CS145: Probability & Computing

Lecture 21: Review
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Outline of different statistical inference methods

| have a sequence of independent random variables X1, ..., X,
from a same distribution with parameter 6

| can ask different questions about the distribution
(statistical inference)



Outline of different statistical inference methods

| have a sequence of independent random variables X1, ..., X,
from a same distribution with parameter 6

| can test n hypothesis on the distribution Hypothesis Testing

0=0 7



Outline of different statistical inference methods

| have a sequence of independent random variables X1, ..., X,
from a same distribution with parameter 6

Parameter Estimation
| can try to estimate the parameter ( Maximum Likelihood

(return a single value) ) n
e.g. 0 = argmax,L(f) = argmax, H f(X;;0)
1=1



Outline of different statistical inference methods

| have a sequence of independent random variables X1, ..., X,
from a same distribution with parameter 6

Interval Estimation

| can find an interval that is
Monte-Carlo

likely to contain g

interval I : Pr(60 &€ 1) <§ 1 & 1 —
(O ¢1) =< e.g. I= E;Xi—ZJ,E;Xi+20

Pr(E(X)¢1)<1/4
(Chebyshev’s inequality)

(interval estimation,
confidence interval)






Bayesian Hypothesis Testing

Also known as classification, categorization, or discrimination.

We want to choose between two mutually exclusive hypotheses:
H=0: Null hypothesis
H=1: Alternative hypothesis

There Is some prior probability of each hypothesis:

Probability of H=0: pg(0) =g
Probability of H=7: pg(1) =1 —¢q

Observed data X has a /ikelihood function under each hypothesis:
Discrete data: px|a(*|0), pxm(r|1)
Continuous data:  fxg(z]0), fxm(z|1)

Formulas on following slides assume discrete X for simplicity.



Loss Functions
We need to formalize the notion of the cost of a mistake:

L(h, g) = cost of predicting hypothesis ¢ when h is true.

Properties of standard /oss functions used for hypothesis testing:
Assume there Is no loss for correct decisions:

L(0,0) = L(1,1) =0

Type | Error: Positive loss for false positives or “false alarms”
L(O, 1) = Ag1 > O

Type Il Error: Positive loss for false negatives or “missed detections”
L(l, O) = Ao > 0

Can encode “utilities” or “rewards” as negative losses



Example: Spam Classification

px|a(x | h) =  Model of words in email: naive Bayes, Markov chain, ...
Decision h=0: Ham (not spam) h=1. Spam

L(O, O) = (] L(l, O) = A9 > 0O
g — ( False negative:

A spam email is
placed in your Inbox.

L(O, 1) = Ag1 > 0 L(1,1) =0

— 1 False positive:
9= Some real email is
placed in Spam folder.




Example: Medical Diagnhosis

fx|m(x | h) = Results of various laboratory tests, scans, ...

~ Decision h=0: Healthy h=1: Serious lliness
L(O, O) = (] L(l, O) = A9 > 0O
g — ( False negative:

lliness goes untreated and
you become more Sick.

L(O, 1) = Ag1 > 0 L(1,1) =0

— 1 False positive:
9= Unnecessary painful or
costly medical tests.




Bayesian Decision Theory

We are given both a probabilistic model and a loss function:

Posterior distribution: Px| H(CIJ | h)pH (h)
pa|x(h | z) =
px(x)

L(O, 1) = Ao1 > 0 L(l,()) = Mg > 0

The optimal decision then minimizes the

1
3(z) = argmin E[L(h,g) | X = 1] = argmin 3" L(h, g)pu|x (h| 2
g g

h=0



Likelihood Ratio Tests
Expected loss of guessing hypothesis h=T7:

L(0, 1)Z?H|X(O | z) + L(1, 1)pH|X(1 | z) = )\OlpH|X(O | )
Expected loss of guessing hypothesis h=0:

L(O»O)me(o | T) + L<1>O)pH|X(1 | 1) = )\IOpH|X(1 )

he optimal decision then minimizes the

1
3(z) = argmin E[L(h,g) | X = 1] = argmin 3" L(h, g)pu|x (h| 2
g g

h=0



Likelihood Ratio Tests

Expected loss of guessing

L(0,1)pex (0] z) + L

Expected loss of guessing

nypothesis h=17:

. 1)PH|X(1 | 1) = )\OlpH|X(O )
nypothesis h=0:

L(0,0)pmx (0| x) + L(1,0)px (1 | ) = Mopmx (1 |

It is optimal to decide h=17 if and only if:

Mo1pm|x (0| ) < Aopmx (1] o)

pxa (T | 1)
px|a(z | 0) -

(

q

1 —gq

)

Aot
A10

)

pu(0) = q



Minimizing Probability of Erro
The general likelihood ratio test picks h=1 if and on
r) > Ao1pH|x (0 | @)

