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Outline of different statistical inference methods

I have a sequence of independent random variables
from a same distribution with parameter  

X1, . . . , Xn

θ

I can ask different questions about the distribution
(statistical inference)



Outline of different statistical inference methods

I have a sequence of independent random variables
from a same distribution with parameter  

X1, . . . , Xn

θ

I can test n hypothesis on the distribution
θ = 0 ?

Hypothesis Testing



Outline of different statistical inference methods

I have a sequence of independent random variables
from a same distribution with parameter  

X1, . . . , Xn

θ

I can try to estimate the parameter 
Parameter Estimation
Maximum Likelihoodθ

(return a single value)
e.g. θ̂ = argmaxθL(θ) = argmaxθ

n∏

i=1

f(Xi; θ)



Outline of different statistical inference methods

I have a sequence of independent random variables
from a same distribution with parameter  

X1, . . . , Xn

θ

I can find an interval that is 
likely to contain

Interval Estimation
Monte-Carlo

θ

(interval estimation,
confidence interval)

e.g. I =

[

1

n

n
∑

i=1

Xi − 2σ,
1

n

n
∑

i=1

Xi + 2σ

]

interval I : Pr(θ /∈ I) ≤ δ

Pr(E(X) /∈ I) ≤ 1/4

(Chebyshev’s inequality)



Bayesian Hypothesis Testing



Bayesian Hypothesis Testing

We want to choose between two mutually exclusive hypotheses:
� H=0:  Null hypothesis
� H=1:  Alternative hypothesis

Also known as classification, categorization, or discrimination.

There is some prior probability of each hypothesis:
� Probability of H=0:
� Probability of H=1:
Observed data X has a likelihood function under each hypothesis:
� Discrete data:
� Continuous data:
Formulas on following slides assume discrete X for simplicity.



Loss Functions
We need to formalize the notion of the cost of a mistake: 

Properties of standard loss functions used for hypothesis testing:
� Assume there is no loss for correct decisions:

� Type I Error: Positive loss for false positives or “false alarms”

� Type II Error: Positive loss for false negatives or “missed detections”

� Can encode “utilities” or “rewards” as negative losses



Example:  Spam Classification

False positive:  
Some real email is

placed in Spam folder.

False negative:  
A spam email is

placed in your Inbox.

Model of words in email: naïve Bayes, Markov chain, …

Decision h=0:  Ham (not spam) h=1:  Spam



Example:  Medical Diagnosis

False positive:  
Unnecessary painful or 
costly medical tests.

False negative:  
Illness goes untreated and

you become more sick.

Results of various laboratory tests, scans, …

Decision h=0:  Healthy h=1:  Serious Illness



Bayesian Decision Theory
We are given both a probabilistic model and a loss function:
Posterior distribution:

Loss function:

The optimal decision then minimizes the posterior expected loss:



Likelihood Ratio Tests
Expected loss of guessing hypothesis h=1:

Expected loss of guessing hypothesis h=0:

The optimal decision then minimizes the posterior expected loss:



Likelihood Ratio Tests
Expected loss of guessing hypothesis h=1:

Expected loss of guessing hypothesis h=0:

It is optimal to decide h=1 if and only if:



Minimizing Probability of Error
The general likelihood ratio test picks h=1 if and only if:

If all errors are equally costly this simplifies:

Pick hypothesis with larger posterior probability to minimize number of errors



Bivariate Distribution



fX(x)fX(x) =
1p
2⇡�2

e�
1
2 (

x�µ
� )2

E[X] = µ

Var[X] = E[(X � µ)2] = �2

p
Var[X] = � is the standard deviation

fY (y) =
1p
2⇡�̄2

e�
1
2 (

y�µ̄
�̄ )2

µ̄ = aµ+ b, �̄ = |a|�

Theorem: A linear function of a Gaussian variable is Gaussian!

