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Discrete Time, Finite Stochastic Processes

Xog e X s Xy s X

» A discrete time stochastic process associates a random
variable X; with a sequence of “time” locations: t=0, 1, 2, ...
» We will assume that X; is a discrete random variable with a
finite number of possible outcomes. (Can be generalized.)
» Sometimes we call X, the state of the process at time t.

» These random variables have a joint distribution:
P(XO — iOaXl — Z.17)(2 — i27" . 7Xn — Zn)

In most real applications, time points are not independent.



What is Discrete Time?

XO —) X1 E—) XQ — X3

» A reqular sampling of real times in the world:
One variable every second, hour, day, year, or ...
» The steps taken by some computational process:

One variable for every “iteration” of some algorithm.

» Any other data with “sequential” structure.
In computational biology, we may model
genetic sequences (DNA, proteins, ...)

Wikipedia
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Probability Distributions and Sequences
Xog e X s Xy s X
P(Xy =i, X1 =11, X2 = t9,..., Xy, = iy)

» Suppose X,=1 is fixed, and for times t = 1,...,n:
Xt c {1,2,...,m}
» We assign probability to each possible discrete sequence:

There are m" possible sequences of length n.

- Expensive to enumerate these probabilities in a table!
- Often not needed.



Finite Markov Chains
Xog e X s Xy s X

» Markov assumption: The probability of the next state
depends only on the current state, and not the sequence of
steps taken to reach the current state:

P(Xip1 =7 | Xy =0, Xy = t4—1,..., Xo = ip) = P(Xyq1 = J | Xy = i)
> We define a Markov chain via a state transition matrix:
pij =P(Xep1 =31 Xe =) [ me o m
™m

P21 P22 P2m
X: ed{l,...,m} sz'jzl S
j=1

L Pm1 Pm2 °°  Pmm -



Joint Distribution of Markov Sequences

» Joint Distribution: The Markov assumption implies that
P(Xo,X1,...,Xn) = P(Xo) | [ P(X¢ | X4—1, X4—2,...,X0)  (any process)

t=1
n

= P(Xo) | [ P(X: | Xio1) (Markov process)
t=1
» Initial state: From some (possibly degenerate) distribution
P(Xo)
» State transition matrix:
pij=P(Xex1 =3 Xe=1)  [m m o o
m P21 P22 T P2m
X: ed{l,...,m} sz'jzl S
le L Pm1 Pm2 °°  Pmm -




State Transition Diagrams
State transition diagram:

» A directed graph with one node for each of m possible states
» Draw an edge from node ito nodejif p;; > 0

» A sample from a Markov process is then a
record of nodes visited in a random walk in this graph

State transition matrix:
pij — P(Xt-|-1 :] ’ Xt — Z) (P11 P12 o Pim |
™m

P21 P22 P2m
X: ed{l,...,m} sz'jzl S
j=1

L Pm1 Pm2 °°  Pmm -



State Transition Diagrams

State transition diagram:

» A directed graph with one node for each of m possible states
» Draw an edge from node ito nodejif p;; > 0

» A sample from a Markov process is then a
record of nodes visited in a random walk in this graph

Example: Bull and Bear Markets (Wikipedia)
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Markov Property and Independence

P(Xo, X1,..., Xn) = P(Xo) | | P(X¢ | Xi-1)
t=1
» For most choices of the state transition matrix, the states at
different times are not independent. This is useful!

px.x,(Ts,2¢) # px. (Ts)Px, (T¢)

» But conditioned on the value of the present state,
the past and future of a Markov process are independent:

}/t :{XO,Xl,...,Xt_l} Zt:{Xt+17Xt—|—27---7Xn}

PY, Z., (ytazt \ Xt = ZEt) = PY; (yt ‘ Xt = $t)pzt(2t \ Xt = CUt)
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Machine Repair

Let X; be the number of days (including today) some machine has been
broken, or X;=0 if the machine is currently working.

A machine that is working today will be broken tomorrow with probability p.
Otherwise, with probability 7-p, it keeps working.

On any given day, a broken machine is repaired with probability r.
Otherwise, with probability 7-r, it remains broken.

After being broken for m days, it is always replaced with a working machine.

(1—p p 0 0 -+ 0)
r 0O 1-—r 0 -0

r 0 0 1—r -+ 0

L1 0 0 o - o



A Checkout Line (Queue)

A0

Let X; be the number of customers in a /ine (queue) during

(short) time period /, where exactly one event happens:
» With probability s, a customer is served and leaves the queue,
unless already there are no customers (X;=0).
» With probability r, a new customer joins the queue,
unless the queue is already at its maximum capacity m.
» Otherwise, the number of customers remains the same (X, .=X)).

This is a discrete Markov process with m+1 states.



English Text: Are characters independent?

