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Lecture 18: Markov Chains,
Recurrence, Stationary Distributions
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Finite Markov Chains

X(] el X1 el XQ — Xq
Finite State: X, € {1,...,m}
Markov Property: Given the current state, the past & future are independent.

P(Xo, X1, ..., X,) = P(Xo) ﬁP(Xt | X;_1)

t=1

State Transition Matrix: State Transition Diagram:
P11 P12 - Pim |
P P21 P22 te P2m
L Pm1  Pm2 o Pmm -

pij = P(Xy41 =7 | Xy = 19)



Multi-Step State Transitions

U¥7 :P(Xt :Z) Ty = [ﬂ-tlvﬂ-tQV"?ﬂ-tm]T

After n time steps:

T, =Ty 1P =m,_oPP=m,P"
State Transition Matrix: State Transition Diagram:
P11 P12 - Pim |
P21 P22 te P2m
P=|"_ " .
L Pm1  Pm2 o Pmm -

pij = P(Xy41 =7 | Xy = 19)



Example: Sunny or Rainy?

0.2
O-BC@DM rij(n) = P(X, =j | Xo =1) = P"
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Example: Spiders and the Fly
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Markov Convergence Questions

As n — oo, does r;;(n) converge to something?
0.5 0.5
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Markov Convergence Questions
As n — oo, does 7;;(n) depend on the initial state ¢7
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Classification of Markov Chain States

Accessible: State | is accessible from state i if rj(n) is positive for some n.
The set of states accessible from state / then equals

A(i) =47 | rij(n) > 0 for at least one time n}

Recurrent: If a recurrent state is visited once, it will be visited an infinite
number of times. State j is recurrent if and only if

for all j € A(i),1 € A(j).

Transient: Any state that is not recurrent is
transient, and with probability one will only
be visited a finite number of times

Absorbing: A state/is absorbing if the
process never leaves that state: U 1
Pii —



Classification of Markov Chain States

Accessible: State | is accessible from state i if rj(n) is positive for some n.
The set of states accessible from state / then equals

A(i) =47 | rij(n) > 0 for at least one time n}

Recurrent: If a recurrent state is visited once, it will be visited an infinite
number of times. State j is recurrent if and only if

for all j € A(i),1 € A(j).

Recurrent Class: A collection of recurrent
states for which all pairs are accessible
from each other, or communicate

A pair of states (i,j) communicate if and
only if the state transition diagram has
directed paths from i to j, and from j to i.



Classification of Markov Chain States

Accessible: State | is accessible from state i if rj(n) is positive for some n.
The set of states accessible from state / then equals

A(i) =47 | rij(n) > 0 for at least one time n}

Recurrent: If a recurrent state is visited once, it will be visited an infinite
number of times. State j is recurrent if and only if

for all j € A(i),i € A(j).

Recurrent Class: A collection of recurrent
states for which all pairs are accessible
from each other, or communicate

Irreducible: A Markov chain is irreducible
if it has only one recurrent class (plus
possibly some transient states)



Examples of Markov Chain Decompositions

Single class of recurrent states

Single class of recurrent states (1 and 2)
and one transient state (3)

- )
Absogt;lallvtg @ e.@ Q.e Not Irreducible (Reducible)

Two classes of recurrent states
{class of state1 and class of states 4 and 5)
and two transient states (2 and 3)



Periodic States

Periodic: A statejin a Markov chain is periodic if there exists an integer
d > 1 such P(X,,=f | X;=j) = 0 unless s is divisible by d.
Aperiodic: A Markov chain in which no recurrent states are periodic.
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Multi-Step State Transitions

U¥7 :P(Xt :Z) Ty = [ﬂ-tlvﬂ-tQV"?ﬂ-tm]T

After n time stepS'

T, =Ty 1P =m,_oPP=m,P"
State Transition Matrix: State Transition Diagram:
P11 P12 - Pim |
P21 P22 te P2m
P=|"_ " .
L Pm1  Pm2 o Pmm -

pij = P(Xy41 =7 | Xy = 19)



Steady-State (Equilibrium) Distribution

U¥7 :P(Xt :Z) Ty = [ﬂ-tlvﬂ-tQV"?ﬂ.tm]T

After n time steps:

my =m,_1P=m,_yPP=m;P"

n

If state distribution converges: HW T H N
n n—

The equilibrium distribution is the unique solution to m+1 linear equations:

m m
* * . *
T = g T Dij, 7=1,....,m. g m, = 1.
i=1 i=1

f — pT o Alternative Interpretation: Eigenvector of
state transition matrix whose eigenvalue is 1.



Conditions for Steady-State Distribution

A unique steady-state distribution exists if and only if:
The Markov chain is aperiodic (not periodic).
The Markov chain is irreducible (single recurrent class).

Properties of steady-state distributions:

For any transient state i, 7 = 0
For all state pairs (i,j),  lim r;;(n) = 7;
n—oo

Linear equations defining unique steady-state distribution:

m m

* * . *

T = E T Dijs 7=1,...,m. E T, = 1.
=1 i=1



Violations of Steady-State Conditions

Periodic (not aperiodic) Markov chains:
0.5 0.5

ONNEONNO

1 1
Multiple recurrent classes (not irreducible):

B> ED

S Transient state:
()
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Example: 2-State Stationary Distribution

0.5 0.8
@:Q ermam (95 93 )= (27

0.2

m =2/7, 7p =5/7

e Assume process starts at state 1.P<X1 — 1) — 1

2

e P(X1=1, and Xygg=1)= ~T1 = -

| =

~| DN
DO | —

e P(Xi90=1 and Xig91 =2) N T1p12 =



In Finite State Space Markov Chain

A finite state space Markov chain has a stationary
distribution if and only if it is aperiodic, and its
corresponding directed graph has one strongly
connected component.



