
Chapter 2

Programming with Lisp

2.1 Symbolic Programming

How do you build a house? You have to put up windows and doors, but

�rst the frame of the house must be in place. Before you build the frame

of the house, you need a foundation, and before you build a foundation,

you must choose a site for the house and buy it. There are a number of

steps involved in construction of a building, some of which cannot be done

until previous steps are done. We need to plan these steps. In a typical

programming language, the variables are snippets of memory like integers or

strings. What if the elements in the program were steps in the plan to build

a house? We call these symbols instead of variables.

A symbol has a name that we associate with a concept. You are already

familiar with using the symbols 1; 2; 3 to represent the mathematical con-

cepts one, two, and three. These symbols have meaning, and we make up

rules, like addition and subtraction, which allow us to manipulate the sym-

bols and get other symbols. 2 + 2 = 4. We use the mathematical symbols

13



14 Chapter 2. Programming with Lisp

and their rules to calculate things about the world.

Symbols can also have complex meanings. Instead of dealing with the

complex concepts directly, we manipulate their symbols. For example, a plan

to build a house is composed of several smaller steps. We de�ne symbols

window1 and window2 to stand for two windows of the house, and frame

to stand for the frame of the house. Just like there are addition rules for

mathematical symbols, there are also rules about how windows and frames

are placed together. And as with mathematics, calculating with these sym-

bols tells us something about the real world, namely what a practical plan

to assemble a house might be.



2.1. Symbolic Programming 15

A game of chess can be analyzed
by a symbolic program. Each chess
piece is a symbol, under the appropriate
rules of piece movement. For example,
there are symbols for the four knights:
black knight1, black knight2, white knight1,
white knight2. The knight symbols can
move in any hook pattern, and hop over
pieces. For each move in the game, the
computer will need to choose the \best
move". At a higher level of abstraction,
we want to think about moving groups of
pieces into certain con�gurations. So we'd
make symbols for standard chess attack
and defense positions. Our program could
manipulate symbolic expressions entirely
at this higher level. For example, the last
move in a game might be when one player
has the symbol king in check, and �nds a
symbolic expression that gives the sym-
bol checkmate. In the diagram, white has
black in check, where the symbols for the
circled groups of pieces areDe Lomb attack

for white, and Monte Cristo defense for
black. One of the rules for the De Lomb
attack and the Monte Criso defense is that
if we have the symbol king in check, the
operation \close the attack" will result in
the symbol checkmate.

We are interested in symbolic programming, where we can encapsulate

complex ideas with symbols, and manipulate the symbols directly. These

programs deal with symbolic expressions such as 2 + 2 = 4 or window1 plus

window2 plus frame2 is house10. An ambitious goal would be to have a

program that proposed a scheme to assemble a 4 or a house10 given avail-

able resources and some knowledge of the general symbolic rules. We are

ultimately interested in writing programs that actually construct other pro-



16 Chapter 2. Programming with Lisp

grams and are even capable of rewriting themselves.

Throughout this text, we use a programming language Lisp that was

designed for manipulating symbolic expressions. Lisp is the language tradi-

tionally used for arti�cial intelligence programming because many high level

concepts can be expressed clearly. The symbols save the programmer from

the low level details. Because the syntax of Lisp is simple, it is easy to learn

and to write with.

/ Lisp is a symbolic list processing language

Lisp was invented by John McCarthy at MIT before 1960, making it

the second oldest computer language still in current use, after FORTRAN.

Lisp was designed to facilitate symbolic programming. However, it was not

the �rst language designed to manipulate lists and symbolic expressions; an

earlier list-processing language called IPL was developed by Herbert Simon

and Allen Newell for their work in automated problem solving (see Chap-

ter /searchchapter).

McCarthy was able to show that a subset of Lisp was able to compute

any function that a Turing machine could compute [McCarthy, 1960]. He

did so by showing how one could write a universal function in Lisp that

could interpret any Lisp function; McCarthy's universal function was called

eval.

Lisp stands for list processing language, because symbols are usually kept

in ordered sequences formally called lists. For example, if building a house

involved making the foundation, building a frame, and then installing win-

dows, we might store the plan as a list of symbols: 1. build a foundation, 2.

build a frame, 3. install windows. Combinations of lists can make complex

associations between symbols and groups of symbols. We'll show you how

to use symbols in lists in the following sections.

Lisp does its own memory management, freeing you to build up arbi-



2.2. Rule-Based Reactive Systems 17

trary list structures and use them temporarily to perform computation. You

can rely on Lisp to reclaim the associated storage when you are �nished

using them. The automatic reclamation of memory by any symbols is called

garbage collection. Features like garbage collection make Lisp a wonderful

language for rapid prototyping and exploratory study.

/ How we describe Lisp

In this chapter, we assume that you already know how to program in at

least one programming language. We encourage you to experiment with Lisp

and try variations on what you see printed in these pages. Our introduction

to Lisp proceeds as follows. We begin with basic syntax, and then talk

about symbols. Lisp programs are represented as lists of symbols, so we

provide the syntax for lists. We then turn to semantics and describe how

the simplest of Lisp programs, corresponding to primitive data types, are

interpreted. On the way to writing more interesting programs, we introduce

constructs for procedures, functions and subroutine abstraction and 
ow of

control, conditional and iterative. We describe some of the list manipulation

techniques available in Lisp; list manipulation is an important part of Lisp

in general and of our use of Lisp in particular. We provide the simple tools

for data abstraction, to create structured data types. Finally, we describe in

detail an example of solving a real world problem using symbols and rules.

2.2 Rule-Based Reactive Systems

A Mobile Robot Example

In this section, we examine a simple rule-based reactive control system for

mobile robots. Such a system might be used to control a mobile robot to

navigate in the corridors and open spaces of an o�ce building. The system

is said to be rule based because it uses a set of rules to determine what to



18 Chapter 2. Programming with Lisp

near away far

front

rear

left right

i. ii.

jrightjleft

Figure 2.1: Obstacle detection sensors for a mobile robot

do next. It is said to be reactive because it responds more-or-less directly to

changes in the environment indicated by the robot's sensors. We begin by

introducing abstractions for sensors and controls.

Environment Abstraction

We assume that there are six sensors that provide information about pres-

ence of obstacles in the area around the robot. The sensors are arranged

to provide more information about what is in front of the robot to assist

in navigation and obstacle avoidance. The symbols forward, justright,

justleft, right, left, and rear represent the six sensors. Each sensor is

responsible for reporting on the presence of obstacles in a �xed region about

the robot, returning one of three values from the set fnear,away,farg. Fig-

ure ??.i shows the arrangement of the sensors and Figure ??.ii depicts the

robot in a corridor of an o�ce building with a water cooler partially blocking

its way.



2.2. Rule-Based Reactive Systems 19

Robot Constraints

In addition to the sensors, there are two control parameters, the velocity of

the robot and the direction that it is turning, corresponding to the symbols

speed and turn. The speed parameter takes on values from fzero,slow,fastg.

Turn takes on values from fleft,straight,rightg.

At this point we are prepare to create some data abstraction and work

towards a solution utilizing LISP. However, we are not fully versed with

LISP, so we will return to this example after you hold a greater knowledge

of LISP and symbolic programming.

LISP is a Real Language

We begin our introduction to Lisp by considering what we want and need

from a programming language. Certainly we want all of the standard data

types (e.g., numbers, strings, and pointers) and operations on such data

types (e.g., addition, multiplication, concatenation, and pointer following).

In addition, we need 
ow of control constructs to facilitate sequencing, con-

ditional branching, and procedure implementation. The means of reading

and writing from �les and standard devices such as terminals will be useful

for any real applications. Finally, it will help in writing complicated pro-

grams if there are methods for structuring programs (e.g., subroutines and

modules) and facilities for creating new control constructs and abstract data

types.

There is More Than One LISP

There are many dialects of Lisp and most provide all of the above and more.

In the following, we employ a widely used dialect called Common Lisp. We

choose Common Lisp rather than one of the more elegant dialects of Lisp

as Common Lisp has become an accepted standard. We present a subset



20 Chapter 2. Programming with Lisp

of Common Lisp and, as a result, much of what we say applies to other

dialects as well. The particular subset of Common Lisp we have chosen

includes all of the functionality required for the examples and exercises in

this text and provides a good basis for learning more about Lisp. To help

you use this subset we have included at the end of the book an index of

general symbolic programming terms and Lisp notation including function

names, special forms and special characters; the general terms are repeated

in the general index but the Lisp notation is not.

LISP is Easy

The syntax of Lisp is relatively simple. It is so simple in fact that Lisp can

seem structureless to programmers used to languages with greater syntactic

restrictions. In Lisp, programs and data are represented as lists, where a list

is represented by an open parenthesis followed by zero or more expressions

and a closing parenthesis.

JON BOX HERE START!

Here are some sample list's that you might see in Lisp. Because of their

construction they are all Lisp programs themselves.

() ; The empty (or null) list. (1) ; A single item list. (1 (2)) ; A list

which contains two items, one of which is ; a list also.

Lists provide an abstraction of pointers that simpli�es a wide variety

of programming tasks. Lisp also has numbers (integer and 
oating point)

and strings (represented in the conventional manner between double quotes,

"string") and a variety of other primitive data types, but the ease with

which programmers can manipulate lists in Lisp is one of its most attrac-

tive features. Lisp provides the programmer with a complete memory man-

agement system, thus eliminating the concern of memory allocation and



2.3. Loading and Evaluating Programs 21

deallocation. This is a clear bene�t over other languages where memory

management can absorb the entire program.At a later point in the text we

will present lists and memory in Lisp in greater detail.