» Assume letters are independent and equally common:

1
P(X;) = 5 for X; € {a,b,c,....,z,_}

uzlpcbizdmddk njsdzyyvfgxbgjjgbtsak rqvpgnsbyputvqqdtmgltz ynqotgigexjumqgphujcfwn 11 jiexpyqzgsdllgcoluphl sefsrvqqytjakmav bfusvirsjl wprwqt

» Assume letters are independent and follow frequencies of real text:

saade ve mw hc n entt da k eethetocusosselalwo gx fgrsnoh, tvettaf aetnlbilo fc 1hd okleutsndyeoshtbogo eet ib nheaoopefni ngent

Relative frequency
o o

—t
abcdefghijklmnopagrstuvwixyz



English Text: Markov Models

» A first-order Markov model encodes
probability of each letter, given previous letter

» A second-order (bigram) Markov model
encodes probability of each letter, given
previous two letters (state is letter pairs)

> A third order (trigram) Markov model encodes
probability of each letter, given previous three
letters (state is letter triples)



English Text: Markov Models

Examples from Programming Pearls, J. Bentley, Sec. 15.3

Order-1:t 1 amy, vin. id wht omanly heay atuss n macon aresethe hired boutwhe t, tl, ad torurest t plur I
wit hengamind tarer-plarody thishand.

Order-2: Ther I the heingoind of-pleat, blur it dwere wing waske hat trooss. Yout lar on wassing, an sit."
"Yould," "I that vide was nots ther.

Order-3: 1 has them the saw the secorrow. And wintails on my my ent, thinks, fore voyager lanated the
been elsed helder was of him a very free bottlemarkable,

Order-4: His heard." "Exactly he very glad trouble, and by Hopkins! That it on of the who difficentralia.
He rushed likely?" "Blood night that.

Claude Shannon’s Markov chain simulator (1948): To construct [an
order 1 model] for example, one opens a book at random and selects a
letter at random on the page. This letter is recorded. The book is then
opened to another page and one reads until this letter is encountered.
The succeeding letter is then recorded. Turning to another page this
second letter is searched for and the succeeding letter recorded, etc. It
would be interesting if further approximations could be constructed, but
the labor involved becomes enormous at the next stage.
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Finite Markov Chains

XU L X] L > XQ > )(3 « o 4
Finite State: X, € {1,...,m}

Markov Property: Given the current state, the past & future are independent.

P(Xo, X1, ..., X,) = P(Xo) ﬁP(Xt | X;_1)

t=1

State Transition Matrix: State Transition Diagram:
P11 P12 - Pim |
P P21 P22 te P2m
L Pm1  Pm2 o Pmm -

pij = P(Xy41 =7 | Xy = 19)



Example: Sunny or F

Sunny

0.2

0.6

Rainy

\ainy?

S R
S [0.8]0.2
R |10.6|0.4




Multi-step State Transitions

» Given the current state, we would like to predict what state
we will be in at multiple steps into the future:

rij(n) = P(Xn = j| Xo = i) where 75(1) = pi;

State transition matrix:
ng — P(Xt-|-1 :] ’ Xt — Z) P11 P12 -t Pim |
™m

P21 P22 " P2m
X: ed{l,...,m} Zpijzl S
j=1

L Pm1 Pm2 °°  Pmm -




Multi-step State Transitions

» Given the current state, we would like to predict what state
we will be in at multiple steps into the future:

Tij(n) — P(Xn =7 ‘ Xo = Z) where Tij(l) = Dij
» First consider the special case where n=2:
P(Xy=j|Xo=i)=> P(Xa=jX1=k|Xo=1)
k=1

PXo=j|Xo=i)=) PXo=j|X1=kP(X1=k|Xo=1)
k=1

=S Eruim B4
k=1 k=1



Multi-step State Transitions

» Given the current state, we would like to predict what state
we will be in at multiple steps into the future:

rij(n) = P(Xn = j| Xo = i) where 75(1) = pi;

» Computed recursively via the Chapman-Kolmogorov equation:

Time O Time n-1 Time n

5
Ms

rik(n — 1)pr;, for n > 1, and all 7, 7,

1 rij(n-1)

NE

P(X,=j|Xo=i)=Y P(Xp_1=k|Xo=1) P(Xn=j|Xn_1 =k, Xo=1)

>
I
—_



Multi-step State Transitions

» Given the current state, we would like to predict what state
we will be in at multiple steps into the future:

rij(n) = P(Xn = j| Xo = i) where 75(1) = pi;

» Computed recursively via the Chapman-Kolmogorov equation:

Time O Time n-1 Time n

Ms

rij(n rik(n — 1) pk;g, for n > 1, and all 7, 7,

1 rij(n-1)

» With random initial state:

P(Xn =j) = ) P(Xo=i)ri(n)
i=1

Marginal distribution of state after n steps.
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State Transitions & Matrix Multiplication

my; = P(X; = 1) pij = P(Xep1 =7 | X¢ = 1)
m P11 P12 -+ Pim |
_ p21 p22 p2m
T1j = E :Piﬂm P=" " .
1=1 L Pm1 Pm2 = Pmm-
_ T
Ty — [7Tt177rt27 e 77Ttm]

Textbook convention:

T TP

. T
T = Ty m = P my

Each row of P
sums to one.



Multi-Step State Transitions

Ty = P(Xy = 1) pij = P(Xt11 =7 | Xt = 1)
P11 P12 - Plm |
p p " P2m

Ty = [ﬂ-tl? T2y - - 77Ttm]T P = ?1 ?2 ; 2
_LPm1 Pm2 *°° DPmm-

State Distribution after n time steps:

T T R & T pn
w, =7, P=m_oPP=mPFP

7, =Plm, 1= PTPTW,Z_Q = (Pn)Tﬂ'()

P" multiplies the square matrix P by itself n times.
This is not equivalent to raising the entries of P to the power n.



