
CS148 Rex Programming Lab CS148

Rex Programming Lab
Questions 1&2 Due in class Wednesday, February 10, 1999

Remaining Questions Due in class Wednesday, February 17, 1999

Write the following small Rex programs. A hard copy of your answers, including
calls tomakem, should be handed in in class on the due dates above, with an indication of where
to look for your files if we need to access them on-line for some reason.

Be sure you test everything usingrex-ex .

1. Implement a machine that takes two integer inputs and returns the minimum value.

2. Implement a machine that takes three floating inputs,a, b, andepsilon , and returns
1b if a is withinepsilon of b and returns0b otherwise.

3. Implement a leaky integrator. A leaky integrator takes a stream of input values and
outputs a decayed sum of the values it has seen over time. At time , its output, , is

We can write this recursively as

,

which ought to give you a clue how to do this in Rex. You can set to be the constant

0.9 and the initial value, , to be 0.

4. Make a machine that acts as a queue. It takes three inputs,item , operation , and
go and has two outputs,queue-out andfull .
• If go is 0b , then the state doesn’t change andqueue-out is the top element of

the queue.item andoperation are ignored.
• If go is 1b andoperation is 0b, then you should additem to the end of the

queue andqueue-out is the top element of the queue.
• If go is 1b andoperation is 1b , then you should remove the top element of

the queue andqueue-out is the new top element of the queue.item is ignored.
• If the queue becomes full (there is no room for another element), then the output

full should be1b ; otherwise it should be0b. If someone tries to do an insert
operation (operation is 0b) when the queue is full, there will be no effect.

The Rex code that defines this machine should have a value parameter (only change-
able at Rex compile time) that determines the number of queue elements. In the basic
assignment, the queue elements should have typeint . For extra credit, let the ele-
ments be of arbitrary type (fixed, of course, at Rex compile time).

t Ot

Ot vt γvt 1– γ 2vt 2– …+ + +=

Ot vt γOt 1–+=

γ
t0

