CS145: Probability & Computing Lecture 18: Markov Chains, Recurrence, Stationary Distributions

Brown University Computer Science

Figure credits: Bertsekas & Tsitsiklis, **Introduction to Probability**, 2008 Pitman, **Probability**, 1999

CS145: Lecture 18 Outline

Markov Chains over Multiple Time Steps Markov State Classifications and Durations Steady-State Behavior and Equilibrium Distributions Absorption in Markov Chains

Finite Markov Chains

Markov Property: Given the current state, the past & future are independent. $P(X_0, X_1, \dots, X_n) = P(X_0) \prod_{i=1}^{n} P(X_t \mid X_{t-1})$

t=1

State Transition Matrix:

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mm} \end{bmatrix}$$

$$p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

State Transition Diagram:

Multi-Step State Transitions
$$\pi_{ti} = P(X_t = i)$$
 $\pi_t = [\pi_{t1}, \pi_{t2}, \dots, \pi_{tm}]^T$

After *n* time steps:

$$\pi_n^T = \pi_{n-1}^T P = \pi_{n-2}^T P P = \pi_0^T P^n$$

State Transition Matrix:

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mm} \end{bmatrix}$$

$$p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

State Transition Diagram:

Example: Sunny or Rainy?

Example: Spiders and the Fly

	1	2	3	4	
1	1.0	0	0	0	
2	0.3	0.4	0.3	0	
3	0	0.3	0.4	0.3	
4	0	0	0	1.0	

$$r_{ij}(n) = P(X_n = j \mid X_0 = i) = P^n$$

p_{ij}

	1	2	3	4		
1	1.0	0	0	0		
2	0.3	0.4	0.3	0		
3	0	0.3	0.4	0.3		
4	4 0 0 0 1.0					
<i>r_{ij}</i> (1)						

1.0	0	0	0
.42	.25	.24	.09
.09	.24	.25	.42
0	0	0	1.0

 $r_{ij}(2)$

1.0	0	0	0
.50	.17	.17	.16
.16	.17	.17	.50
0	0	0	1.0

1.0	0	0	0
.55	.12	.12	.21
.21	.12	.12	.55
0	0	0	1.0

 $r_{ij}(4)$

1.0	0	0	0
 2/3	0	0	1/3
 1/3	0	0	2/3
0	0	0	1.0

r_{ij} (∞)

Markov Convergence Questions

As $n \to \infty$, does $r_{ij}(n)$ converge to something?

Markov Convergence Questions

As $n \to \infty$, does $r_{ij}(n)$ depend on the initial state *i*?

	1	2	3	4	_
1	1.0	0	0	0	
2	0.3	0.4	0.3	0	
3	0	0.3	0.4	0.3	
4	0	0	0	1.0	

 $r_{ii}(1)$

	1.0	0	0	0
	2/3	0	0	1/3
•	1/3	0	0	2/3
	0	0	0	1.0

 $r_{ij}(\infty)$

CS145: Lecture 18 Outline

Markov Chains over Multiple Time Steps Markov State Classifications and Durations Steady-State Behavior and Equilibrium Distributions Absorption in Markov Chains

Classification of Markov Chain States

Accessible: State *j* is accessible from state i if $r_{ij}(n)$ is positive for some *n*. The set of states accessible from state *i* then equals

$$A(i) = \{j \mid r_{ij}(n) > 0 \text{ for at least one time } n\}$$

Recurrent: If a recurrent state is visited once, it will be visited an infinite number of times. State *i* is recurrent if and only if

for all
$$j \in A(i), i \in A(j)$$
.

Transient: Any state that is *not* recurrent is transient, and with probability one will only be visited a finite number of times

Absorbing: A state *i* is absorbing if the process never leaves that state: $p_{ii} = 1$

Classification of Markov Chain States

Accessible: State *j* is accessible from state i if $r_{ij}(n)$ is positive for some *n*. The set of states accessible from state *i* then equals

$$A(i) = \{j \mid r_{ij}(n) > 0 \text{ for at least one time } n\}$$

Recurrent: If a recurrent state is visited once, it will be visited an infinite number of times. State *i* is recurrent if and only if

for all
$$j \in A(i), i \in A(j)$$
.

Recurrent Class: A collection of recurrent states for which all pairs are accessible from each other, or *communicate*

A pair of states (i,j) communicate if and only if the state transition diagram has directed paths from i to j, and from j to i.

Classification of Markov Chain States

Accessible: State *j* is accessible from state i if $r_{ij}(n)$ is positive for some *n*. The set of states accessible from state *i* then equals

$$A(i) = \{j \mid r_{ij}(n) > 0 \text{ for at least one time } n\}$$

Recurrent: If a recurrent state is visited once, it will be visited an infinite number of times. State *i* is recurrent if and only if

for all
$$j \in A(i), i \in A(j)$$
.