LISP Requires Documentation

Common Lisp provides a number of techniques for documenting code ap-

pearing in Lisp programs; we mention only one such technique. Typically,

a Lisp program is stored in a �le and consists of a sequence of function

de�nitions and assorted other Lisp expressions interspersed with comments

that provide documentation. The semicolon (;) is the standard comment

character. Characters on the same line to the right of a semicolon are ig-

nored, whether they are typed to the interpreter or found in a �le. You have

already see comments in Lisp, the �rst simple examples used the semicolon

to distinguish between the code and the comments.

> ; This comment appears just prior to an expression
(+ 3 4) ; This comment appears in line.

If you have access to the code that was written to accompany this text,

then you will have many examples of well documented Lisp code. In this

book, however, all documentation appears in the form of text either preced-

ing or following the code it is meant to document.

2.3 Loading and Evaluating Programs

A Lisp program is just a sequence of Lisp expressions. Executing a Lisp

program consists of evaluating the expressions in the program in the order

that they appear in the sequence. If you write a set of expressions in a �le,

then you can execute it by loading it from the Lisp interpreter. Loading is

done by evaluating an expression of the form (load �le-speci�cation) where

�le-speci�cation is an expression that evaluates to a string indicating a �le.



22 Chapter 2. Programming with Lisp

The exact form of the �le speci�cation will depend on your particular imple-

mentation of Common Lisp and local operating system. Generally, however,

if you start Common Lisp in a directory in which a �le `program.lisp' resides,

then evaluating (load "program.lisp")will serve to load that �le and eval-

uate the expressions found in it. You can also embed load statements in

�les to establish dependencies between �les.

2.4 A Simple Procedure

Common Lisp has a lot of built-in functions. You can scan through a refer-

ence manual (e.g., [Steele, 1984]) to get some idea of the range of functions,

but most if not all of the functions found in other widely used programming

languages are also available in Common Lisp in some form or another. For

arithmetic, Common Lisp includes functions for addition +, subtraction -,

multiplication *, and division / involving one or more arguments. These

functions can generally be counted on to behave reasonably given any mix-

ture of integer or 
oating-point arguments.

> (+ 3 4 5) ; Simple addition of three numbers
12
> (- 4 2 1) ; Here 2 and 1 are subtracted from 4
1

Expression Evaluation

As with any language, understanding the process of expression evaluation is

critical when learning Lisp. Fortunately Lisp provides an evaluation scheme

that is common to mathematics. General expressions are evaluated left

to right, expressions involving nested function calls are evaluated from the

innermost to the outermost. For those expressions which have arguments

that are themselves expressions, the nesting evaluation is carried out in left

to right order. Figure ?? shows the tree of evaluations that results from



2.5. Functions in LISP 23

( /  12  2 )

1 [1] 2 [2]

( +  1  2 ) [3] 3 [4] 12 [6] 2 [7]

[8]

[9]( +  ( ( + 1  2 )  3 )  ( /  12  2 ) )*

[5]( ( +  1  2 )  3 )*

Figure 2.2: Order of evaluation in nested function calls

the following function calls; the order of evaluation for subexpressions is

indicated by the integers in square brackets. The code is presented so that

it is clear that the addition takes place between what is labeled list one and

list two. List one is evaluated independently of list two prior to the overall

summation.

> (+ ; Outer layer
(*(+ 1 2) 3) ; List one.
(/ 12 2)) ; List two.

15

JON, BOX START HERE

> (* ; Last evaluation
(+ 4 3) ; First list to be evaluated
(/ 2 1)) ; Second list to be evaluated

14

2.5 Functions in LISP

You will also want to de�ne your own functions. The examples of Lisp that

have been presented thus far have included only operators that are de�ned

by Lisp, and integers that are automatically assigned the appropriate value

by Lisp. However, to Lisp, the operators and the integers that we have

used are all symbols. The user de�ned functions that you implement use a



24 Chapter 2. Programming with Lisp

special operator defun that takes a symbol as the name for the function,

a list of symbols corresponding to the arguments (or formal parameters) of

the function. The main body of the Lisp function follows, which consists of

one or more well de�ned expressions in Lisp syntax.

> (defun square (x) ; title line, and arguement
(* x x)) ; operation line

SQUARE
> (square 3) ; call of function
9

> (defun increment (x) ; title line, and arguement
(+ x 1) ; operation line

INCREMENT
> (increment 3) ; call of function
4

The IF Construct

Lisp provides the common program control statement if found in most

complete programming languages. Within Lisp syntax if is an operator,

whose �rst arguement is evaluated. When the arguement is true the �rst

list that follows is evaluated, otherwise the second list is evaluated. The

example takes an arguement a returns the next odd number among integers.

> (defun next-odd-num (x) ; Returns the next odd number after x.
(if (= (% x 2) 0) ; Uses the modulus operator (%) to determine

(+ x 1) ; if x is even. When x is even add one,
(+ x 2))) ; otherwise add two.

The COND Construct

Lisp also provides a more general conditional construct, in other languages

cond is analogous to a switch or case statement. When implemented a cond

statement is considered an operator with multiple two part clauses, (cond



2.5. Functions in LISP 25

clauses). The �rst portion of each clause is a test statement to be evalu-

ated, the second portion is a body to be executed when the test statement

true, (test body). A cond statement is evaluated in the same manner as

arithmetic expressions, from left to right, evaluating the test of each of its

clauses in turn until one test succeeds (i.e., returns something other than

nil). When a test succeeds the expressions in the body of the same clause

are evaluated in sequence and the value of the last expression is returned as

the value of the cond. If the clause has no expressions in its body, then the

value of the test is returned. If no test succeeds, then the cond returns nil.

The following function illustrates the use of cond. Let is an operator

that assigns values to symbols, in this case response will be assigned the

value of read and number will be assigned the results of yc�random. Read is

a function of no arguments that reads an expression from the standard input

(usually a terminal), and random is a function that takes a single argument

corresponding to a positive number n and returns a number of the same type

| in this case an integer | between zero (inclusive) and n (exclusive).

In the case of n being an integer, the possible results appear with the

(approximate) frequency 1=n.

> (defun guess () ; Title line
(princ "Guess an integer from 0 to 9: ") ; Terminal display
(let
((response (read)) (number (random 10))) ; Variable assignment
(cond

((> response number) (princ "Too high!"))
((< response number) (princ "Too low!"))
(t (princ "Lucky guess!"))))) ; Default is t

GUESS
> (guess)
Guess an integer from 0 to 9: 3
Too low!

The 3 was typed by the user in response to the prompt. In the function

guess, t (a symbol that evaluates to itself) plays the role of a test that always



26 Chapter 2. Programming with Lisp

succeeds. It is considered by some bad form to write a cond statement for

which no test succeeds, and, hence, you will often see cond statements whose

last clause is of the form (t body).

2.6 Recursion and Iteration

A recursive function is one in which the function is called recursively in the

body of its de�nition. In the recursive call, the function is generally applied

to some reduction of the original arguments. In addition, there is some

criterion that determines when further recursive calls are no longer required.

Simple Recursion

The function raise takes two arguments, a number of any type and a non-

negative integer n, and returns the number raised to the nth power. A

recursive de�nition is provided below.

> (defun raise (x n) ; x raised to the power n
(if (= n 0) ; check for end of recursion
1 ; at base return a 1
(* x (raise x (- n 1))))) ; otherwise x * x raised to the

; power n-1
RAISE
> (raise 3 3)
27

The base-case criterion (terminating condition) for the recursion is the

case of n = 0; any number raised to the 0th power is 1. If n 6= 0, then

we multiply x times the result of calling raise with arguments x and (- n

1). Figure ?? depicts the environments as they are created throughout the

execution of (raise 3 2).



2.7. Iterative Constructs 27

X: 3
N: 2

X: 3
N: 2

X: 3
N: 1

X: 3
N: 2

X: 3
N: 1

X: 3
N: 0

X: 3
N: 2

X: 3
N: 1

X: 3
N: 2

(RAISE 3 2)

(RAISE X (− N 1))

(RAISE X (− N 1))

1

9

3

Figure 2.3: Environments created during recursive function invocation

2.7 Iterative Constructs

The do construct is one of the most widely used iterative constructs in Com-

mon Lisp. The general form is (do index-variable-speci�cations (end-test

result) body), where index-variable-speci�cations is a list of items of the

form (step-variable initial-value step-value), end-test is any expression, and

result and body consist of one or more expressions. The step value or the

step value and the initial value can be left out of an index-variable speci�ca-

tion; in the latter case, you need not enclose the step variable in parentheses.

Upon entering the do each step variable gets its initial value or nil if no

initial value is provided. On each subsequent loop through the do each step

variable gets its step value. The step variable assignments are carried out in

parallel.1 On each loop, after the step variables are assigned, the end test is

evaluated. If the end test returns non-nil, the result expressions are evalu-

ated in order returning the value of the last one, otherwise the expressions

1A variant construct do* is identical to do except that variable assignments are carried

out sequentially.



28 Chapter 2. Programming with Lisp

in the body are evaluated in order. Here is a simple example of a do loop

computing 9! and printing out the numbers 1 through 9 as a side e�ect.

