
CS145: Probability & Computing
Lecture 17: Markov Chains,

Multi-step Transition Distributions

Brown University Computer Science

Figure credits:
Bertsekas & Tsitsiklis, Introduction to Probability, 2008

Pitman, Probability, 1999

CS145: Lecture 17 Outline
ØDiscrete Time Markov Chains
ØExamples of Markov Chains
ØMulti-step State Transitions

Andrey Markov

Discrete Time, Finite Stochastic Processes

Ø A discrete time stochastic process associates a random
variable Xt with a sequence of “time” locations: t = 0, 1, 2, …

Ø We will assume that Xt is a discrete random variable with a
finite number of possible outcomes. (Can be generalized.)

Ø Sometimes we call Xt the state of the process at time t.
Ø These random variables have a joint distribution:

P (X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in)
In most real applications, time points are not independent.

X0 X1 X2 X3 · · ·

What is Discrete Time?

Ø A regular sampling of real times in the world:
One variable every second, hour, day, year, or …

Ø The steps taken by some computational process:
One variable for every “iteration” of some algorithm.

Ø Any other data with “sequential” structure.
In computational biology, we may model
genetic sequences (DNA, proteins, …)

X0 X1 X2 X3 · · ·

Wikipedia

Probability Distributions and Sequences

Ø Suppose X0=1 is fixed, and for times t = 1,…,n:

P (X0 = i0, X1 = i1, X2 = i2, . . . , Xn = in)

X0 X1 X2 X3 · · ·

Xt 2 {1, 2, . . . ,m}
Ø We assign probability to each possible discrete sequence:

There are mn possible sequences of length n.

- Expensive to enumerate these probabilities in a table!
- Often not needed.

Finite Markov Chains

Ø Markov assumption: The probability of the next state
depends only on the current state, and not the sequence of
steps taken to reach the current state:

X0 X1 X2 X3 · · ·

P (Xt+1 = j | Xt = it, Xt�1 = it�1, . . . , X0 = i0) = P (Xt+1 = j | Xt = it)

Ø We define a Markov chain via a state transition matrix:

Sec. 6.1 Discrete-Time Markov Chains 3

We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :





p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm



 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

pij = P (Xt+1 = j | Xt = i)
mX

j=1

pij = 1Xt 2 {1, . . . ,m}

Joint Distribution of Markov Sequences

Ø Initial state: From some (possibly degenerate) distribution

Ø State transition matrix:

Sec. 6.1 Discrete-Time Markov Chains 3

We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :





p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm



 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

pij = P (Xt+1 = j | Xt = i)
mX

j=1

pij = 1Xt 2 {1, . . . ,m}

P (X0)

Ø Joint Distribution: The Markov assumption implies that
P (X0, X1, . . . , Xn) = P (X0)

nY

t=1

P (Xt | Xt�1, Xt�2, . . . , X0)

= P (X0)
nY

t=1

P (Xt | Xt�1)

(any process)

(Markov process)

State Transition Diagrams

State transition matrix:

Sec. 6.1 Discrete-Time Markov Chains 3

We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :





p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm



 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

pij = P (Xt+1 = j | Xt = i)
mX

j=1

pij = 1Xt 2 {1, . . . ,m}

State transition diagram:
Ø A directed graph with one node for each of m possible states
Ø Draw an edge from node i to node j if
Ø A sample from a Markov process is then a

record of nodes visited in a random walk in this graph

pij > 0

State Transition Diagrams

Example: Bull and Bear Markets (Wikipedia)

State transition diagram:
Ø A directed graph with one node for each of m possible states
Ø Draw an edge from node i to node j if
Ø A sample from a Markov process is then a

record of nodes visited in a random walk in this graph

pij > 0

Markov Property and Independence
P (X0, X1, . . . , Xn) = P (X0)

nY

t=1

P (Xt | Xt�1)

Ø For most choices of the state transition matrix, the states at
different times are not independent. This is useful!