Recurrent Class: A collection of recurrent states for which all pairs are accessible from each other, or *communicate*

Irreducible: A Markov chain is irreducible if it has only one recurrent class (plus possibly some transient states)

Examples of Markov Chain Decompositions

Periodic States

Periodic: A state *j* in a Markov chain is periodic if there exists an integer d > 1 such $P(X_{t+s}=j \mid X_t=j) = 0$ unless s is divisible by *d*.

Aperiodic: A Markov chain in which no recurrent states are periodic.

CS145: Lecture 18 Outline

Markov Chains over Multiple Time Steps Markov State Classifications and Durations Steady-State Behavior and Equilibrium Distributions Absorption in Markov Chains

Multi-Step State Transitions
$$\pi_{ti} = P(X_t = i)$$
 $\pi_t = [\pi_{t1}, \pi_{t2}, \dots, \pi_{tm}]^T$

After *n* time steps:

$$\pi_n^T = \pi_{n-1}^T P = \pi_{n-2}^T P P = \pi_0^T P^n$$

State Transition Matrix:

$$P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1m} \\ p_{21} & p_{22} & \cdots & p_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ p_{m1} & p_{m2} & \cdots & p_{mm} \end{bmatrix}$$

$$p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

State Transition Diagram:

Steady-State (Equilibrium) Distribution

$$\pi_{ti} = P(X_t = i)$$
 $\pi_t = [\pi_{t1}, \pi_{t2}, \dots, \pi_{tm}]^T$

After *n* time steps:

 $\pi^* = P^T \pi^*$

$$\pi_n^T = \pi_{n-1}^T P = \pi_{n-2}^T P P = \pi_0^T P^n$$

If state distribution converges: $||\pi_n - \pi_{n-1}|| \to 0$

The equilibrium distribution is the unique solution to m+1 linear equations:

$$\pi_j^* = \sum_{i=1}^m \pi_i^* p_{ij}, \qquad j = 1, \dots, m.$$
 $\sum_{i=1}^m \pi_i^* = 1$

Alternative Interpretation: Eigenvector of state transition matrix whose eigenvalue is 1.

Conditions for Steady-State Distribution

A unique steady-state distribution exists if and only if: The Markov chain is *aperiodic* (not periodic). The Markov chain is *irreducible* (single recurrent class).

Properties of steady-state distributions:

For any transient state *i*, $\pi_i^* = 0$ For all state pairs *(i,j)*, $\lim_{n \to \infty} r_{ij}(n) = \pi_j^*$

Linear equations defining unique steady-state distribution:

$$\pi_j^* = \sum_{i=1}^m \pi_i^* p_{ij}, \qquad j = 1, \dots, m.$$

$$\sum_{i=1}^m \pi_i^* = 1.$$

Violations of Steady-State Conditions

Periodic (not aperiodic) Markov chains:

Multiple recurrent classes (not irreducible):

Both aperiodic and irreducible:

Transient state:

Example: 2-State Stationary Distribution

$$(2/7, 5/7) \left(\begin{array}{cc} 0.5 & 0.5 \\ 0.2 & 0.8 \end{array} \right) = \left(\begin{array}{c} 2/7 \\ 5/7 \end{array} \right)$$

 $\pi_1 = 2/7, \ \pi_2 = 5/7$

- Assume process starts at state 1. $P(X_1=1)=1$

•
$$P(X_1 = 1, \text{ and } X_{100} = 1) = \approx \pi_1 = \frac{2}{7}$$

•
$$P(X_{100} = 1 \text{ and } X_{101} = 2) \approx \pi_1 p_{12} = \frac{2}{7} \cdot \frac{1}{2} = \frac{1}{7}$$

In Finite State Space Markov Chain

A finite state space Markov chain has a stationary distribution if and only if it is aperiodic, and its corresponding directed graph has one strongly connected component.

Example: Card Shuffling

Markov chain states: All *n*! orderings of *n* distinct cards Transitions: Pick one of the *n* cards uniformly at random, and move that card to the top of the deck.

Stationary distribution: Uniform distribution over permutations

Proof.

Consider a state $C = c_1, \ldots, c_n$. The chain can move to this state from the *n* states $C(j) = c_2, \ldots, c_1, \ldots, c_n$, where card c_1 is in place *j* of the deck. There are *n* such states, and each has probability 1/n to move to state *C*.

$$\pi_{C} = \sum_{j=1}^{n} \pi_{C(j)} \frac{1}{n}$$
$$\frac{1}{n!} = \sum_{i=1}^{n} \frac{1}{n} \frac{1}{n!}$$

Visit Frequency Interpretation

$$\pi_j = \sum_k \pi_k p_{kj}$$

- (Long run) frequency of being in j: π_j
- Frequency of transitions $k \rightarrow j$: $\pi_k p_{kj}$

Consider the following Markov chain: One state for each of *m* webpages At each time step, choose one of the outgoing links from a page with equal probability Rank of a page: Fraction of time that a "random surfer" spends on that page (equilibrium distribution)

Good Properties:

Webpages are important if many other pages link to them Webpages are important if other important pages link to them