> (do
((i 1 ; i is an index variable, initialized to 1

(+ i 1)) ; i increments by 1
(j 1 ; j is an index variable, initialized to 1

(* j i))) ; j increments by j * i
((= i 10) j) ; end when i = 10, j = any value
(princ i)) ; print i's while looping.
123456789
362880

There are other iterative constructs corresponding to special cases of do

that represent common patterns of use and are often convenient. Dolist

is generally called using the form (dolist (var expr result) body), where

var is a symbol repeatedly bound to the elements of the list that results

from evaluating expr, body is evaluated once for each element of the list, and

result is an optional form that is evaluated and returned as the value of the

dolist after the last time the body is evaluated. If no result is provided then

dolist returns nil. Dotimes is generally invoked using the form (dotimes

(var expr result) body), where in this case var is bound to the integers zero

up to (but not including) the integer resulting from evaluating expr. Here

are some examples illustrating these iterative constructs.

> (dolist
(x '(a b c)) ; Here x will equal a,b, and then c
(princ x)) ; During the process the value of x will be

; displayed.
ABC
NIL
> (dotimes

(i 10 i) ; Here i will equal 0 through 10
(princ i)) ; During the process the value of i will be

; displayed.
0123456789
10

In the following chapters, we make use of mapping functions, a Lisp



2.8. Symbols, Scope, Environment 29

speci�c operation, recursion, and the above iterative constructs to illustrate

di�erent styles of programming. There is no one way to write the programs

listed in this text and you should experiment to �nd a coding style that you

feel comfortable with.

2.8 Symbols, Scope, Environment

Symbols

Another important concept in Lisp is that of the symbol. Symbols have values

that can be changed and depend on the context in which they appear. In the

previous section the user de�ned function guess used two symbols, number

and response. Lisp utilizes symbols to represent values, or even functions.

In the case of user de�ned functions the name of the function is actually a

symbol which is considered by Lisp as the function.

Here are several non-funciton symbols. sym ; basic symbol sym14 ; al-

phanumeric mix ok sym-one ; hyphen sym two ; underscore

In lisp the case of the symbol is ignored, the following three symbols are

all considered the same symbol by Lisp.

foo ; lower case FOO ; upper case Foo ; mixed

Expressions

An expression, then, is a number, string, symbol, or (inductively) a list

composed of zero or more expressions. To make any further progress, you

will have to learn more about the semantics of Lisp. As we learn more about

the meaning of Lisp programs, we will introduce more of the syntax. In

the following, we describe a program called eval that serves to interpret or

evaluate Lisp programs.

Conveniently, most implementations of Lisp provide an interactive pro-



30 Chapter 2. Programming with Lisp

gram that allows the user to type Lisp expressions to a terminal interface

to be evaluated. We make use of this interactive program (called the inter-

preter) in the following presentation and suggest that, if possible, you follow

along at a terminal performing experiments of your own. Consult a local

Lisp hacker to �nd out how to invoke the interpreter and how to recover

from the inevitable errors that will occur. Don't be afraid to experiment;

the interpreter is designed to facilitate exploration.

When a Lisp interpreter starts up, it generally prints out a message

indicating the version number, restrictions on copying, and a variety of other

information that you can safely ignore at this stage. When it is �nished with

its greeting, it displays a prompt indicating that you can begin typing. The

interpreter is expecting a complete expression. If you type such an expression

followed by a carriage return, the interpreter reads it, evaluates it, and prints

out the result. Nested lists are often the most di�cult expressions to manage

as correctly typing such expressions requires that the parentheses balance;

a feat that many 
edgling Lisp hackers �nd di�cult to accomplish. We will

not persist in giving you advice about how to interact with your interpreter,

except to suggest once again that you consult a manual or local expert

regarding your implementation of Lisp. You may �nd that your local Lisp

system includes utilities for balancing parentheses, controlling indentation,

and a variety of other aids that will make your experience more productive

and less frustrating. In the following, we elided the many errors and false

starts that occurred as we generated the interactions recorded here.

A Lisp program is just an ordered sequence of expressions. Running

a Lisp program consists of evaluating the sequence in order. The Lisp

interpreter invokes eval which behaves much as a compiler does in other

programming languages; the fact that eval can incrementally compile Lisp

programs considerably simpli�es writing Lisp code. (Common Lisp supports

other forms of compilation besides those implemented by eval but we do



2.8. Symbols, Scope, Environment 31

not consider them in this text.) Strings and numbers evaluate to themselves.

> "string"
"string"
> 3.14
3.14

Symbols and the Environment

Symbols are a di�erent matter. If you just type a random symbol to the

interpreter, you will probably get an error. Note that the particular inter-

preter used here displays all symbols using upper case letters only; this is

the default mode in many Lisp implementations.

> sym
Error: The symbol SYM has no global value

Global Symbols

Some symbols, however, do have global values. In particular, the symbols t

and nil, which are the default Lisp boolean values, evaluate to themselves.

Nil and the empty list () are equivalent in Common Lisp in the sense that

they both point to the same location in memory.

Changing Values of Symbols

We can set or change the value of other symbols using setq (for set equal).

> (setq sym 2)
2
> sym
2
> (setq sym 3)
3
> sym
3



32 Chapter 2. Programming with Lisp

Setq takes a minimum of two arguments; the �rst must be a symbol and

is not evaluated and the second can be any expression and is evaluated.

> (setq new sym)
3
> new
3

Setq can be used to set the value of several symbols at once as in the

expression (setq new 1 old 0).

Symbols and the Environment Table

The value of a symbol depends on the context in which it is evaluated. When

eval encounters a symbol, it looks up the symbol's value in a structure that

behaves like a table; if there is no entry in the table, then it reports an

error. The structure is called an environment and eval has to �gure out

the appropriate environment to look in. In the examples above, eval looks

up symbol values in the global environment. Later on, we consider how

additional environments are created and referenced by eval.

2.9 Functions and Procedural Abstraction

If the expression typed to the interpreter is not string, number, symbol, or

one of Lisp's special forms, then it had better be a list. Eval assumes that

a list | one not specifying a special form | indicates the application of a

function2 (the �rst element of the list) to some number of arguments (the

remaining elements of the list).

2We use the terms `function' and `procedure' interchangeably in this text.



2.9. Functions and Procedural Abstraction 33

Functions are Symbols

Functions are notated as symbols. In Common Lisp, a symbol can have a

value that is used when the symbol appears as an argument of a function

and a de�nition that is used when the symbol appears as the �rst element

of a list interpreted as a function call.3 For our purposes, we assume that

function de�nitions are stored in a single global table. This need not be the

case in Common Lisp but making this assumption avoids a number of what

we consider peripheral issues.

Functions, Arguements and the Environment Table

The argument symbols are handled in a special way during function ap-

plication. Each time a function is applied, a new environment is created

and the function de�nition, consisting of one or more expressions, is evalu-

ated in that environment. Figure ?? describes the operation of apply, the

procedure responsible for handling function application for eval.

All of the Environments Work Together

An environment allocates storage for symbol values. You can think of the

global environment as just a large table. Whenever you setq a new symbol,

memory is set aside in the global environment to point to the value of that

symbol. The environments created during function application and in eval-

uating certain special forms are somewhat more complicated. In general,

an environment is a sequence of tables. A new environment is created from

an existing environment by creating a new table and having it point to the

3Not all modern dialects of Lisp make this distinction between functions and argu-

ments. For example, there is a dialect of Lisp called Scheme [Abelson & Sussman, 1985]

in which each symbol has a single value resulting in a very clean and conceptually simple

implementation.



34 Chapter 2. Programming with Lisp

existing (parent) environment. The new environment points to this newly

created table which allocates storage for speci�c symbols (e.g., the formal

parameters in the case of a function de�nition). To determine the value of

a symbol in an environment, eval �rst looks in the table pointed to by the

environment. If there is no entry for the symbol in that table, then eval

looks in the parent environment, and so on until it reaches the global envi-

ronment. You can change the (local) value of a symbol in an environment

without changing its value in the global environment.

> (setq x 7) ; Create x globally
7
> (defun local (x) ; New environment x created here.

(setq x (+ x 1)) ; Variable x changed for current environment.
(* x x)) ; Operation on local variable x.

LOCAL
> (local 2) ; Call function with arguement.
9
> x ; Value for global x remains the same.
7

Don't Try This in Your Environment

Generally speaking, setting the value of symbols in the global environment

is frowned upon. One of the main reasons for this attitude is that global

variables are often di�cult to track down in large pieces of code; widely

scattered global variables can make large programs di�cult to understand.

> (defun global (x) ; Create x locally.
(setq sym (+ x 1)) ; Set global sym to value x.
(* sym sym)) ; Perform operation here.

GLOBAL
> (global 1)
4
> sym
2



2.9. Functions and Procedural Abstraction 35

Let, a Variable and Environment Modi�er

You do not have to introduce a symbol as a formal parameter in order to

use it as a local variable. The special form let can also be used to produce

a new environment. Using let you can introduce a local variable and later

setq it to a speci�c value or you can set it at the same time you introduce

it. The general form is (let variable-speci�cations body), where variable-

speci�cations is a list of zero or more expressions each corresponding to a

variable or an expression of the form (variable initial-value-expression) and

body consists of one or more expressions. In evaluating such a form, Lisp

assigns each variable the value of the corresponding initial value expression if

such an expression exists and nil otherwise. These assignments are carried

out in parallel so that you cannot refer to one variable in the initial value

expression of another. There is a variant of let called let* that assigns

local variables sequentially so that you can refer to one variable in the initial

value expression of another variable appearing later in the list of variable

speci�cations.