pXsXt(xs, xt) 6= pXs(xs)pXt(xt)
Ø But conditioned on the value of the present state,

the past and future of a Markov process are independent:

pYtZt(yt, zt | Xt = xt) = pYt(yt | Xt = xt)pZt(zt | Xt = xt)

Yt = {X0, X1, . . . , Xt�1} Zt = {Xt+1, Xt+2, . . . , Xn}

CS145: Lecture 17 Outline
ØDiscrete Time Markov Chains
ØExamples of Markov Chains
ØMulti-step State Transitions

Machine Repair
Examples

• A machine that is working today will be broken tomorrow with
probability p, else it’s working. A broken machine is fixed in a
given day with probability r , else it remain broken. If a
machine is broken for 10 days it is replaced with a new
(working) machine.

• Xi = 0 if the machine is working today, else Xi is the number
of days (including today) that the machine has been broken.

Transition matrix:

P =

0

BBB@

P0,0 · · · P0,10

P1,0 · · · P1,10
...

. . .
...

P10,0 · · · P10,10

1

CCCA
=

0

BBBBB@

1� p p 0 0 · · · 0
r 0 1� r 0 · · · 0
r 0 0 1� r · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · 0

1

CCCCCA

Ø Let Xi be the number of days (including today) some machine has been
broken, or Xi=0 if the machine is currently working.

Ø A machine that is working today will be broken tomorrow with probability p.
Otherwise, with probability 1-p, it keeps working.

Ø On any given day, a broken machine is repaired with probability r.
Otherwise, with probability 1-r, it remains broken.

Ø After being broken for m days, it is always replaced with a working machine.

A Checkout Line (Queue)

Let Xi be the number of customers in a line (queue) during
(short) time period i, where exactly one event happens:
Ø With probability s, a customer is served and leaves the queue,

unless already there are no customers (Xi=0).
Ø With probability r, a new customer joins the queue,

unless the queue is already at its maximum capacity m.
Ø Otherwise, the number of customers remains the same (Xi+1=Xi).
This is a discrete Markov process with m+1 states.

LECTURE 16 Checkout counter model

• Discrete time n = 0,1, . . .Markov Processes – I

Customer arrivals: Bernoulli()• pReadings: Sections 7.1–7.2 •

– geometric interarrival times

Customer service times: geometric(q)
Lecture outline

•

• Checkout counter example • “State” Xn: number of customers at
time n

• Markov process definition

• n-step transition probabilities

• Classification of states

20 1 3 .. . 9 10

Finite state Markov chains n-step transition probabilities

State occupancy probabilities,• Xn: state after n transitions
•

given initial state i:
– belongs to a finite set, e.g., {1, . . . , m}

r (n) = P(X = j X = i)– X0 is either given or random ij n | 0

• Markov property/assumption: Time 0 Time n-1 Time n

(given current state, the past does not
matter)

1
r (n-1) pi1 1j

..
.

pij = P(Xn+1 = j | Xn = i)
i k

= P(Xn+1 = j | X (n-1)n = i, X r
n�1, . . . , X0) ik pkj j

..
.

r (n-1) pim mj

• Model specification: m

– identify the possible states – Key recursion:

the possible transitions m– identify
rij(n) =

�
rik(n

– identify the transition probabilities k=1
� 1)pkj

– With random initial state:
m

P(Xn = j) =
i

�
P(X0 = i)rij(n)

=1

1

English Text: Are characters independent?
Ø Assume letters are independent and equally common:

P (Xt) =
1

27
for Xt 2 {a, b, c, ..., z, }

Ø Assume letters are independent and follow frequencies of real text:

English Text: Markov Models
Ø A first-order Markov model encodes

probability of each letter, given previous letter
Ø A second-order (bigram) Markov model

encodes probability of each letter, given
previous two letters (state is letter pairs)

Ø A third order (trigram) Markov model encodes
probability of each letter, given previous three
letters (state is letter triples)

English Text: Markov Models
Examples from Programming Pearls, J. Bentley, Sec. 15.3

Generating Text
(Section 15.3 of
Programming Pearls)
How can you generate random text? A classic approach is to let
loose that poor monkey on his aging typewriter. If the beast is
equally likely to hit any lower case letter or the space bar, the
output might look like this:

uzlpcbizdmddk njsdzyyvfgxbgjjgbtsak
rqvpgnsbyputvqqdtmgltz ynqotqigexjumqphujcfwn ll
jiexpyqzgsdllgcoluphl sefsrvqqytjakmav bfusvirsjl
wprwqt

This is pretty unconvincing English text.