Y = aX + b

How to find them The continuous case

• Discrete case • Two-step procedure:

– Obtain probability mass for each
– Get CDF of Y : FY (y) = P(Y y)

possible value of Y = g(X)
⇥

– Di�erentiate to getpY (y) = P(g(X) = y)

=
X

dFp YX(x) fY (y) = (y)
x: g(x)=y dy

x y

.
g(x)

.
Example

. . • X: uniform on [0,2]

. . • Find PDF of = 3Y X

. . • Solution:

. . 3FY (y) = P(Y ⇥ y) = P(X ⇥ y)

. . = 1 3 1 1 3P( /X ⇥ y ) = /y
2

. . dF
fY ( Y 1

y) = (y) =
dy 6 2y /3

Example The pdf of Y=aX+b

• Joan is driving from Boston to New York.
Her speed is uniformly distributed be- Y = 2X +5:
tween 30 and 60 mph. What is the dis-
tribution of the duration of the trip? fX

faX faX+b

200
• Let T (V ) = .

V

• Find fT (t) - 2 - 1 2 3 4 9

f (v  )v 0

1/30 1 y b
fY (y) = f

|a| X

✓ �
a

◆

30 60 v0 • Use this to check that if X is normal,
then Y = aX + b is also normal.

2

Normal Random Variables



Ø A bivariate normal distribution is any joint distribution defined as a 
linear function of two independent normal distributions

Ø First consider the following particular linear function:

X =

r
1 + ⇢

2
U +

r
1� ⇢

2
V Y =

r
1 + ⇢

2
U �

r
1� ⇢

2
V

Ø The joint probability density function of X and Y equals:

fV (v) =
1p
2⇡

e�v2/2

fXY (x, y) =
1

2⇡
p

1� ⇢2
exp

⇢
� x2

2(1� ⇢2)
� y2

2(1� ⇢2)
+

⇢xy

1� ⇢2

�

fXY (x, y) =
1

2⇡
exp

⇢
�x2

2
� y2

2

�
= fX(x)fY (y)⇢ = 0 Independence!

Bivariate Normal Distribution
fU (u) =

1p
2⇡

e�u2/2



fXY (x, y) =
1

2⇡�x�y

p
1� ⇢2

exp

⇢
� (x� µx)2

2�2
x(1� ⇢2)

� (y � µy)2

2�2
y(1� ⇢2)

+
⇢(x� µx)(y � µy)

�x�y(1� ⇢2)

�

Ø Coordinate system and units for random variable X:
Mean:
Standard deviation:

µx = E[X] P (X  µx) = P (X � µx) = 0.5
�x =

p
Var(X)

Ø Coordinate system and units for random variable Y:
Mean:
Standard deviation: �y =

p
Var(Y )

µy = E[Y ] P (Y  µy) = P (Y � µy) = 0.5

Ø Dependence between X, Y measured by correlation coefficient:

⇢ =
Cov(X,Y )

�x�y
, �1  ⇢  1

For bivariate variables:  X and Y independent if and only if ⇢ = 0

Bivariate Normal Distribution



D-dimensional ellipsoids parameterized 
by mean vector & covariance matrix
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Figure 4. Visual object categories learned from stereo images of office scenes containing computer screens (red), desks (green), bookshelves
(blue), and background clutter (black). Covariance ellipses model 3D part geometry, and are positioned at their mean transformed location.
Bar charts show posterior probabilities for all instantiated global categories. Left: Single part TDP, as in Sec. 3.2. We show the seven
visual categories with highest posterior probability (top), and a close–up view of the screen and desk models (bottom). Right: Multiple
part TDP, as in Sec. 3.3. For clarity, we show the most likely parts (those generating 85% of observed features) for the five most frequent
non–background categories (top). The close–up view shows a five–part screen model, and a four–part desk model (bottom).

Note that transformed parts whose mean is farther from the
projection ray are given lower overall weight ωtk. To evalu-
ate the likelihood of new object instances t̄, we integrate
over potential transformations ρjt̄, and evaluate eq. (18)
with an appropriately inflated 3D covariance.