AMopmx (1

PXx

H(CC

1)>

PXx
|f

H(CC

0) —

(1) (

Aot
A10

this simplifies:

paix(1| ) > pux(0]| )
pX|H(37

pX|H(37

1)
0) =

(

q

1 —gq

)

)

pu(0) =q

Ao = Ag1 = 1






Normal Random Variables

1 1 ({ x— 1 2 10|~ . [
fx(x) = 6_5(7) o.gffX(z) /

V2702 ]
N A
Var[X] = E[(X — p)°] =0

\/Var[X: = o 1s the standard deviation === =3
Theorem: A linear function of a Gaussian variable is Gaussian!
1 1(y—i)?
Y =aX +0 fy(y): e 2(0)

V2762

fY(y)—HfX< b) Ia:ajlu_l_b’ 5.:|a,‘0_




Bivariate Normal Distribution

fow) = <s=e /3 o) = e

» A bivariate normal distribution is any joint distribution defined as a
linear function of two independent normal distributions

» First consider the following particular linear function:

1+p I —p 14+ p 1—p
X: _ —_— Y: _— — _
\/ > U+ 4/ 5 V \/ > U— 4/ > V

» The joint probability density function of X and Y equals:
perte = Ao )
T,Y) = exp |
XYY 214/ 1 — p? 21 —p%) 2(1—=p?) 1-—p?
1 2

p=0=fxrley) = g { -5~ L4 = fx@iv)




Bivariate Normal Distribution

_ ! exp { — (z — pa)? _ (y — p1y)° Pl — 1) (Y — py)
fxv(z,y) = 2n0roy /L — o2 p{ 202(1 — p2)  202(1 — p?) " 0z0y(1 — p?) }

» Coordinate system and units for random variable X:
Mean:  p, = E[X] P(X <pg)=PX >pu,)=0.5
Standard deviation: o, = /Var(X)

» Coordinate system and units for random variable Y:
Mean:  p, = E[Y] PY <u,)=PY >p,) =0.5
Standard deviation: o, = v/Var(Y)

» Dependence between X, Y measured by correlation coefficient:

Cov(X,Y
,0: OV( ) )’ _1§,0§1
OxOy

For bivariate variables: X and Y independent if and only if p = 0




Multivariate Normal Distribution

A
N(zlu,0?) zof

= @

L z

1 1
N (z|p, %) = exp{——:c—,uQ}
( | ) (27T0‘2)1/2 202( ) 0.5 meter

T
> 1

N, %) = s {3 (- ) = x|+
p=EX] X .
Y=FE[X—-pw)(X —p)]

D-dimensional ellipsoids parameterized
by mean vector & covariance matrix

X



Exercise from the homework

Let X = (X1, X»)T be a bivariate normal distribution with E(X;) = E(X,) = 0, V(X;) =
V(X3) =1, and Cov(X,Y) =0, i.e.

Let S = sign(X,) be a random variable with support {—1,1}, where X, ~ N(0,1)
is a standard normal random variable that is independent to X; and X,. The function
sign(z) =1 if z > 0 and sign(z) = —1 if x < 0.

(d) Show that SX; and S|X;| are both normal random variables.
(e) Show that SX; + SX, is a normal random variable.

(f) Is the vector (Xj, S|X;|) distributed as a bivariate normal?



Conditional Probability and Expectation



Joint Probability Distribution

X =1 In this example, N=2 and M=8,
X =9 and the joint PMF is a 2x8 matrix.
Y =1 Y =8

» Consider two random variables X, Y.
Suppose range of X is size N, range of Y is size M.
» The joint probability mass function or joint distribution of two variables:

PXY(%?J) — P(X =x and Y = y)

v (@9) >0, Y pavley) =1
Ty

» The joint distribution is uniquely specified by NM-1 numbers




Joint Probability Distribution

Infer discrete X from discrete Y:
pxy(z,y) _ px(@)pyx(y|z)
py (y) py (y)

px|y(z|y) =
py (y) = > px(@)py|x(y | z)

Example:

e X = 1,0: airplane present/not present

e Y =1,0: something did/did not register
on radar

Infer continuous X from continuous Y:

f (z]y) = fX,Y(xay) _ fX(l“)fy\X(y | )
o ! fY(y) fy(y)

fr@W) = [ fx@fy x| o) de

Example: X: some signal; “prior" fx(x)
Y: noisy version of X
fy|x(y | z): model of the noise

Infer discrete X from continuous Y:

(@] y) = px (@) fyx(y | z)
PXIVAELY fy (®)

fr(w) = px(@)fyx(y|z)

Example:

e X: a discrete signal; “prior” px(x)
e Y: noisy version of X

o leX(y | ): continuous noise model

Infer continuous X from discrete Y:

fx @)y x(y | )

fxy(@ly) = o ()
Py (@) = | fx@pyx(y | o) de
Example:

e X: a continuous signal; “prior" fx(x)
(e.g., intensity of light beam);

e Y: discrete r.v. affected by X
(e.g., photon count)

° py|X(y | ): model of the discrete r.v.