If you count the letters in word games (like Scrabble or Boggle), you will notice that there are different numbers of
the various letters. There are many more A's, for instance, than there are Z's. A monkey could produce more
convincing text by counting the letters in a document -- if A occurs 300 times in the text while B occurs just 100
times, then the monkey should be 3 times more likely to type an A than a B. This takes us a small step closer to
English:

saade ve mw hc n entt da k eethetocusosselalwo gx fgrsnoh,tvettaf aetnlbilo fc lhd okleutsndyeoshtbogo
eet ib nheaoopefni ngent

Most events occur in context. Suppose that we wanted to generate randomly a year's worth of Fahrenheit
temperature data. A series of 365 random integers between 0 and 100 wouldn't fool the average observer. We could
be more convincing by making today's temperature a (random) function of yesterday's temperature: if it is 85
degrees today, it is unlikely to be 15 degrees tomorrow.

The same is true of English words: if this letter is a Q, then the next letter is quite likely to be a U. A generator can
make more interesting text by making each letter a random function of its predecessor. We could, therefore, read a
sample text and count how many times every letter follows an A, how many times they follow a B, and so on for
each letter of the alphabet. When we write the random text, we produce the next letter as a random function of the
current letter. The ``order-1'' text was made by exactly this scheme:

Order-1: t I amy, vin. id wht omanly heay atuss n macon aresethe hired boutwhe t, tl, ad torurest t plur I
wit hengamind tarer-plarody thishand.

Order-2: Ther I the heingoind of-pleat, blur it dwere wing waske hat trooss. Yout lar on wassing, an sit."
"Yould," "I that vide was nots ther.

Order-3: I has them the saw the secorrow. And wintails on my my ent, thinks, fore voyager lanated the
been elsed helder was of him a very free bottlemarkable,

Order-4: His heard." "Exactly he very glad trouble, and by Hopkins! That it on of the who difficentralia.
He rushed likely?" "Blood night that.

[Click for more examples of letter-level Markov text]

We can extend this idea to longer sequences of letters. The order-2 text was made by generating each letter as a
function of the two letters preceding it (a letter pair is often called a digram). The digram TH, for instance, is often
followed in English by the vowels A, E, I, O, U and Y, less frequently by R and W, and rarely by other letters. The
order-3 text is built by choosing the next letter as a function of the three previous letters (a trigram). By the time we
get to the order-4 text, most words are English, and you might not be surprised to learn that it was generated from a
Sherlock Holmes story (``The Adventure of Abbey Grange''). A classically educated reader of a draft of this
column commented that this sequence of fragments reminded him of the evolution from Old English to Victorian
English.

Readers with a mathematical background might recognize this process as a Markov chain. One state represents
each k-gram, and the odds of going from one to another don't change, so this is a ``finite-state Markov chain with
stationary transition probabilities''.

We can also generate random text at the word level. The dumbest approach is to spew forth the words in a
dictionary at random. A slightly better approach reads a document, counts each word, and then selects the next
word to be printed with the appropriate probability. (The programs in Section 15.1 use tools appropriate for such
tasks.) We can get more interesting text, though, by using Markov chains that take into account a few preceding
words as they generate the next word. Here is some random text produced after reading a draft of the first 14
columns of this book:

Order-1: The table shows how many contexts; it uses two or equal to the sparse matrices were not chosen.
In Section 13.1, for a more efficient that ``the more time was published by calling recursive structure
translates to build scaffolding to try to know of selected and testing and more robust and a binary search).