Interpolate, the Lisp Way

In the following, we illustrate both styles of setting local variables in the

de�nition of a simple linear interpolation function that takes two points on

a line in terms of their x and y coordinates and returns the y coordinate of

a third point given its x coordinate.4

4In many cases (present example included), local variables are not strictly necessary.

However, if skillfully employed, local variables help to enhance readability.



36 Chapter 2. Programming with Lisp

> (defun interpolate (x1 y1 ; point one
x2 y2 ; point two

x3) ; x coordinate of new point
(let (m (b y1) ; b,m assigned value of y1

(x (- x3 x1))) ; x assigned value of x3 - x1
(setq m ; m assigned value of / of the

(/ (- y2 y1) ; y2 - y1, and
(- x2 x1))) ; x2 - x1, to determine slope.

(+ (* m x) b))) ; Finally calculate y coordinate.
INTERPOLATE
> (interpolate 1 1 5 5 4)
4

Multiple Environments With Let

We can nest let statements thereby producing structured environments.

The scope of a variable introduced through an environment is determined

by the balanced parentheses enclosing the corresponding let or defun. For

this reason, such variables are often referred to as lexical (or static) variables,

and the rule for determining their scope as lexical scoping. Many dialects

of Lisp also support dynamic variables whose scope is determined at evalu-

ation time. Lexical scoping has the advantage that code relying entirely on

lexically scoped variables tends to be easier for programmers to understand

and compilers to produce e�cient code for. In this text, a variable is either

global or local, and if it is local, then it has lexical scoping.

Let, Scope, and Environment

In the following, we use a simple form of Lisp print function to illustrate

variable scoping. The function princ evaluates its single argument, prints

the resulting value, and then returns that value.



2.9. Functions and Procedural Abstraction 37

> (let ((x 1)) ; x = 1
(let ((x 2)) ; x = 2
(let ((x 3)) ; x = 3

(princ x)) ;
(princ x)) ; x = 2

(princ x)) ; x = 1
321
1

The �rst line following the let statement is the result of the three princ

calls; the second line is the value returned by the let statement which is the

value of the last princ statement.

The de�nition for the interpolation function that we introduced earlier

has a bug in it. If the two points have the same x coordinates then the

the previous de�nition will result in an attempt to divide by zero which

will cause an error. We can correct this by adding a conditional statement.

In Lisp, any expression can serve as a test; if the expression returns nil

(or equivalently ()), then the test fails, otherwise it succeeds. The Lisp if

statement consists of a test, an expression evaluated only if the test succeeds,

and an expression evaluated only if the test fails. The predicates =, >, <, >=,

and <= enables us to compare numbers.

> (defun interpolate (x1 y1 ; First point
x2 y2 ; Second point

x3) ; Goal X Coordinate
(if (= x1 x2) ; When x1 = x2

y1 ; The y coordinate is y1,
(let ((m ; otherwise interpolate

(/ (- y2 y1) ; as before.
(- x2 x1)))

(b y1)
(x (- x3 x1)))

(+ (* m x) b))))
INTERPOLATE
> (interpolate 1 3 4 3 2)
3



38 Chapter 2. Programming with Lisp

2.10 List Processing

Contradictory as it might sound, a symbol does not have to have a value

in order to be valuable for symbolic manipulation purposes. In order to

refer to a symbol (rather than its value) it is often useful to get eval to

suspend evaluation. This is done in Lisp with the quote function. Quote

is used so often in Lisp that there is a convenient abbreviation; 'expression

is an abbreviation for (quote expression). Quote causes eval to suspend

evaluation on any expression.

> (quote sym)
SYM
> 'sym
SYM
> '(first second third)
(FIRST SECOND THIRD)

2.11 Memory

Using quote, we can construct lists of symbols if we know what those symbols

are in advance. Using cons (for constructor), we can build lists more 
exibly

under program control. Cons takes two arguments and constructs what is

called a dotted pair for reasons that will soon become apparent; construction

involves allocating storage for two pointers that refer to the values of the

two arguments.

> (setq x
(cons 1 2))

(1 . 2)
> (setq y (cons 1

(cons 2 ())))
(1 2)

The structures in memory corresponding to dotted pairs are called cons

cells and are depicted graphically as joined boxes with pointers. Pointers



2.11. Memory 39

(SETQ X (CONS 1 2))

X 22

11

(SETQ Y (CONS 1 (CONS 2 ())))

2211

Y

Figure 2.4: List structures in memory

to nil are depicted by a slash through the corresponding box. Figure ??

shows the structures resulting from evaluating the expressions above. Car

and cdr allow us to select parts of list structures constructed using cons.

The names car and cdr can be traced to the machine architecture of the

computer that Lisp was �rst designed to run on.

> (car x)
1
> (cdr y)
(2)
> (car (cdr y))
2

First and rest are more mnemonic alternatives to car and cdr. Second,

third, and fourth are also commonly de�ned in many dialects of Lisp, and,

more generally, (nth i l) allows us to access the ith element of the list l.

One reason that we retain the archaic car and cdr is the related but very

convenient abbreviations for nested cars and cdrs. In many dialects of Lisp,

short sequences of cars and cdrs (usually up to four) (e.g., (car (cdr (car

expression)))) are abbreviated by functions of the form c[a|d]�r (e.g.,

(cadar expression)). If these functions are not available in your dialect, you

should �nd it easy to de�ne them. The function list provides a somewhat

more convenient method of constructing lists. List takes any number of

arguments and returns a list of their values. The invocation (list 1 2



40 Chapter 2. Programming with Lisp

11

X

11

X

(SETQ X (LIST 1 (LIST 1))) (SETF (CAR (CDR x)) X)

Figure 2.5: Modifying list structures in memory

3 4) results in the same structure as (cons 1 (cons 2 (cons 3 (cons 4

())))).

> (list 1 2 3 4)
(1 2 3 4)
> (list 1 (list 2 (list 3)))
(1 (2 (3)))

Lisp allows you to modify existing list structures by changing the contents

of memory. The is especially useful when more than one symbol points

to the same locations in memory. Setf takes a location in memory (such

as provided by a symbol reference or by car and cdr invocations) and an

expression, and changes what is stored at that location to be the value of

the expression. Setf is said to destructively modify its �rst argument.

> (setq x (list 1 (list 2)))
(1 (2))
> (setf (car (car (cdr x))) 1)
1
> x
(1 (1))

Setf is more general than setq but the latter is often still used as a form

of documentation to indicate that a symbol is being set rather than some

more complicated memory modi�cation. Be careful with setf; employed

carelessly, it can often be the cause of subtle bugs in programs. Setf allows

us to build circular list structures that are very useful for representation



2.11. Memory 41

purposes; you do, however, have to me somewhat careful in displaying such

structures.

> (setf (car (cdr x)) x)
(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 ...

The interpreter's response to the above invocation had to be interrupted

or it would have continued printing inde�nitely. Figure ?? displays the

resulting structure graphically. Common Lisp has print procedures that

perform a more reasonable job of printing circular list structures.

Lisp passes parameters using call by value as illustrated by the following

exchange with the interpreter.

> (defun foo (x)
(setq x 0))

FOO
> (let ((x 1))

(foo x)
(princ x))

1

We can easily simulate other parameter passing conventions using pointers

and setf. The following illustrates how to simulate call-by-reference param-

eter passing.

> (defun bar (x)
(setf (car x) 0))

BAR
> (let ((x (list 1)))

(bar x)
(princ (car x)))

0

It should be noted, however, that there is no way in Lisp to achieve call-by-

reference for symbols.

Lisp has a variety of boolean predicates that return t or nil to test the

type of Lisp objects. Listp tests for lists, consp tests for dotted pairs,

numberp tests for numbers, oddp and evenp for odd and even integers,



42 Chapter 2. Programming with Lisp

symbolp for symbols, and null for the empty list nil. In addition, there

are the obvious logical operators: and, or, and not. To compare list struc-

tures, there are eq and equal. Eq determines if its two arguments point to

the same location in memory. Equal determines if its two arguments are

structurally similar.

> (setq sym 'foo)
FOO
> (eq sym 'foo)
T
> (setq sym (list 'foo))
(FOO)
> (eq sym (list 'foo))
NIL
> (setq new sym)
(FOO)
> (eq new sym)
T
> (equal sym (list 'foo))
T

2.12 Functions with Local State

It is often useful to associate data (or state) with a particular function or set

of functions. One way of doing this is to create one or more global variables

and setq them to appropriate memory structures. As noted earlier, however,

this use of global variables is generally frowned upon by purists. As an

alternative, we might create an enclosing environment for the function or

set of functions that introduces variables local to the environment that refer

to the local state.

Functions and Extent, How Long Does it Last?

The time during which an environment exists is called its extent. So far, the

extent of the environments we have talked about is brief, usually just the time



2.12. Functions with Local State 43

it takes to execute a procedure. There is one notable exception. The extent

of the global environment is the entire time the Lisp process is running.

Whenever a Lisp object is created that is capable of making references to

symbols, that object maintains a pointer to its immediate environment so

that references can be made with respect to that environment. As long

as that object exists, its associated environment exists. So far, the only

objects we have encountered that are capable of making variable references

are functions, but shortly we will learn how to create other such objects.