Example

» Suppose 90% of hard drives in some laptop computer model Exponential
Distributions:

have exponentially distributed lifetime param (90

frix(y | 0) = Ope™"" px(0) =09 -

» However, 10% of hard drives have a manufacturing defect that

S

gives them a shorter lifetime 61 > 6y o2 ,
B —9 L 0.0 : &
fyix(y | 1) =6re= px(1) =01 g1
» If your hard drive : L8 ' o
what is the probability it is defective? - —if_
Dpx (1 .
Y y 0.4
0.10;e 1t ' \

- 0.1(916_91t -+ 0,9(90@—9075 fy(y) — Qe %



Conditional Expectation

Y =1 pxy (z,y) Y =38
Y PY|X(?J 1)
X =2 pY|X(y | 2)
pxy(z | 1) px|y(z | 8)
pxy (T,y) Pxy(%,Y)

» Given that | observe Y=y, the conditional expectation of X equals

EIX|Y =yl=)> apxy(@]|y)

reEX
» If Xand Y are not independent, observing Y=y may change the mean of X



Conditional Expectation

px () | Given Y = {X > 2} is observed,
pxy(z|y) =
1/4
‘ ‘ ‘ E[X | Y] =3
1 2 3 - >X
E[X] = 2.5

» Given that | observe Y=y, the conditional expectation of X equals

EIX|Y=yl=> zpxy(z|y)

reEX
» If Xand Y are not independent, observing Y=y may change the mean of X



Total Expectation Theorem

Y =1 Y =3

Shaded where X=1

pXY(x7 y)

Zaz’ pXY(QZ‘/, y)

7 Y — 1
Unshaded where X=0.

Y =2 Y =3

» Applying the definitions of joint, marginal, and conditional distributions:

X=0
pXY(-T,Z/)
X =1
ple(f |y) = Pxy (&, y) —
py (¥)
= pxy(z,y) =
yey

yey

ZPY EX Y =y

yey

> pxiy(@ | y)py (v)

Mean is a weighted average of (possibly simpler) conditional means.







The Weak Law of Large Number

X1, Xo,...0.i.d. M X1+ ---+Xn sample mean or
finite mean u and variance ¢ e n empirical mean
2 2
no o2
E|M,| = Var[M,] = — = —
H n? n

» Chebyshev’s inequality bounds distance between the
true mean and the “empirical” or “sample” mean:

Var(My) o2

P(|M, —ul >¢e) < —
(l n M|_>_ 62 TLEQ

» The empirical mean converges to the true mean in probability
lim P(|M, —pu| >¢) =0
n—>r00

» True even if variance not finite, but proof more challenging.



@®Fori=1to N

@ Choose X and Y uniformly at random from [0, 1]
@ If X? +Y><1thenZ =1lelse Z; =0.

@7Z=>" 47
95:%2;\/:142

Z:isa 0-1 r.v. with Pr(Z; = 1) =

ISE

Elz]=5  Varlz]=;(1-7)



ow good is this estimate?

Chebyshev’s Inequality:

For any random variable X, and any a > 0,

Var[X]

Pr(|X — E[X]| 2 a) < =

E[S] = E4Z;] =,
VarldZ;| <16, since 0 < 4Z; < 4. Var|S| = 1_1\?
Pr(|S — x| > €) < 35,

For N > 128,000,
Pr(|S — | > 0.05) < 0.05



How Good is the Estimate?

Theorem (Hoeffding's Inequality)

Let Xi,...,X, be independent random variables such that for all
1<i<n, E[X;] =pand Pr(a < X; < b)=1. Then

1 n
Pr(1= 3" Xi =l = €) < 2e720 /(=2
=1

ElS]=+> . F4Z]=m,and 0 < 4Z; <4

P(|S — | > €) < 2e=2n¢/4

Fore:\/Slnf/5), P(S —m| >¢€) <9
For n = 12,000, P(|S — ]| > 0.05) < 0.05



Monte-Carlo

Elg] = / g(x)fx(x) dx

For many complex models, integral is intractable but we can still:
» Simulate the target distribution: P(X; <xz;) = Fx(x;)
> Evaluate the target function: gi = g(x;)

A Monte Carlo method uses computer simulation to approximate:

Elg] ~ % Zg(fm) = M, P(X; <z;) = Fx(x;)

Selecting x4, ..., x, according to the distribution Fx(x)