The final term of eq. (15) is the depth likelihood corre-
sponding to stereo–based disparity matches. For monocu-
lar images, we jointly resample (tji, kji, u

z
ji) by using the

prior clustering bias of eqs. (16, 17), and appearance like-
lihood, to reweight the Gaussian mixture of eq. (18). For
stereo training images, we evaluate the likelihood learned
in Sec. 2.3 on a uniformly spaced grid determined by the
largest expected scene geometry. We then evaluate eq. (18)
on the same grid for each candidate instance and part, and
resample from that discrete distribution. Given Z depths,
and Tj object instances with (on average) K parts, this re-
sampling step requires O(ZTjK) operations.

4.2. Inferring Object Categories
In the second phase of each Gibbs sampling iteration,

we fix feature depths u
z and object assignments t, and con-

sider potential reinterpretations of each instance t using a
new global object category ojt. Because parts and trans-
formations are defined with respect to particular categories,
blocked resampling of (ojt, ρjt, {kji | tji = t}) is neces-
sary. Suppose first that ojt = � is fixed. Given ρjt, part
assignments kji are conditionally independent:

p
°
kji = k | wji, uji, tji = t, ojt = �,k\ji, t\ji,o\jt

¢

∝ p (k | k\ji, t,o) η�k(wji)N
°
uji;µ�k,Λ�k

¢
(19)

Here, the first term is as in eq. (17). Alternatively, given
fixed part assignments ρjt has a Gaussian posterior:

p
°
ρjt | ojt = �,

©
kji, uji | tji = t

™¢

∝ N (ρjt; φ�)
K�Y

k=1

Y

i|kji=k

N
°
uji − ρjt; µ�k,Λ�k

¢
(20)

The Gaussian transformation prior N (φ�) is specific to the
visual category (see eq. (14)), while the posterior mean and
covariance follow standard equations [4, 14]. Note that our
use of continuous, Gaussian position densities avoids an ex-
pensive discretization of 3D world coordinates.

For each candidate visual category ojt, we first perform
a small number of auxiliary Gibbs sampling iterations us-
ing eqs. (19, 20). Given the resulting transformations, the
part assignments of eq. (19) may be directly marginalized
to compute the likelihood of ojt. The stick–breaking con-
struction of eq. (14) also induces a clustering prior:

p (ojt | o\jt) ∝
LX

�=1

M
−t
� δ(ojt, �) + γδ(ojt, �̄) (21)

Here, M−t
� denotes the number of object instances assigned

to the L current categories, and �̄ indicates a new visual cat-
egory. Combining these terms, we resample ojt, and condi-
tionally choose (ρjt, {kji | tji = t}) via eqs. (19, 20).

4.3. Inferring Part and Transformation Parameters
The preceding sections assumed fixed values for the

parameters θ�k = (η�k, µ�k,Λ�k) defining part appearance
and position, as well as category–specific transformation

µ = E[X]
⌃ = E[(X � µ)(X � µ)T ]

Multivariate Normal Distribution 



Exercise from the homework



Conditional Probability and Expectation



Ø Consider two random variables X, Y.  
Suppose range of X is size N, range of Y is size M.

Ø The joint probability mass function or joint distribution of two variables:

pXY (x, y) � 0,
X

x

X

y

pXY (x, y) = 1.

X = 1

X = 2

Y = 1 Y = 8

In this example, N=2 and M=8,
and the joint PMF is a 2x8 matrix.

Ø The joint distribution is uniquely specified by NM-1 numbers  

pXY (x, y) = P (X = x and Y = y)

Joint Probability Distribution



LECTURE 10 The Bayes variations

Continuous Bayes rule; pX,Y (x, y) pX(x)pY y x)
(x y) = =

|X(
p

|
Derived distributions X|Y |

pY (y) pY (y)

• Readings: pY (y) = pX(x)pY X(y | x)
x

|
Section 3.6; start Section 4.1

X

Example:

Review • X = 1,0: airplane present/not present

• Y = 1,0: something did/did not register

p ( on adaX(x) f r rX x)

pX,Y (x, y) fX,Y (x, y)
pX,Y (x, y) fX,Y (x, y) Continuous counterpart

pX (x y) = f (x y) =|Y |
pY (y) X|Y |

fY (y)
X Z ⇤ f (x, y) fX(x)f

p (x) = p (x, y) f (x) = f (x, y) dy | X,Y Y |X(y )
X X,Y X X, f (x =

y �⇤ X|Y
| x

Y y) =
fY (y) fY (y)

fY (y) = fX(x)fY X(y x) dx
x

| |

FX(x) = P( )