Order-2: The program is guided by verification ideas, and the second errs in the STL implementation
(which guarantees good worst-case performance), and is especially rich in speedups due to Gordon Bell.
Everything should be to use a macro: for n=10,000, its run time; that point Martin picked up from his desk

Order-3: A Quicksort would be quite efficient for the main-memory sorts, and it requires only a few
distinct values in this particular problem, we can write them all down in the program, and they were
making progress towards a solution at a snail's pace.

The order-1 text is almost readable aloud, while the order-3 text consists of very long phrases from the original
input, with random transitions between them. For purposes of parody, order-2 text is usually juiciest.

[Click for more examples of word-level Markov text]

I first saw letter-level and word-level order-k approximations to English text in Shannon's 1948 classic
Mathematical Theory of Communication. Shannon writes, ``To construct [order-1 letter-level text] for example,
one opens a book at random and selects a letter at random on the page. This letter is recorded. The book is then
opened to another page and one reads until this letter is encountered. The succeeding letter is then recorded.
Turning to another page this second letter is searched for and the succeeding letter recorded, etc. A similar process
was used for [order-1 and order-2 letter-level text, and order-0 and order-1 word-level text]. It would be interesting

Claude Shannon’s Markov chain simulator (1948): To construct [an
order 1 model] for example, one opens a book at random and selects a
letter at random on the page. This letter is recorded. The book is then
opened to another page and one reads until this letter is encountered.
The succeeding letter is then recorded. Turning to another page this
second letter is searched for and the succeeding letter recorded, etc. It
would be interesting if further approximations could be constructed, but
the labor involved becomes enormous at the next stage.

CS145: Lecture 17 Outline
ØDiscrete Time Markov Chains
ØExamples of Markov Chains
ØMulti-step State Transitions

Finite Markov Chains

Markov Property: Given the current state, the past & future are independent.
Finite State:

State Transition Matrix: State Transition Diagram:

Example: Sunny or Rainy?

Sunny Rainy

R

R

S

S

Multi-step State Transitions
Ø Given the current state, we would like to predict what state

we will be in at multiple steps into the future:

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

where rij(1) = pij

State transition matrix:

Sec. 6.1 Discrete-Time Markov Chains 3

We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :





p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm



 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

pij = P (Xt+1 = j | Xt = i)
mX

j=1

pij = 1Xt 2 {1, . . . ,m}

Multi-step State Transitions
Ø Given the current state, we would like to predict what state

we will be in at multiple steps into the future:

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

where rij(1) = pij

Ø First consider the special case where n=2:

P (X2 = j | X0 = i) =
mX

k=1

P (X2 = j,X1 = k | X0 = i)

P (X2 = j | X0 = i) =
mX

k=1

P (X2 = j | X1 = k)P (X1 = k | X0 = i)

LECTURE 16 Checkout counter model

• Discrete time n = 0,1, . . .Markov Processes – I

Customer arrivals: Bernoulli()• pReadings: Sections 7.1–7.2 •

– geometric interarrival times

Customer service times: geometric(q)
Lecture outline

•

• Checkout counter example • “State” Xn: number of customers at
time n

• Markov process definition

• n-step transition probabilities

• Classification of states

20 1 3 .. . 9 10

Finite state Markov chains n-step transition probabilities

State occupancy probabilities,• Xn: state after n transitions
•

given initial state i:
– belongs to a finite set, e.g., {1, . . . , m}

r (n) = P(X = j X = i)– X0 is either given or random ij n | 0

• Markov property/assumption: Time 0 Time n-1 Time n

(given current state, the past does not
matter)

1
r (n-1) pi1 1j

..
.

pij = P(Xn+1 = j | Xn = i)
i k

= P(Xn+1 = j | X (n-1)n = i, X r
n�1, . . . , X0) ik pkj j

..
.

r (n-1) pim mj

• Model specification: m

– identify the possible states – Key recursion:

the possible transitions m– identify
rij(n) =

�
rik(n

– identify the transition probabilities k=1
� 1)pkj

– With random initial state:
m

P(Xn = j) =
i

�
P(X0 = i)rij(n)

