 0. When the
error is zero (error = set point − process variable = 0 − difference between the two bend sensors),
then the robot is parallel to the wall. If one of the sensors is bent more than the other, then you
can figure out if the robot is heading towards or away from the wall. An example of the bend sensor
will be on the website.

Corners You might want to use a bumper to detect when the robot has to turn a corner. For the
other type of corner, if you are using two bend sensors, you will know when you are at a corner when
you have been travelling parallel along a wall and then suddenly your front bend sensor detects
nothing but your rear bend sensor is still detecting the wall.

6

PID Calculating the PID values might seem a bit tricky as you might wonder how would you
take the integral of the error or the derivative of the process variable. An easy way to approximate
the integral of the error would be to keep a running sum of the error. This is essentially what
taking the integral of the error does, it takes the sum of the error over a certain period of time.
The derviative of the process variable measures the rate of change, we can calulate this by taking
the difference between the current process variable and the last process variable. This will give us
how much the process variable changed from our last measurement.

Paper Handin: Your paper hand-in should include a description and drawings of key design
elements of your robot such as your bend sensor and the gear ratio between the bend sensor and
the rotation sensor. You should explain your PID algorithm including how you dealt with both
types of corners. Explain how you went about figuring what proportional and derviative constants
to use. Did you observe any notiable difference between your robot using just the proportional
constant and using the proportional and the derivative constant? If yes, how did the derivative
controller help correct the error. Finally, describe any major failed attempts (bad bend sensor
design, bad gear ratio, etc). If your first design was perfect, please state so!

Finally please handin your code /course/cs148/bin/cs148 handin pid. One copy of your code
will be sufficient for the group

Grading: Both your lab write-up and your actual robot will determine your grade. Your robot
will be scored in the following manner:

Follows wall using PID control 25%
Deals with corners effectively 15%
Bend Sensor Design 5%
Overall technical Design 5%

Total 50%

Your paper hand-in will be graded as follows

Design explanations 18%
PID algorithm 18%
Descript of determining PID constants 8%
Drawings 4%
Failed attempts 2%

Total 50%

7