Z

X ⇥ x
Example: X: some signal; “prior” fX(x)

E[X], var(X) Y : noisy version of X

fY X(y | x): model of the noise|

Discrete X, Continuous Y What is a derived distribution

• It is a PMF or PDF of a function of onepX(x)f (y x)
p Y (x | Y
X y) =

|X |
or more random variables with known| fY (y) probability law. E.g.:

) =
y 

fY (y
X

pX(x)fY |X(y | x) f (y,x)=1X,Y
x

1
Example:

• X: a discrete signal; “prior” pX(x)
• Y : noisy version of X
• fY X(y | x): continuous noise model|

1 x 

Continuous X, Discrete Y
– Obtaining the PDF for

fX(x)pY
f x X, Y ) =X Y/X|Y ( y) =

|X(y | x)
| g(

pY (y)
Z involves deriving a distribution.

pY (y) = fX(x)pY X(y | x) dx Note: g(X,Y ) is a random variable
x

|

Example:
When not to find them

• X: a continuous signal; “prior” fX(x)
(e.g., intensity of light beam); • Don’t need PDF for g(X,Y ) if only want

• Y : discrete r.v. a�ected by X to compute expected value:
(e.g., photon count)

E[g(X,Y )] = g(x, y)f (x, y) dx dy• s t X,
X(y | x): model of the di cre e r. .

Z Z
YpY v|

1

Infer discrete X from discrete Y:
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FY (y) = 1� e�✓y

Exponential 
Distributions:

fY (y) = ✓e�✓y

Ø Suppose 90% of hard drives in some laptop computer model 
have exponentially distributed lifetime param  

fY |X(y | 0) = ✓0e
�✓0y pX(0) = 0.9

✓0

Ø However, 10% of hard drives have a manufacturing defect that 
gives them a shorter lifetime

pX(1) = 0.1fY |X(y | 1) = ✓1e
�✓1y

Ø If your hard drive fails after exactly t seconds of operation, 
what is the probability it is defective?

✓1 > ✓0

P (X = 1 | Y = t) =
fY |X(y | 1)pX(1)

fY (y)

=
0.1✓1e�✓1t

0.1✓1e�✓1t + 0.9✓0e�✓0t

Example



X = 1

X = 2

Y = 1 Y = 8

Ø Given that I observe Y=y, the conditional expectation of X equals

pXY (x, y)
pY |X(y | 1)

pY |X(y | 2)

pX|Y (x | 1) pX|Y (x | 8)
…

pX|Y (x | y) = P (X = x | Y = y) =
pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)

E[X | Y = y] =
X

x2X
xpX|Y (x | y)

Ø If X and Y are not independent, observing Y=y may change the mean of X

Conditional Expectation



Ø Given that I observe Y=y, the conditional expectation of X equals

E[X | Y = y] =
X

x2X
xpX|Y (x | y)

Ø If X and Y are not independent, observing Y=y may change the mean of X

Conditional PMF and expectation Geometric PMF

• X: number of independent coin tosses• pX|A(x) = P(X = x | A)
until first head

• E[X | A] =
⌅

xp (x) ( ) = (1� )k�1
X p

x
|A pX k p, k = 1,2, . . .

⇤ ⇤
p  (x ) E[X] = (1 kkp ( 1

X
⌅

X k) = p
k

⌅
k �

=1
� p)

k=1

• Memoryless property: Given that X > 2,
1/4

the r.v. X � 2 has same geometric PMF

p   
p (k) p (k)

X X |X>2

2p(1-p)
p  

1 2 3 4 x  

... ...
• Let A = {X ⇥ 2} k1 3 k

p (k)X-  2|X>2
pX|A(x) =

p   

E[X | A] =
...