=1

1

rij(2) =
mX

k=1

pikpkj =
mX

k=1

rik(1)pkj

Multi-step State Transitions
Ø Given the current state, we would like to predict what state

we will be in at multiple steps into the future:

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

where rij(1) = pij

Ø Computed recursively via the Chapman-Kolmogorov equation:

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

LECTURE 16 Checkout counter model

• Discrete time n = 0,1, . . .Markov Processes – I

Customer arrivals: Bernoulli()• pReadings: Sections 7.1–7.2 •

– geometric interarrival times

Customer service times: geometric(q)
Lecture outline

•

• Checkout counter example • “State” Xn: number of customers at
time n

• Markov process definition

• n-step transition probabilities

• Classification of states

20 1 3 .. . 9 10

Finite state Markov chains n-step transition probabilities

State occupancy probabilities,• Xn: state after n transitions
•

given initial state i:
– belongs to a finite set, e.g., {1, . . . , m}

r (n) = P(X = j X = i)– X0 is either given or random ij n | 0

• Markov property/assumption: Time 0 Time n-1 Time n

(given current state, the past does not
matter)

1
r (n-1) pi1 1j

..
.

pij = P(Xn+1 = j | Xn = i)
i k

= P(Xn+1 = j | X (n-1)n = i, X r
n�1, . . . , X0) ik pkj j

..
.

r (n-1) pim mj

• Model specification: m

– identify the possible states – Key recursion:

the possible transitions m– identify
rij(n) =

�
rik(n

– identify the transition probabilities k=1
� 1)pkj

– With random initial state:
m

P(Xn = j) =
i

�
P(X0 = i)rij(n)

=1

1

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

Multi-step State Transitions
Ø Given the current state, we would like to predict what state

we will be in at multiple steps into the future:

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

where rij(1) = pij

Ø Computed recursively via the Chapman-Kolmogorov equation:

6 Markov Chains Chap. 6

n-Step Transition Probabilities

Many Markov chain problems require the calculation of the probability law of
the state at some future time, conditioned on the current state. This probability
law is captured by the n-step transition probabilities, defined by

rij(n) = P(Xn = j |X0 = i).

In words, rij(n) is the probability that the state after n time periods will be j,
given that the current state is i. It can be calculated using the following basic
recursion, known as the Chapman-Kolmogorov equation.

Chapman-Kolmogorov Equation for the n-Step Transition
Probabilities

The n-step transition probabilities can be generated by the recursive formula

rij(n) =
m∑

k=1

rik(n − 1)pkj , for n > 1, and all i, j,

starting with
rij(1) = pij .

To verify the formula, we apply the total probability theorem as follows:

P(Xn = j |X0 = i) =
m∑

k=1

P(Xn−1 = k |X0 = i) · P(Xn = j |Xn−1 = k, X0 = i)

=
m∑

k=1

rik(n − 1)pkj ;

see Fig. 6.3 for an illustration. We have used here the Markov property: once
we condition on Xn−1 = k, the conditioning on X0 = i does not affect the
probability pkj of reaching j at the next step.

We can view rij(n) as the element at the ith row and jth column of a two-
dimensional array, called the n-step transition probability matrix.† Figures

† Those readers familiar with matrix multiplication, may recognize that the
Chapman-Kolmogorov equation can be expressed as follows: the matrix of n-step tran-
sition probabilities rij(n) is obtained by multiplying the matrix of (n − 1)-step tran-
sition probabilities rik(n − 1), with the one-step transition probability matrix. Thus,
the n-step transition probability matrix is the nth power of the transition probability
matrix.