Functions with Di�erent Environments

All of the functions, we have considered up until now have as their associated

environment the global environment, but we can easily de�ne functions with

di�erent environments. The following (novelty) function, squarelast, uses

local state to remember the number corresponding to the value of its single

argument the last time it was invoked and returns the square of that number.

Squarelast is always one step behind the user.

> (let (x (y 1)) ; Establish environment
(defun squarelast (z) ; Create Internal Function

(setq x y) ; Variable manipulation
(setq y z)
(* x x))) ; Operation

SQUARELAST
> (squarelast 2)
1
> (squarelast 3)
4

A Function that Remebers

As a somewhat more interesting use of local state, we can de�ne a pair

of functions that remember pairs of numbers of the form (x : f(x)) for a

function f , and, when asked to provide an estimate for an arbitrary value



44 Chapter 2. Programming with Lisp

x, returns the f(x) if it has stored a pair (x : f(x)) or invokes the linear

interpolation function described earlier otherwise.

> (let ((data ())) ; Establish Environment
(defun remember (x y) ; Define Global Function
(setq data (insert (cons x y) data))) ; Creates a List of Pairs

(defun estimate (x) ; Define Global Function
(let ((pairs (nearest-pairs x data))) ; Estimate's Local Environment

(cond ((null pairs) x) ; With No List, No response
((null (rest pairs))

(rest (first pairs)))
(t (interpolate

(first (first pairs))
(rest (first pairs))
(first (rest pairs))
(rest (rest pairs))

x))))))
ESTIMATE

We employ the pair of functions, remember and estimate, over time as

samples become available and estimates are required. The extent of the

environment associated with these functions is as long as one or the other

of the two functions exist.

> (remember 1 1)
((1 . 1))
> (remember 2 3)
((1 . 1) (2 . 3))
> (remember 3 3)
((1 . 1) (2 . 3) (3 . 3))
> (estimate 2.4)
3
> (estimate 1.2)
1.1

2.13 Lambda and Functions as Arguments

Named functions de�ned with defun are not the only Lisp objects capable of

referencing variables. Lisp also allows us to create unnamed functions called

lambda functions. The expression (function (lambda arguments body))



2.13. Lambda and Functions as Arguments 45

evaluates to a function de�ned with the formal parameters in arguments

and the de�nition supplied in body. Function, like quote, does not evaluate

its single argument; it expects either a lambda expression or a symbol de�ned

as a function. Like quote, function has a handy abbreviation; Common

Lisp allows you to write #'expression as an abbreviation for (function

expression). In Common Lisp, you cannot call such a function simply by

having it appear as the �rst element of a list (as you can in the Scheme

dialect), but, rather, you have to funcall or apply it.

Funcall takes as its �rst argument an expression that evaluates to a

function and as many additional arguments as the function corresponding

to the �rst argument has arguments of its own (e.g., (funcall #'cons 1

2)). Apply is similar except that it takes only two arguments, the second

being a list of the arguments to be supplied to the function corresponding

the �rst argument (e.g., (apply #'cons (list 1 2))). Here is a simple

example illustrating function and funcall.

> (let ((x 0))
(setq counter #'(lambda () (setq x (+ x 1)))))

#<Interpreted-Function (LAMBDA NIL (SETQ X (+ X 1))) 104BB76>
> (funcall counter)
1
> (funcall counter)
2

If we were to set the symbol counter to something new, then the environ-

ment created above would cease to exist terminating its extent.

Both named and lambda functions are often passed around as variables

and in lists to be passed as arguments to funcall. Many Common Lisp

functions take optional arguments corresponding to functions that are intro-

duced with keywords. Keywords appear in argument lists as symbols whose

�rst character is a colon (e.g., :test). For instance, we mentioned that

member uses eq to check for objects in a list; if instead of writing (member x

l) we write (member x l :test #'equal), then member will use equal as



46 Chapter 2. Programming with Lisp

1

2 3 7

1

2

Figure 2.6: Labeled binary tree before and after label substitution

a test instead of eq.

2.14 Abstract Data Types

the implementation might change without their knowledge.

Suppose that we are writing programs that involve the manipulation of

labeled binary trees. Rather than manipulating binary trees using primitives

like cons, car, and cdr, we design a data abstraction using functions that we

de�ne and have mnemonic names. The following functions de�ne an abstract

data type with operations for creating, testing, accessing, and modifying

instances of this data type.

(defun make-tree (label left right)
(list 'labeled-binary-tree label left right))

(defun is-tree (x)
(and (listp x) (eq (car x) 'labeled-binary-tree)))

(defun tree-label (tree) (cadr tree))
(defun tree-left (tree) (caddr tree))
(defun tree-right (tree) (cadddr tree))
(defun set-tree-label (tree value)
(setf (cadr tree) value))

Having created this data abstraction, we can now forget about the details

and program in terms of the abstraction. Here is a simple function that

modi�es the labels in a binary tree. Progn is a Lisp construct for collecting

a sequence of expressions into a single form; eval evaluates each of the

expressions in a progn form in turn, returning the value of the last one.



2.15. Mapcar, and other commands 47

> (defun tree-sub (tree old new)
(if (is-tree tree)

(progn (if (eq old (tree-label tree))
(set-tree-label tree new))

(tree-sub (tree-left tree) old new)
(tree-sub (tree-right tree) old new))))

TREE-SUB
> (setq tree (make-tree 1 (make-tree 2 () ())

(make-tree 3 () ())))
(LABELED-BINARY-TREE 1 (LABELED-BINARY-TREE 2 NIL NIL)

(LABELED-BINARY-TREE 3 NIL NIL))
> (tree-sub tree 3 7)
7
> tree
(LABELED-BINARY-TREE 1 (LABELED-BINARY-TREE 2 NIL NIL)

(LABELED-BINARY-TREE 7 NIL NIL))

Figure ?? depicts the instances of the abstract data types created by the

above invocations and the change that results from the label substitution.

This chapter provides only a glimpse of what Lisp has to o�er in the way

of procedural and data abstraction. Common Lisp and its extensions include

a wide variety of techniques for structuring large programs and managing

complex data types. Lisp provides a wonderful environment for experiment-

ing with languages that support abstraction. To note just one area in which

Lisp has had an impact, a great deal of research on object-oriented program-

ming was carried out using Lisp. Today there are a number of packages that

provide a basis for object-oriented programming within Common Lisp.

2.15 Mapcar, and other commands

Lambda functions are often created just to pass them to other functions.

For instance, you might wish to compute the maximum of the corresponding

entries in two lists.

> (mapcar #'(lambda (x y) (if (> x y) x y)) '(2 7 5) '(1 9 4))
(2 9 5)



48 Chapter 2. Programming with Lisp

Mapcan is like mapcar except that it appends the results using nconc. Mapc

is like mapcar except that it does not do anything with the results; mapc is

used only for its side e�ects.

The reduce function takes a function corresponding to a binary operation

and a list and combines the elements of the list using the binary operation.

Here are two examples illustrating reduce.

> (reduce #'+ `(1 2 3))
6
> (reduce #'(lambda (v w) (mapcar #'+ v w))

'((1 0 0) (0 1 0) (0 0 1)))
(1 1 1)

The �rst example computes the sum of a list of numbers. The second exam-

ple computes the sum of a list of vectors.

DO Loops Instead?

Here is another example of how a do loop might substitute for an expression

involving a mapping function.

> (setq list '(1 2 3 4))
(1 2 3 4)
> (do ((args list (cdr args))

(results nil (cons (oddp (car args)) results)))
((null args) (reverse results)))

(T NIL T NIL)
> (mapcar #'oddp list)
(T NIL T NIL)

In this particular case, the mapcar expression is more concise, but there are

plenty of occasions in which the do loop will serve more appropriately than

a mapping function.

2.16 Syntax

Other functions that operate on lists include: append which takes zero or

more arguments that evaluate to lists and returns a new list which consists



2.16. Syntax 49

of all of the elements in those lists, and nconc which is similar to append

except that it destructively modi�es all of its arguments but the last.

> (setq x '(1 2) y '(3 4))
(3 4)
> (append x y)
(1 2 3 4)
> x
(1 2)
> (nconc x y)
(1 2 3 4)
> x
(1 2 3 4)

Reverse takes a list and returns a new list that consists of the elements

of the old list arranged in reverse order. Member is a particularly useful Lisp

function that takes two arguments corresponding to an arbitrary Lisp object

and a list. If the object corresponding to the �rst argument is an element

of the list corresponding to the second, then member returns that portion of

the list (its tail) beginning with the �rst element of the list that is eq to that

object. If the object is not an element of the list, member returns nil.

> (member 5 (append '(1 2 3) '(4 5) '(6 7 8)))
(5 6 7 8)

Using our new list-processing machinery, we now de�ne a function insert

that takes two arguments: a dotted pair of numbers (e.g., (1 . 2)) and a list

of dotted pairs of numbers (e.g., ((1 . 2)(2 . 4)(4 . 8))). We assume

that the list of dotted pairs is sorted by the size of the �rst number in each

pair with smaller numbers appearing earlier in the list. The list of dotted

pairs represents samples in the form of a pair of numbers, x and f(x), of a

scalar function f of one variable. There is no need to include two pairs with

the same �rst element; if the pairs all come from the same function and two

pairs have the same (=) �rst element, then the second elements will also be

the same and the dotted pairs will be equal. Insert creates a new sorted



50 Chapter 2. Programming with Lisp

list that includes the pair corresponding to the �rst argument. It does so by

pulling the list apart with car and cdr and putting it back together with

cons, adding the new pair if necessary.