Example: Card Shuffling

Markov chain states: All n/ orderings of n distinct cards

Transitions: Pick one of the n cards uniformly at random,
and move that card to the top of the deck.
Stationary distribution: Uniform distribution over permutations

Consider a state C = ¢1,..., c,. The chain can move to this state

from the n states C(j) = ¢, ..., c1,. .., Cn, Where card ¢ is in
place j of the deck. There are n such states, and each has

probability 1/n to move to state C.

- 1
=Y reur,
j=1

1 11

nl .~ n nl
Jj=1



Visit Frequency Interpretation

g = Zﬂ'kpkj
k

e (Long run) frequency of being in j: =
e Frequency of transitions k — j: TPk

e Frequency of transitions into j: Zﬂ'kpkj
k



Example: Google’s Pagerank

Consider the following Markov chain:
One state for each of m webpages
At each time step,
choose one of the outgoing links from
a page with equal probability
Rank of a page: Fraction of time that a
“random surfer” spends on that page
(equilibrium distribution)

Webpages are important if many
other pages link to them

Webpages are important if other
important pages link to them

PageRank

Wikipedia



Example: Google’s Pagerank

Consider the following Markov chain:
One state for each of m webpages
At each time step,
choose one of the outgoing links from
a page with equal probability
Rank of a page: Fraction of time that a
“random surfer” spends on that page
(equilibrium distribution)

Problems: 9

There may be many absorbing
states, so the desired equilibrium
distribution does not exist!

Results can be sensitive to single
link changes, and thus “noisy”

PageRank > O Wikipedia



Example: Google’s Pagerank

Consider the following Markov chain:
At each time step, :
choose one of the outgoing links from
a page with equal probability
At each time step,
choose one of m pages uniformly
Rank of a page: Fraction of time that a
“random surfer” spends on that page

Webpages are important if many
other pages link to them

Webpages are important if other
important pages link to them

Steady-state distribution always exists

PageRank

Wikipedia



Example: Google’s Pagerank

Because web graph is sparse, it is possible to compute the probabilities of
reaching each page even if the number of pages is very large.

t =gl P=nl ,PP=mP"

PageRank

Wikipedia
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Transient and Absorbing States

Consider a simplified class of Markov chains
where all states are one of two types:
Visited finite number of times.
Absorbing: Once entered, process never 0.4
leaves (self-transition probability equals 1).

Practical examples of such Markov chains: ;é
Games with win and /oss states. 0.4 0.4

Computer systems with failure states. | 0= 83 ENADY
0.3 7-;‘_;;\

To characterize such Markov chains: a
From each state, what is the probability of each absorbing state?
From each state, what is the expected time until absorption?



Computing Absorption Probabilities

a; = P(X,, eventually becomes equal to the absorbing state s | Xo = i)

Theorem:

Consider a Markov chain in which each state is either transient or absorbing.
We fix a particular absorbing state s. Then, the probabilities a; of eventually
reaching state s, starting from i, are the unique solution of the equations

=1

%
e =5 . 0.3
a; =0, for all absorbing i # s, 0.3 0.3
L S0 6.9 (4D

a; = Z DijQj, for all transient 1. 7—% 7%\

Proof: «=p(ix=i) A = {state s is eventually reached}

PA| Xo=i. X1 =)P(X1=7|X0o=1) (total probability thm.)

l
1M

~
I~

P(A| X1 =j)pij (Markov property)

<.
I
—

AjPij-

g
I
=

I
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Computing Absorption Probabilities

a; = P(X,, eventually becomes equal to the absorbing state s | Xo = i)

Theorem:

Consider a Markov chain in which each state is either transient or absorbing.
We fix a particular absorbing state s. Then, the probabilities a; of eventually
reaching state s, starting from i, are the unique solution of the equations

as =1, 0.4 0.4
a; =0, for all absorbing i # s, 0.3 (3% (2 0.3
m SO OWE O 08}
a; = qu',jaj, for all transient . AR 0.3 )
=1

From each initial state /, what is the probability a; of eventually reaching state 17?

2 1

ar =1 a2 = 3 a3 = 3 ag = (



Example: The Gambler’s Ruin

m = 4

Lose

At each round, win $1 with probability p, lose $1 with probablllty (1-p)
Gambler plays until wins a target of $m, or loses all money
Starting with $i, what is the probability that the gambler or loses?

Let a; be probability of loss, 1 — a; be probability of win.

1_pm 1f107£17 1—p
l—a; =% L—p p=—=
i if p=1. P
\ M

Detailed analysis in B&T Example 7.11.



Expected Time to Absorption

i =E [number of transitions until absorption, starting from z]
Theorem:

The expected times p; to absorption, starting from state ¢ are the unique
solution of the equations

pi =0, for all recurrent states 1, e 5
i =1+ jilpijﬂj; for all transient states 1. 1 -3 as 0-3 g
From each initial state /, what is the expected number of steps to absorption?
p1 =0 M2:M3=1—%0 pa =

Matches mean of a geometric distribution with success probability of 0.3.



Absorption in General Markov Chains

First phase: Find probability of
reaching (being absorbed by)
each recurrent class

Second phase: Find equilibrium
distribution of states within each
of these recurrent classes