LECTURE 16 Checkout counter model

• Discrete time n = 0,1, . . .Markov Processes – I

Customer arrivals: Bernoulli()• pReadings: Sections 7.1–7.2 •

– geometric interarrival times

Customer service times: geometric(q)
Lecture outline

•

• Checkout counter example • “State” Xn: number of customers at
time n

• Markov process definition

• n-step transition probabilities

• Classification of states

20 1 3 .. . 9 10

Finite state Markov chains n-step transition probabilities

State occupancy probabilities,• Xn: state after n transitions
•

given initial state i:
– belongs to a finite set, e.g., {1, . . . , m}

r (n) = P(X = j X = i)– X0 is either given or random ij n | 0

• Markov property/assumption: Time 0 Time n-1 Time n

(given current state, the past does not
matter)

1
r (n-1) pi1 1j

..
.

pij = P(Xn+1 = j | Xn = i)
i k

= P(Xn+1 = j | X (n-1)n = i, X r
n�1, . . . , X0) ik pkj j

..
.

r (n-1) pim mj

• Model specification: m

– identify the possible states – Key recursion:

the possible transitions m– identify
rij(n) =

�
rik(n

– identify the transition probabilities k=1
� 1)pkj

– With random initial state:
m

P(Xn = j) =
i

�
P(X0 = i)rij(n)

=1

1

Ø With random initial state:

LECTURE 16 Checkout counter model

• Discrete time n = 0,1, . . .Markov Processes – I

Customer arrivals: Bernoulli()• pReadings: Sections 7.1–7.2 •

– geometric interarrival times

Customer service times: geometric(q)
Lecture outline

•

• Checkout counter example • “State” Xn: number of customers at
time n

• Markov process definition

• n-step transition probabilities

• Classification of states

20 1 3 .. . 9 10

Finite state Markov chains n-step transition probabilities

State occupancy probabilities,• Xn: state after n transitions
•

given initial state i:
– belongs to a finite set, e.g., {1, . . . , m}

r (n) = P(X = j X = i)– X0 is either given or random ij n | 0

• Markov property/assumption: Time 0 Time n-1 Time n

(given current state, the past does not
matter)

1
r (n-1) pi1 1j

..
.

pij = P(Xn+1 = j | Xn = i)
i k

= P(Xn+1 = j | X (n-1)n = i, X r
n�1, . . . , X0) ik pkj j

..
.

r (n-1) pim mj

• Model specification: m

– identify the possible states – Key recursion:

the possible transitions m– identify
rij(n) =

�
rik(n

– identify the transition probabilities k=1
� 1)pkj

– With random initial state:
m

P(Xn = j) =
i

�
P(X0 = i)rij(n)

=1

1

Marginal distribution of state after n steps.

Reminder: Matrix Multiplication

2.1 Vector-Vector Products

Given two vectors x, y ∈ Rn, the quantity xTy, sometimes called the inner product or dot
product of the vectors, is a real number given by

xT y ∈ R =
[

x1 x2 · · · xn

]











y1
y2
...
yn











=
n
∑

i=1

xiyi.

Observe that inner products are really just special case of matrix multiplication. Note that
it is always the case that xTy = yTx.

Given vectors x ∈ Rm, y ∈ Rn (not necessarily of the same size), xyT ∈ Rm×n is called
the outer product of the vectors. It is a matrix whose entries are given by (xyT)ij = xiyj,
i.e.,

xyT ∈ R
m×n =











x1

x2
...
xm











[

y1 y2 · · · yn
]

=











x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn











.

As an example of how the outer product can be useful, let 1 ∈ Rn denote an n-dimensional
vector whose entries are all equal to 1. Furthermore, consider the matrix A ∈ Rm×n whose
columns are all equal to some vector x ∈ Rm. Using outer products, we can represent A
compactly as,

A =





| | |
x x · · · x
| | |



 =











x1 x1 · · · x1

x2 x2 · · · x2
...

...
. . .

...
xm xm · · · xm











=











x1

x2
...
xm











[

1 1 · · · 1
]

= x1T .

2.2 Matrix-Vector Products

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, their product is a vector y = Ax ∈ Rm.
There are a couple ways of looking at matrix-vector multiplication, and we will look at each
of them in turn.

If we write A by rows, then we can express Ax as,

y = Ax =











— aT1 —
— aT2 —

...
— aTm —











x =











aT1 x
aT2 x
...

aTmx











.

4

In other words, the ith entry of y is equal to the inner product of the ith row of A and x,
yi = aTi x.