> (defun insert (new pairs)
(cond ((null pairs) (cons new ()))

((= (car new) (car (car pairs))) pairs)
((< (car new) (car (car pairs))) (cons new pairs))
(t (cons (car pairs) (insert new (cdr pairs))))))

INSERT
> (insert (cons 3 4) (list (cons 1 2) (cons 2 4) (cons 5 6)))
((1 . 2) (2 . 4) (3 . 4) (5 . 6))
> (insert (cons 1 2) (insert (cons 3 4) ()))
((1 . 2) (3 . 4))

Insert uses what is called cdr recursion as the function is applied recur-

sively to the cdr of the list corresponding to its second argument until that

list is nil. It is also often useful to recurse on both the car and the cdr of

objects corresponding to complex nested list structures. The following func-

tion recurses on both the car and cdr of a list to test for the appearance of

a given symbol.

> (defun search (symbol expression)
(cond ((null expression) nil)

((symbolp expression) (eq expression symbol))
(t (or (search symbol (car expression))

(search symbol (cdr expression))))))
SEARCH
> (search 'fred '(student (name fred) (year junior)))
T

In anticipation of an example introduced in the next section, we now

de�ne a function that given a number and a list of pairs of numbers returns

nil if the number is greater than the greatest of the �rst elements of the

pairs or less than the least of them. If there exists a pair whose car is = to

the number, then the function returns a dotted pair consisting of the existing

pair with the = car and nil (e.g., ((1 . 2))). Otherwise, the function

returns a dotted pair consisting of the two consecutive existing pairs such



2.16. Syntax 51

that the car of the �rst pair is greater than the number and the car of the

second is less than the number (e.g., ((1 . 2) 2 . 4)).

> (defun nearest-pairs (x pairs)
(cond ((null pairs) nil)

((= x (caar pairs)) (cons (car pairs) ()))
((or (< x (caar pairs)) (null (cdr pairs))) ())
((< x (caadr pairs)) (cons (car pairs) (cadr pairs)))
(t (nearest-pairs x (cdr pairs)))))

NEAREST-PAIRS
> (setq pairs (list (cons 1 2) (cons 2 4) (cons 5 6)))
((1 . 2) (2 . 4) (5 . 6))
> (nearest-pairs 2 pairs)
((2 . 4))
> (nearest-pairs 3 pairs)
((2 . 4) 5 . 6)

Generating Output

We have already seen one function, princ, for generating formatted out-

put from programs. Using princ and another function terpri which takes

no arguments and results in a line feed, you can handle most of your out-

put needs. There are less primitive alternatives available in Common Lisp,

however, this will be discussed in a later section.

2.16.1 Format, for Special Output

Format is a complicated printing and formatting utility. The expression

(format destination string arguments) is a common way of invoking format

where string generally includes embedded directives that control tabbing,

line feeds, and the printing of arguments. Directives are speci�ed by the

tilde character ( ) followed by one or more additional characters. The fol-

lowing examples illustrate just a few of the ways that format can be used.



52 Chapter 2. Programming with Lisp

> (format nil "~D is an integer; ~A is a symbol" 17 'foo)
"17 is an integer; FOO is a symbol"
> (format nil "~4,2F is a real number" 1.23456)
"1.23 is a real number"
> (let ((x 6) (y 1.2))

(format nil "~D times ~4,2F is ~4,2F" x y (* x y)))
"6 times 1.20 is 7.20"
> (format nil "Here~%is a line break.")
"Here
is a line break."

The directive 4,2F is used to print a �xed-format, 
oating-point number

with a minimum display width of four characters including the decimal point

and two digits after the decimal point. The directive A is used to print an

arbitrary object just as it would be printed by princ. If the destination

is nil, then format returns the formatted string, otherwise format returns

nil and sends the string to the speci�ed destination. If the destination is t,

then format prints to the standard output which is generally the terminal

or display device that the Lisp interpreter is using.

Common Lisp provides a variety of other printing routines for han-

dling errors and interacting with the interpreter. We mention one that

may prove useful in dealing with the Lisp interpreter. By executing (setq

*print-pretty* t), deeply nested list structures will appear much more

readable.

2.17 Debugging Programs

For the most part, debugging a Lisp program is no di�erent from debugging

any other program. If your code fails to behave as expected, then start by

checking for the most common errors, such as misspelled function names,

unbalanced parentheses, wrong number of arguments to a function, inappro-

priate arguments, or using a variable before it is set.

Most modern implementations of Lisp provide elaborate debugging tools,



2.17. Debugging Programs 53

but discussion of these tools is outside the scope of this text. In the follow-

ing, we consider some simple tools and techniques that are available in all

implementations of Common Lisp and that should su�ce for the exercises

in this text.

To print out information while your code is running, you can use either

princ or format. One of the simplest debugging aids is to liberally add print

statements throughout your code to track changes in the value of variables.

Using the Common Lisp trace utility, you can keep track of when and

with what arguments certain functions are called. The following script illus-

trates how to trace two of the functions de�ned earlier in this chapter.

> (trace raise square)
(RAISE SQUARE)
> (square (raise 2 2))
1 Enter RAISE 2 2
| 2 Enter RAISE 2 1
| 3 Enter RAISE 2 0
| 3 Exit RAISE 1
| 2 Exit RAISE 2
1 Exit RAISE 4
1 Enter SQUARE 4
1 Exit SQUARE 16
16

We can also turn o� tracing on one or more functions using untrace.

> (untrace raise)
(RAISE)
> (square (raise 2 2))
1 Enter SQUARE 4
1 Exit SQUARE 16
16

Sometimes tracing does not provide enough information or provides more

than we want. In such cases, it is often useful to single-step though the eval-

uation of a program. The step utility allows just this. The details of step

just as the details of trace will depend upon the particular implementation



54 Chapter 2. Programming with Lisp

of Common Lisp, but the following script will give you some idea of what is

available.

> (setq n 3)
3
> (step (square n))
(SQUARE N) -> :h
:n Evaluate current expression in step mode.
:s Evaluate current expression without stepping.
:x Finish evaluation, but turn Stepper off.
:p Print current expression.
:b Enter the Debugger.
:q Exit to Top Level.
:h Print this text.

(SQUARE N) -> :n
(FUNCTION SQUARE) -> :n
#<Interpreted-Function (NAMED-LAMBDA SQUARE (X)

(BLOCK SQUARE (* X X))) 100DCD6>
N = 3
(BLOCK SQUARE (* X X)) -> :n
(* X X) -> :n

(FUNCTION *) -> :n
#<Compiled-Function * 4ABA76>
X = 3
X = 3

In the above script, :h and :n were typed by the user in response to the ->

prompt.

It is nearly impossible to write a program that evaluates without error.

Whenever an error occurs, you will enter the debugger, some confusing in-

formation will be displayed, and you will see an alternate prompt. Usually

typing something like ? or help will give you a list of options that will en-

able you to continue from the error or give you some idea of what caused

the error.

Errors and debugging are inevitable in programming. Take some time to

familiarize yourself with the debugging tools available with your implemen-

tation of Common Lisp.



2.18. Return to the original Example 55

2.18 Return to the original Example

We use the following data abstraction to represent possible reports on the

values of sensor and control parameters.

(defun param (tuple) (first tuple))
(defun value (tuple) (second tuple))

For example, (forward new) corresponds to a report that the forward sen-

sor has a value of near.

The same sensor will report di�erent values at di�erent times. To keep

track of the time of a report, we associate with each report an integer referred

to as a time stamp. The following data abstraction is used for time-stamped

sensor and parameter reports.

(defun tuple (item) (first item))
(defun stamp (item) (second item))

For example, ((forward far) 1012) indicates that the forward sensor re-

ported far at time 1012.

Our control algorithm maintains a list of the most recent sensor and

control parameter reports. The �rst routine, update, that we consider takes

a list of new reports and a list of old reports and combines them. The old

list includes reports from all of the sensors and control parameters but the

new list may not. One approach to combining the reports is to consider each

of the old reports and check to see if it is updated in the new reports.

The Common Lisp assoc function takes two arguments corresponding

to an expression and a list of lists with two elements each. The second ar-

gument is called an association list and allows us to map between symbolic

expressions (e.g., ((type truck) (color red) (year 1950))). In its sim-

plest uses, assoc takes a symbol and a list of pairs of symbols and returns

the �rst pair whose car is eq to the �rst argument or nil if no such pair



56 Chapter 2. Programming with Lisp

exists. For instance, (assoc 'left '((left far) (right near))) would

return (left far).

Assoc allows optional arguments speci�ed by keywords. Note that a list

of time-stamped reports will contain pairs of the form ((left far) 1).

> (assoc '(left far) '(((left far) 1)))
NIL
> (assoc '(left far) '(((left far) 1)) :test #'equal)
((left far) 1)

In searching for an updated report, we are looking for a new report on the

same parameter with a possibly di�erent value.

> (assoc '(left far) '(((left near) 1)) :test #'equal)
NIL
> (assoc '(left far) '(((left far) 1))

:test #'(lambda (x y) (eq (car x) (car y))))
((left far) 1)

Using another keyword argument, we can index into the structure of the

�rst element of the pairs in the association list to achieve the same result;

(assoc 'left '(((left far) 1) :key #'car) returns ((left far) 1).

Instead of testing the �rst argument of assoc against the car of each pair in

the association list, we test the �rst argument against the result of applying

the function introduced by :key to the car of each pair in the association

list.