1 k

Total Expectation theorem Joint PMFs

• Partition of sample space • pX,Y (x, y) = P(X = x and Y = y)
into disjoint events A1, A2, . . . , An

y

A
1 4 1/20 2/20 2/20

B

3 2/20 4/20 1/20 2/20

2 1/20 3/20 1/20

A A 1
2 3 1/20

x
1 2 3 4

P(B) = P(A1)P(B | A1)+· · ·+P(An)P(B | An) • pX,Y (x, y) =
pX(x) = P(A1)pX A (x)+· · ·+P(An)pX A (x)

n

⌅

x

⌅

y| 1 |

E[X] = P(A1)E[X | A1]+· · ·+P(An)E[X | An] • pX(x) =
⌅

pX,Y (x, y)
y

• Geometric example: pX,Y (x, y)
pX Y (x y) = P(X = x Y = y) =

A1 : {X = 1}, A2 : {X > 1
•

} | | |
pY (y)

E[X] = P(X = 1)E[X | X = 1] •
⌅

pX Y (x | y) =|
+P(X > 1)E[X | X > 1] x

• Solve to get E[X] = 1/p

2

Given Y = {X � 2} is observed,

E[X] = 2.5

E[X | Y ] = 3

pX|Y (x | y) =

Conditional Expectation



Conditional PMF and expectation Geometric PMF

• X: number of independent coin tosses• pX|A(x) = P(X = x | A)
until first head

• E[X | A] =
⌅

xp (x) ( ) = (1� )k�1
X p

x
|A pX k p, k = 1,2, . . .

⇤ ⇤
p  (x ) E[X] = (1 kkp ( 1

X
⌅

X k) = p
k

⌅
k �

=1
� p)

k=1

• Memoryless property: Given that X > 2,
1/4

the r.v. X � 2 has same geometric PMF
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... ...
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1 k
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P(B) = P(A1)P(B | A1)+· · ·+P(An)P(B | An) • pX,Y (x, y) =
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n

⌅
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y| 1 |

E[X] = P(A1)E[X | A1]+· · ·+P(An)E[X | An] • pX(x) =
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• Geometric example: pX,Y (x, y)
pX Y (x y) = P(X = x Y = y) =

A1 : {X = 1}, A2 : {X > 1
•

} | | |
pY (y)

E[X] = P(X = 1)E[X | X = 1] •
⌅

pX Y (x | y) =|
+P(X > 1)E[X | X > 1] x

• Solve to get E[X] = 1/p

2

Y = 1

pXY (x, y)

pX|Y (x | y) = pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)

Ø Applying the definitions of joint, marginal, and conditional distributions:

pX(x) =
X

y2Y
pXY (x, y) =

X

y2Y
pX|Y (x | y)pY (y)

E[X] =
X

y2Y
pY (y)E[X | Y = y]

Mean is a weighted average of (possibly simpler) conditional means.

Y = 1

Y = 2 Y = 3

Y = 3

X = 0

X = 1

Shaded where X=1,
Unshaded where X=0.

Total Expectation Theorem
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Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables
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sample mean or
empirical mean 

Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn
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0, if no.n
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2

Ø Chebyshev’s inequality bounds distance between the
true mean and the “empirical” or “sample” mean:

Ø The empirical mean converges to the true mean in probability

lim
n!1

P (|Mn � µ| � ✏) = 0

Ø True even if variance not finite, but proof more challenging.

E[Mn] = µ Var[Mn] =
n�2

n2
=

�2

n

The Weak Law of Large Number



A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418

Estimating ⇡

1 For i = 1 to N
1 Choose X and Y uniformly at random from [0, 1]
2 If X 2

+ Y 2  1 then Zi = 1 else Zi = 0.

2 Z =
PN

i=1 4Zi

3 S =
1
N

PN
i=1 4Zi

Zi is a 0-1 r.v. with Pr(Zi = 1) =
⇡
4 .

E [Zi ] =
⇡

4
Var [Zi ] =

⇡

4
(1� ⇡

4
)

Monte-Carlo



Chebyshev’s Inequality

Theorem

For any random variable X , and any a > 0,

Pr(|X � E [X ]| � a)  Var [X ]

a2
.

Proof.