Alternatively, let’s write A in column form. In this case we see that,

y = Ax =





| | |
a1 a2 · · · an
| | |















x1

x2
...
xn











=



 a1



 x1 +



 a2



 x2 + . . .+



 an



 xn .

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of x.

So far we have been multiplying on the right by a column vector, but it is also possible
to multiply on the left by a row vector. This is written, yT = xTA for A ∈ Rm×n, x ∈ Rm,
and y ∈ Rn. As before, we can express yT in two obvious ways, depending on whether we
express A in terms on its rows or columns. In the first case we express A in terms of its
columns, which gives

yT = xTA = xT





| | |
a1 a2 · · · an
| | |



 =
[

xTa1 xTa2 · · · xTan
]

which demonstrates that the ith entry of yT is equal to the inner product of x and the ith
column of A.

Finally, expressing A in terms of rows we get the final representation of the vector-matrix
product,

yT = xTA

=
[

x1 x2 · · · xn

]











— aT1 —
— aT2 —

...
— aTm —











= x1

[

— aT1 —
]

+ x2

[

— aT2 —
]

+ ... + xn

[

— aTn —
]

so we see that yT is a linear combination of the rows of A, where the coefficients for the
linear combination are given by the entries of x.

2.3 Matrix-Matrix Products

Armed with this knowledge, we can now look at four different (but, of course, equivalent)
ways of viewing the matrix-matrix multiplication C = AB as defined at the beginning of
this section.

First, we can view matrix-matrix multiplication as a set of vector-vector products. The
most obvious viewpoint, which follows immediately from the definition, is that the (i, j)th

5

entry of C is equal to the inner product of the ith row of A and the jth column of B.
Symbolically, this looks like the following,

C = AB =











— aT1 —
— aT2 —

...
— aTm —















| | |
b1 b2 · · · bp
| | |



 =











aT1 b1 aT1 b2 · · · aT1 bp
aT2 b1 aT2 b2 · · · aT2 bp
...

...
. . .

...
aTmb1 aTmb2 · · · aTmbp











.

Remember that since A ∈ Rm×n and B ∈ Rn×p, ai ∈ Rn and bj ∈ Rn, so these inner
products all make sense. This is the most “natural” representation when we represent A
by rows and B by columns. Alternatively, we can represent A by columns, and B by rows.
This representation leads to a much trickier interpretation of AB as a sum of outer products.
Symbolically,

C = AB =





| | |
a1 a2 · · · an
| | |















— bT1 —
— bT2 —

...
— bTn —











=
n
∑

i=1

aib
T
i .

Put another way, AB is equal to the sum, over all i, of the outer product of the ith column
of A and the ith row of B. Since, in this case, ai ∈ Rm and bi ∈ Rp, the dimension of the
outer product aibTi is m× p, which coincides with the dimension of C. Chances are, the last
equality above may appear confusing to you. If so, take the time to check it for yourself!

Second, we can also view matrix-matrix multiplication as a set of matrix-vector products.
Specifically, if we represent B by columns, we can view the columns of C as matrix-vector
products between A and the columns of B. Symbolically,

C = AB = A





| | |
b1 b2 · · · bp
| | |



 =





| | |
Ab1 Ab2 · · · Abp
| | |



 .

Here the ith column of C is given by the matrix-vector product with the vector on the right,
ci = Abi. These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection. Finally, we have the analogous viewpoint, where we repre-
sent A by rows, and view the rows of C as the matrix-vector product between the rows of A
and C. Symbolically,

C = AB =











— aT1 —
— aT2 —

...
— aTm —











B =











— aT1B —
— aT2B —

...
— aTmB —











.

Here the ith row of C is given by the matrix-vector product with the vector on the left,
cTi = aTi B.

6

Zico Kolter, 2012

2.1 Vector-Vector Products

Given two vectors x, y ∈ Rn, the quantity xTy, sometimes called the inner product or dot
product of the vectors, is a real number given by

xT y ∈ R =
[

x1 x2 · · · xn

]











y1
y2
...
yn











=
n
∑

i=1

xiyi.

Observe that inner products are really just special case of matrix multiplication. Note that
it is always the case that xTy = yTx.