We are making progress, but we have a slight problem. In our discussion

of assoc, we assume that tuples are implemented as a list of two elements

and that reports are implemented as a list of a tuple and an integer. This

happens to be true but an important advantage of introducing a data ab-

straction is that we should not have to think about how it is implemented.

By employing assoc as we did above, we violate the data abstraction by tak-

ing advantage of a particular implementation. If someone were to change the

implementation (e.g., used arrays instead of lists or put the time stamp �rst



2.18. Return to the original Example 57

instead of last), then we would have to track down all of the places where

assoc was used and make changes in accord with the new implementation.

To maintain the abstraction, we introduce two functions that perform

associations on lists of reports. The �rst function searches for a report with

a tuple that has a particular parameter; the second function searches for a

report with a particular tuple.

(defun param-assoc (param reports)
(assoc param reports :key #'param))

(defun tuple-assoc (tuple reports)
(assoc tuple reports :test #'equal))

Note that both implementations violate the data abstraction for reports by

assuming that the car of a report is a tuple. By using param instead of car

in the �rst function, we do, however, respect the data abstraction for tuples.

Because the above implementations violate the abstraction for reports, they

should be located with the implementation for reports and documented ap-

propriately so that a programmer changing the implementation for reports

will also change the implementation for the two association functions. With

a little more work, we could respect the abstraction for both reports and

tuples but in this case careful documentation and a little discipline should

su�ce to support easy maintenance of the code.

Now we can specify the algorithm for update as follows. We call update

with two lists of time-stamped reports. For each time-stamped report in

the list of old reports, check to see if there is a new report with the same

parameter; if so, add the new report to the list of reports to be returned by

update and otherwise add the old report to the list of reports to be returned.

This algorithm is implemented in Lisp as follows.

(defun update (new old)
(mapcar #'(lambda (item)

(or (param-assoc (param (tuple item)) new)
item))

old))



58 Chapter 2. Programming with Lisp

The form (or �rst second) is an alternative method of computing (let

((result �rst)) (if (null result) second result)).

Consider another possible implementation of update. Suppose in this

case that neither the old nor the new reports necessarily include reports

on all of the sensor and control parameters and that the new reports may

even include several reports on the same parameter at di�erent times. In

the following implementation, we use the dolist iterative construct and a

subroutine fuse that takes a single report and combines it with the old

reports. As in the previous algorithm we call update with two lists of time-

stamped reports. In this case, however, we step through the new reports one

at a time updating the list of old reports using the fuse subroutine.

(defun update (new old)
(dolist (item new old) (setq old (fuse item old))))

Fuse takes a report and a list of reports and substitutes its �rst argument

for the �rst report in the list reporting on the same parameter if that report

has an earlier time stamp than the �rst argument or adds the �rst argument

to the end of the list of reports if there is no such report. Fuse uses cdr

recursion to take the old list of reports apart with car and cdr and put it

back together with cons. It either substitutes the new report for an old one

with the same parameter or if no such old report exists tacks the new report

on the end of the old reports.

(defun fuse (report old)
(cond ((null old) (list report))

((eq (param (tuple report)) (param (tuple (car old))))
(if (> (stamp report) (stamp (car old)))
(cons report (cdr old)) old))

(t (cons (car old) (fuse report (cdr old))))))

The following provides an example showing how update works.



2.18. Return to the original Example 59

> (update '(((forward near) 2) ((left near) 2) ((left far) 1))
'(((forward far) 0) ((left away) 0) ((right near) 1)
((rear far) 0) ((speed slow) 1)))

(((LEFT NEAR) 2) ((FORWARD NEAR) 2) ((RIGHT NEAR) 1)
((REAR FAR) 0) ((SPEED SLOW) 1))

Here is an alternative implementation of fuse using param-assoc and

a function remove provided in Common Lisp. Remove takes an expression

and a list; the result is a new list that has the same elements as the original

except those eq to the expression (e.g., (remove 1 '(1 2 3 1)) returns (2

3)). Remove takes optional keyword arguments (e.g., (remove '(1 2) '(a

(1 2) b c) :test #'equal) returns (a b c)).

(defun fuse (report old)
(let ((a (param-assoc (param (tuple report)) old)))
(cond ((null a) (cons report old))

((< (stamp report) (stamp a)) old)
(t (cons a (remove a old))))))

We could have used (substitute report a old) instead of (cons report

(remove a old)). Substitute substitutes its �rst argument for all occur-

rences of its second argument appearing as elements of the list corresponding

to its third argument. Subst makes substitutions in nested list structures

(e.g., (substitute 1 0 '(0 1 (1 0))) returns (1 1 (1 0)) whereas (subst

1 0 '(0 1 (1 0))) returns (1 1 (1 1))).

It should be noted that most of the Common Lisp functions that we de-

scribe in this text are more versatile than indicated. For instance, many of

the functions mentioned take more keyword arguments than those described.

In addition, many of the functions that apply to lists also apply to a more

general sequence data type that encompasses lists and one-dimensional ar-

rays.

Now that we can update our sensor reports, we need to determine what

control actions to take. The control strategy is encoded in a set of rules. We

use the following data abstraction for rules.



60 Chapter 2. Programming with Lisp

(defun conditions (rule) (car rule))
(defun action (rule) (cadr rule))

The conditions correspond to sensor/value pairs and actions correspond

to control-parameter/value pairs. We say that a rule is applicable given a

set of reports if each of the conditions have associated equal reports. The

following functions implement a predicate to determine whether or not a

rule is applicable.

(defun applicablep (rule reports)
(aux-applicablep (conditions rule) reports))

(defun aux-applicablep (tuples reports)
(or (null tuples)

(and (tuple-assoc (car tuples) reports)
(aux-applicablep (cdr tuples) reports))))

Applicablep takes a rule and a list of time-stamped reports and uses cdr

recursion to check if each condition in the rule's list of conditions is cor-

responds to some report in the list of reports. The auxiliary function is

used to set up the recursion by introducing the variable conditions that we

wish to recurse upon. Such auxiliary functions are common in implementing

recursive procedures.

We can also implement applicablep using a special mapping function

that behaves like a boolean function. The expression (every test argu-

ments) returns t if test returns non-nil when applied to each cross section

of arguments (e.g., (every #'oddp '(3 5 9)) and (every #'eq '(a 1)

'(a 1)) both return t).

(defun applicablep (rule reports)
(every #'(lambda (tuple) (tuple-assoc tuple reports))

(conditions rule)))

The following function tests each rule in a set of rules of rules and acts

according to the applicable rules.

(defun react (rules reports)
(dolist (rule rules reports)
(if (applicablep rule reports)
(setq reports (fuse (act (action rule)) reports)))))



2.18. Return to the original Example 61

Acting in our simple implementation just consists of adding a time stamp

to the action of a rule. The Common Lisp function get-internal-real-time

returns an integer representing the current time.

(defun act (action) (list action (get-internal-real-time)))

Here is a simple example showing the result of reacting.

> (react '((((forward near) (jleft far)) (turn left)))
'(((forward near) 0) ((turn right) 1) ((jleft far) 1)))

(((TURN LEFT) 2214639) ((FORWARD NEAR) 0) ((JLEFT FAR) 1))

Note that, if there are two applicable rules with con
icting actions, the

above function will apply act to each of the actions. In a more realistic im-

plementation, we would provide some means of resolving con
icts involving

applicable rules.

We provide an alternative implementation of react that allows us to

demonstrate another useful mapping function. Mapcan behaves like mapcar

except that it combines its results using nconc (e.g., (mapcan #'cdr '((0)

(1 a) (2) (3 b) (4 c)) returns (a b c) the same as (apply #'nconc

(mapcar #'cdr '((0) (1 a) (2) (3 b) (4 c))))).

(defun react (rules reports)
(update (mapcan #'(lambda (rule)

(and (applicablep rule reports)
(list (act (action rule)))))

rules)
reports))

The function run applies react and update in a cycle using the lisp

iterative construct dotimes. Assume that collect returns the latest sensor

reports.

(defun run (rules reports)
(dotimes (index 100 reports)
(setq reports (react rules (update (collect))))))



62 Chapter 2. Programming with Lisp

The above function performs 100 cycles with index set to 0; 1; 2; . . . ; 99. Al-

ternatively, we might implement run using two mutually recursive functions.

(defun run (rules reports)
(aux-update rules (collect) reports 0))

(defun aux-update (rules new old i)
(if (< i 100) (aux-react rules (update new old) i)))

(defun aux-react (rules reports i)
(aux-update rules (collect) (react rules reports) (+ i 1)))

As illustrated above, Common Lisp allows for a lot of variety in imple-

menting algorithms. In the following chapters, we often choose the simplest

or most concise implementation rather than the most e�cient.

2.19 Complexity and Expressivity

We are interested in developing `e�cient' algorithms for symbolic reasoning.

Usually, we are satis�ed if the procedures we write perform a total number

of steps some low-order polynomial function of the size of the inputs. In this

text, we assume that you have at least heard about asymptotic complexity

and big-O notation. For instance, you might know that you can compute the

minimum of a list of n integers with O(n) comparisons, or sort the list using

O(n logn) comparisons. Problems such as sorting, shortest path, minimum-

cost spanning tree are all said to be easy because they can be computed with

a small (polynomial in the size of the problem description) number of basic

steps.