Consider the following Markov chain:

One state for each of *m* webpages

At each time step,

choose one of the outgoing links from a page with equal probability Rank of a page: Fraction of time that a "random surfer" spends on that page (equilibrium distribution)

Problems:

There may be many absorbing states, so the desired equilibrium distribution does not exist! Results can be sensitive to single link changes, and thus "noisy"

Consider the following Markov chain: At each time step, *with probability q*, choose one of the outgoing links from a page with equal probability At each time step, *with probability 1-q*, choose one of *m* pages uniformly Rank of a page: Fraction of time that a "random surfer" spends on that page

Good Properties:

Webpages are important if many other pages link to them Webpages are important if other important pages link to them Steady-state distribution always exists

Because web graph is sparse, it is possible to compute the probabilities of reaching each page even if the number of pages is very large.

$$\pi_n^T = \pi_{n-1}^T P = \pi_{n-2}^T P P = \pi_0^T P^n$$

CS145: Lecture 19 Outline

Markov Chains over Multiple Time Steps Markov State Classifications and Durations Steady-State Behavior and Equilibrium Distributions Absorption in Markov Chains

Transient and Absorbing States

Consider a simplified class of Markov chains where all states are one of two types:

Transient: Visited finite number of times. *Absorbing:* Once entered, process never leaves (self-transition probability equals 1).

Practical examples of such Markov chains: Games with *win* and *loss* states. Computer systems with *failure* states.

To characterize such Markov chains: From each *transient* state, what is the probability of each *absorbing* state? From each *transient* state, what is the expected time until *absorption*?

Computing Absorption Probabilities

 $a_i = \mathbf{P}(X_n \text{ eventually becomes equal to the absorbing state } s \mid X_0 = i)$ **Theorem:**

Consider a Markov chain in which each state is either transient or absorbing. We fix a particular absorbing state s. Then, the probabilities a_i of eventually reaching state s, starting from i, are the unique solution of the equations

$$a_{s} = 1,$$

$$a_{i} = 0, \quad \text{for all absorbing } i \neq s,$$

$$a_{i} = \sum_{j=1}^{m} p_{ij}a_{j}, \quad \text{for all transient } i.$$

$$Proof: a_{i} = \mathbf{P}(A | X_{0} = i) \qquad A = \{\text{state } s \text{ is eventually reached}\}$$

$$= \sum_{j=1}^{m} \mathbf{P}(A | X_{0} = i, X_{1} = j) \mathbf{P}(X_{1} = j | X_{0} = i) \quad (\text{total probability thm.})$$

$$= \sum_{j=1}^{m} \mathbf{P}(A | X_{1} = j)p_{ij} \quad (\text{Markov property})$$

$$= \sum_{j=1}^{m} a_{j}p_{ij}.$$

Computing Absorption Probabilities

 $a_i = \mathbf{P}(X_n \text{ eventually becomes equal to the absorbing state } s \mid X_0 = i)$ **Theorem:**

Consider a Markov chain in which each state is either transient or absorbing. We fix a particular absorbing state s. Then, the probabilities a_i of eventually reaching state s, starting from i, are the unique solution of the equations

$$a_s = 1,$$

 $a_i = 0,$ for all absorbing $i \neq s,$
 $a_i = \sum_{j=1}^m p_{ij}a_j,$ for all transient $i.$

From each initial state *i*, what is the probability a_i of eventually reaching state 1? $a_1 = 1$ $a_2 = \frac{2}{3}$ $a_3 = \frac{1}{3}$ $a_4 = 0$

Example: The Gambler's Ruin

At each round, win \$1 with probability p, lose \$1 with probability (1-p)Gambler plays until wins a target of \$m, or loses all money Starting with \$i, what is the probability that the gambler wins or loses? Let a_i be probability of loss, $1 - a_i$ be probability of win.

$$1 - a_i = \begin{cases} \frac{1 - \rho^i}{1 - \rho^m} & \text{if } \rho \neq 1, \\ \frac{i}{m} & \text{if } \rho = 1. \end{cases} \qquad \rho = \frac{1 - p}{p}$$

Detailed analysis in B&T Example 7.11.

Expected Time to Absorption

$\mu_i = \mathbf{E} [$ number of transitions until absorption, starting from i]**Theorem:**

The expected times μ_i to absorption, starting from state i are the unique solution of the equations

$$\mu_i = 0,$$
 for all recurrent states $i,$
 $\mu_i = 1 + \sum_{j=1}^m p_{ij} \mu_j,$ for all transient states $i.$

From each initial state *i*, what is the expected number of steps to absorption?

$$\mu_1 = 0 \qquad \qquad \mu_2 = \mu_3 = \frac{10}{3} \qquad \qquad \mu_4 = 0$$

Matches mean of a geometric distribution with success probability of 0.3.

Absorption in General Markov Chains

First phase: Find probability of reaching (being absorbed by) each recurrent class Second phase: Find equilibrium distribution of states within each of these recurrent classes