Given vectors x ∈ Rm, y ∈ Rn (not necessarily of the same size), xyT ∈ Rm×n is called
the outer product of the vectors. It is a matrix whose entries are given by (xyT)ij = xiyj,
i.e.,

xyT ∈ R
m×n =











x1

x2
...
xm











[

y1 y2 · · · yn
]

=











x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn











.

As an example of how the outer product can be useful, let 1 ∈ Rn denote an n-dimensional
vector whose entries are all equal to 1. Furthermore, consider the matrix A ∈ Rm×n whose
columns are all equal to some vector x ∈ Rm. Using outer products, we can represent A
compactly as,

A =





| | |
x x · · · x
| | |



 =











x1 x1 · · · x1

x2 x2 · · · x2
...

...
. . .

...
xm xm · · · xm











=











x1

x2
...
xm











[

1 1 · · · 1
]

= x1T .

2.2 Matrix-Vector Products

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, their product is a vector y = Ax ∈ Rm.
There are a couple ways of looking at matrix-vector multiplication, and we will look at each
of them in turn.

If we write A by rows, then we can express Ax as,

y = Ax =











— aT1 —
— aT2 —

...
— aTm —











x =











aT1 x
aT2 x
...

aTmx











.

4

State Transitions & Matrix Multiplication
⇡ti = P (Xt = i) pij = P (Xt+1 = j | Xt = i)

⇡1j =
mX

i=1

pij⇡0i

⇡t = [⇡t1,⇡t2, . . . ,⇡tm]T

Sec. 6.1 Discrete-Time Markov Chains 3

We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :





p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm



 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

P =

Textbook convention:
⇡T
1 = ⇡T

0 P

Each row of P
sums to one.

Alternative convention:

Each column of PT

sums to one.

⇡1 = PT⇡0

Multi-Step State Transitions
⇡ti = P (Xt = i) pij = P (Xt+1 = j | Xt = i)

⇡t = [⇡t1,⇡t2, . . . ,⇡tm]T

Sec. 6.1 Discrete-Time Markov Chains 3

We will generally allow the probabilities pii to be positive, in which case it is
possible for the next state to be the same as the current one. Even though the
state does not change, we still view this as a state transition of a special type (a
“self-transition”).

Specification of Markov Models

• A Markov chain model is specified by identifying
(a) the set of states S = {1, . . . , m},
(b) the set of possible transitions, namely, those pairs (i, j) for which

pij > 0, and,
(c) the numerical values of those pij that are positive.

• The Markov chain specified by this model is a sequence of random
variables X0, X1, X2, . . ., that take values in S and which satisfy

P(Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = pij ,

for all times n, all states i, j ∈ S, and all possible sequences i0, . . . , in−1

of earlier states.

All of the elements of a Markov chain model can be encoded in a transition
probability matrix, which is simply a two-dimensional array whose element
at the ith row and jth column is pij :





p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm



 .

It is also helpful to lay out the model in the so-called transition probability
graph, whose nodes are the states and whose arcs are the possible transitions.
By recording the numerical values of pij near the corresponding arcs, one can
visualize the entire model in a way that can make some of its major properties
readily apparent.

Example 6.1. Alice is taking a probability class and in each week she can be
either up-to-date or she may have fallen behind. If she is up-to-date in a given
week, the probability that she will be up-to-date (or behind) in the next week is
0.8 (or 0.2, respectively). If she is behind in the given week, the probability that
she will be up-to-date (or behind) in the next week is 0.6 (or 0.4, respectively). We
assume that these probabilities do not depend on whether she was up-to-date or
behind in previous weeks, so the problem has the typical Markov chain character
(the future depends on the past only through the present).

P =

State Distribution after n time steps:
⇡T
n = ⇡T

n�1P = ⇡T
n�2PP = ⇡T

0 P
n

⇡n = PT⇡n�1 = PTPT⇡T
n�2 = (Pn)T⇡0

Pn multiplies the square matrix P by itself n times.
This is not equivalent to raising the entries of P to the power n.