There are plenty of problems that are not easy. The best known exact

solutions to the general traveling salesperson problem require an exponential

number of steps. The yes-or-no version of this problem5 is said to be in the

5The classical formulation of the traveling salesperson problem as a yes-or-no decision

problem is as follows. Given a positive integer K and a complete graph whose vertices

represent cities and whose edges represent routes between cities labeled with the distance

between adjacent cities, determine if there exists a tour of length at most K corresponding



2.19. Complexity and Expressivity 63

class of NP-complete problems [Garey & Johnson, 1979].

In the following chapters, we will be faced with other problems in the class

of NP-complete problems. NP-completeness does not mean that we should

despair. Sometimes we will be able to �nd reasonable approximations (e.g.,

�nd a tour that is within a small constant factor of the minimum tour) that

su�ce for our purposes. For other problems, it might acceptable to �nd a

good solution with high probability (e.g., `most of the time' we �nd a tour

that is `not too long.'). Algorithm complexity will �gure prominently in our

discussion of representation issues.

Expressiveness concerns what you can or cannot represent in a given

representation without regard to computation. Lisp as a programming lan-

guage is as expressive as you could wish for given that it is powerful enough

to encode a universal Turing machine. Along with increased expressivity,

however, comes other possible drawbacks. It is impossible to determine for

an arbitrary Lisp program whether it will terminate or not. There are times

when it will seem reasonable to sacri�ce expressivity in order to ensure that

our algorithms do not run inde�nitely or take an inordinate amount of time

to return a result. Tradeo�s of this sort involving expressivity and complex-

ity will surface time and again in the following chapters.

If you are interested in learning more about Common Lisp, you should

consult Steele's description of the language [Steele, 1984]. If you are inter-

ested in learning more about how to program in Lisp, you might consider

a text speci�c to Common Lisp (e.g., [Wilensky, 1986]) or one of the many

general introductions to Lisp (e.g., [Touretsky, 1984]). For an excellent in-

troduction to programming in Lisp using a dialect of Lisp called Scheme

consider the text by Abelson and Sussman [Abelson & Sussman, 1986].

to a sequence of vertices and edges that visits each city. Given that the yes-or-no problem

is hard, the corresponding optimization problem (i.e., �nd the minimum length tour) is

hard.



64 Chapter 2. Programming with Lisp

2.20 Exercises

1. Write your own versions of the Lisp functions, member, append, nconc,

reverse, and nth. Rename them so that you do not rede�ne functions

that are critical to the proper functioning of your Lisp environment.

For append and nconc, it is enough to implement versions for two

arguments.

2. Create a set of recursive functions for manipulating sets. You should

write functions for taking the union, intersection, and complement

of sets and testing whether an item is an element of a set. Union

and intersection are already de�ned in Common Lisp so you should

use alternative names for the same reason mentioned in the previous

exercise.

3. You are given a dictionary in the form of a list of `exploded' symbols

(e.g., (d e f u n), (s e t q), (s e t f)). Write a recursive func-

tion, lookup, that takes a pre�x of an `exploded' symbol (e.g., (s e

t)) and a dictionary and returns the list of all items in the dictionary

that match this pre�x.

4. Write a recursive function, distance, to compute the distance between

two bit vectors of the same length represented as lists of ones an zeros

(e.g., (1 0 1 1), (0 1 0 1)) using as a metric the number of bits

that are di�erent (e.g., three in the case of (1 0 1 1) and (0 1 0

1)). Write a recursive function, closest, that �nds two vectors that

are closest in distance in a list of bit vectors. Discuss what would

have to be done if the vectors were of di�erent length and composed

of upper case letters instead of ones and zeros. In particular, discuss

what distance metric you would use if you were trying to implement a

user-friendly spell checker that o�ers suggestions as to what the user



2.20. Exercises 65

might have been trying to spell.

5. In the following exercise, you are to implement a rule of logical infer-

ence. It happens to be a generalization of modus ponens which you will

hear more about in Chapter 3 but you do not need to know the details

for this exercise. Suppose that your logician employer has asked you

to implement the following speci�cation. Write a recursive function

infer that takes a conjunction represented as a list of the form (Q1

Q2 . . . Qm) and a rule of the form (Q (P1 P2 . . . Pn)) and returns

nil if Q does not appear in the list and otherwise returns a new list in

which Q is replaced by P1 P2 . . . P
n
. Assume that a symbol appears

at most once in a conjunction. Here are some examples illustrating the

expected behavior of infer.

> (infer '(D E A F) '(A (B C)))
(D E B C F)
> (infer '(D E A F) '(A ()))
(D E F)
> (infer '(D) '(A (B C)))
NIL

6. Rewrite interpolate, nearest-pairs, remember and estimate using

a data abstraction for pairs of the form (x : f(x)).

7. Write a recursive function that constructs a labeled binary tree of depth

n. Label the root and its subtrees with the integers 0 through 2n so

that no two subtrees have the same label and that, given two subtrees

of di�erent depth, the label of the one with the greater depth is larger

than the other.

8. Write a pair of recursive functions, lookup and enter, that refer to

the same local state variable corresponding to an appropriate data

structure for the dictionary in Exercise ??. Lookup has the same basic



66 Chapter 2. Programming with Lisp

a

b c

d

((b c) d)

(b c)

0

1 2

3

4 5

6

(a ((b c) d))

Figure 2.7: A binary tree and its depth-�rst numbering

input/output behavior as the function of Exercise ?? except that it

does not require the second argument. Enter takes a single argument

corresponding to a new function name and enters it into the dictionary.

Use a tree data structure for the dictionary in which function names

are stored at the leaves and symbols corresponding to the letters in

the function names are stored at internal nodes. Discuss why this tree

representation is better than representing the dictionary as a 
at list

of function names.

9. In Chapter 4, we consider an optimization technique that involves sim-

ulating evolution. In this technique, Lisp objects are combined and

mutated as abstract forms of genetic material. In this exercise, we

consider a method for indexing into nested list structures that might

be used for selecting subexpressions for mutation or for combining ge-

netic material during reproduction.

Write a recursive Lisp function index that takes two arguments: a

nested list structure of a particular restricted form and an integer.

Any nonnumeric symbol is of the restricted form and any list struc-

ture of the form (x y) is of the restricted form if x and y are of the

restricted form. So a, (a b), and (a (b c)) are all of the restricted

form, but 1 and (a b c) are not. Note that every restricted form can



2.20. Exercises 67

be represented as a binary tree. Figure ?? shows the binary tree for

the restricted form (a ((b c) d)) along with the depth-�rst number-

ing of the nodes in the binary tree. Given a restricted form and an

integer, index returns the subtree with the corresponding depth-�rst

numbering. Here are some examples demonstrating index.

> (index '(a ((b c) d)) 6)
D
> (index '(a ((b c) d)) 3)
(B C)
> (index '(a ((b c) d)) 0)
(A ((B C) D))

Note that the fact that every list has exactly two elements simpli�es

the recursion considerably. You can assume that the second argument

to index corresponds to the depth-�rst ordering number of a subtree

of the �rst argument.

10. Discuss the problems involved in de�ning defun in terms of lambda

and mapcar in terms of apply.

11. Consider the following variant forms of rules for our rule-based control

system.

(a) Suppose that the conditions of rules are speci�ed as boolean

combinations of sensor reports (e.g., (and (forward near) (or

(jleft near) (jright near)))).

(b) Suppose that parameters have numerical values and we allow in-

equalities in the conditions of rules (e.g., ((forward < 2) (jleft

> 1) (speed > 0))).

In each case, sketch how you would implement applicablep.

12. To access the parameter associated with a time-stamped report, we

would evaluate (param (tuple datum)). We could de�ne a function



68 Chapter 2. Programming with Lisp

to directly access the parameter associated with a given report, but

we would have to name it something other than param. In object-

oriented languages, objects map messages to procedures called meth-

ods. Two di�erent types of objects can map the same message to dif-

ferent methods. Lisp provides a variety of object-oriented extensions

that would allow this sort of 
exibility. In this exercise, we sketch a

simple object-oriented extension to Lisp. The extension is based on

the following convention for sending messages to objects, (send object

message). In the following implementation, an object is just a list of

message/method pairs, where methods are implemented as closures.

As a simple example, consider how to implement sensor and control

parameter reports as objects.

(defun make-tuple (p v)
(let ((param p) (value v))

(list (list 'param #'(lambda () param))
(list 'value #'(lambda () value)))))

Note the use of the let statement to maintain local state. Now we

implement time-stamped reports, providing a method for directly ac-

cessing the parameter associated with a report.

(defun make-datum (x y)
(let ((tuple x) (stamp y))

(list (list 'tuple #'(lambda () tuple))
(list 'stamp #'(lambda () stamp))
(list 'param #'(lambda () (send tuple 'param))))))

Send takes an object and a message, looks up the method associated

with the message and uses funcall to invoke the method.

(defun send (object message)
(let ((pair (assoc message object)))

(if (null pair) (princ "Undefined!")
(funcall (cadr pair)))))



2.20. Exercises 69

Here we show how we can use the same message to refer to di�erent

types of objects.

> (progn (setq x (make-tuple 'forward 'near)
y (make-datum x 0))

(eq (send x 'param) (send y 'param)))
T

Implement binary trees as objects. You will have to extend the im-

plementation above to handle methods that take arguments. One ap-

proach is to give send a third argument corresponding to a list of

method arguments and then use apply instead of funcall to invoke

the method on the list of arguments.