Pr(|X � E [X ]| � a) = Pr((X � E [X ])
2 � a2)

By Markov inequality

Pr((X � E [X ])
2 � a2)  E [(X � E [X ])

2
]

a2

=
Var [X ]

a2

Chebyshev’s Inequality:

E[S] = 1

N
E[4Zi] = π,

V ar[4Zi] ≤ 16, since 0 < 4Zi < 4. V ar[S] = 16

N

Pr(|S − π| ≥ ε) ≤ 16

Nε2

For N ≥ 128, 000,
Pr(|S − π| ≥ 0.05) ≤ 0.05

How good is this estimate?



How Good is the Estimate?

Hoe↵ding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoe↵ding’s Inequality)

Let X1, . . . ,Xn be independent random variables such that for all
1  i  n, E [Xi ] = µ and Pr(a  Xi  b) = 1. Then

Pr(|1
n

nX

i=1

Xi � µ| � ✏)  2e�2n✏2/(b�a)2

Lemma

(Hoe↵ding’s Lemma) Let X be a random variable such that
Pr(X 2 [a, b]) = 1 and E [X ] = 0. Then for every � > 0,

E[e�X ]  e�
2(a�b)2/8.

How Good is the Estimate?
Hoe↵ding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoe↵ding’s Inequality)

Let X1, . . . ,Xn be independent random variables such that for all
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Pr(|1
n
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Xi � µ| � ✏)  2e�2n✏2/(b�a)2
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(Hoe↵ding’s Lemma) Let X be a random variable such that
Pr(X 2 [a, b]) = 1 and E [X ] = 0. Then for every � > 0,

E[e�X ]  e�
2(a�b)2/8.

Selecting x1, . . . , xn according to the distribution FX(x)
Let a = t0  x1  t1  x2  t1, ...., xn  tn = b. Let �i = ti � ti�1,

and � = Max1in�i

R
b

a
f(x)dx = lim�!0

P
n

i=1 f(xi)�i

To estimate V =
R
b

a
f(x)dx, choose x1, . . . , xn uniformly in [a, b], and

compute

Ṽ =
1
n

P
n

i=1 f(xi)

E[Ṽ ] = V , V ar[Ṽ ] =
V ar[f(xi]

N

E[g] =
R
g(x)

E[S] = 1
N

P
N

i=1 E[4Zi] = ⇡, and 0  4Zi  4

P (|S � ⇡| � ✏)  2e�2n✏2/42

For ✏ =
q

8 ln(2/�)
n

, P (|S � ⇡| � ✏)  �

For n = 12, 000, P (|S � ⇡]| � 0.05)  0.05

V ar[Z] = E[(Z � E[Z])2] = E[((X � E[X]) + (Y � E[Y ]))
2
]

= E[(X � E[X])
2
] + E[(Y � E[Y ])

2
] + 2E[((X � E[X])(Y � E[Y ])]

C
¯
auchy–Schwarz inequality:

P
i
aibi 

pP
i
a2
i

pP
i
b2
i

P (|µ̃� µ|  a) = Pr(
|µ̃� µ|
�(µ̃)

 a

�(µ̃)
) = �(

a

�/
p
n
)� �(� a

�/
p
n
) � 1� �

Let T such that �(T ) = 1� �

2 , or T = �
�1
(1� �

2)

We have a tradeo↵ between Confidence Level 1� �, interval length 2a,
and number of samples n:

a

�/
p
n
=

a
p
n

�
� �

�1
(1� �

2)

µ = E[X] and �2
= V ar[X]

µ̃ =
1
n

P
n

i=1 Xi is a point estimate of µ.

We want a Confidence Interval for µ:

P (µ̃� a  µ  µ̃+ a) = P (|µ̃� µ|  a) � 1� �.

1



For many complex models, integral is intractable but we can still:
Ø Simulate the target distribution:
Ø Evaluate the target function:

E[g] =

Z
g(x)fX(x) dx

gi = g(xi)
P (Xi  xi) = FX(xi)

A Monte Carlo method uses computer simulation to approximate:

E[g] ⇡ 1

n

nX

i=1

g(xi) = Mn P (Xi  xi) = FX(xi)
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