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CS145: Lecture 10 Outline
Ø Laws of Large Numbers
ØCentral Limit Theorem
ØFinite Sample Bounds
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FIGURE 2. Relative frequencies of heads in two long series of coin tosses. For a small number 
of trials, the relative frequencies fluctuate quite noticeably as the number oi trials varies. But these 
fluctuations tend to decrease as the number of trials increases. Initially, the two sequences of relative 
frequencies look quite different. But after a while, both relative frequencies settle down around 1/2. 
(The two series were obtained using a computer random number generator to simulate coin tosses.) 
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Convergence in Probability
8 Limit Theorems Chap. 7

Intuitively, for any given accuracy level ε, an must be within ε of a, when
n is large enough.

Convergence in Probability

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Yn converges
to a in probability, if for every ε > 0, we have

lim
n→∞

P
(
|Yn − a| ≥ ε

)
= 0.

Given this definition, the WLLN simply says that the sample mean con-
verges in probability to the true mean µ.

If the random variables Y1, Y2, . . . have a PMF or a PDF and converge in
probability to a, then according to the above definition, “almost all” of the PMF
or PDF of Yn is concentrated to within a an ε-interval around a for large values
of n. It is also instructive to rephrase the above definition as follows: for every
ε > 0, and for every δ > 0, there exists some n0 such that

P
(
|Yn − a| ≥ ε

)
≤ δ, for all n ≥ n0.

If we refer to ε as the accuracy level, and δ as the confidence level, the definition
takes the following intuitive form: for any given level of accuracy and confidence,
Yn will be equal to a, within these levels of accuracy and confidence, provided
that n is large enough.

Example 7.5. Consider a sequence of independent random variables Xn that are
uniformly distributed over the interval [0, 1], and let

Yn = min{X1, . . . , Xn}.

The sequence of values of Yn cannot increase as n increases, and it will occasionally
decrease (when a value of Xn that is smaller than the preceding values is obtained).
Thus, we intuitively expect that Yn converges to zero. Indeed, for ε > 0, we have
using the independence of the Xn,

P
(
|Yn − 0| ≥ ε

)
= P(X1 ≥ ε, . . . , Xn ≥ ε)

= P(X1 ≥ ε) · · ·P(Xn ≥ ε)

= (1 − ε)n.

Since this is true for every ε > 0, we conclude that Yn converges to zero, in proba-
bility.
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The true value of the parameter p is assumed to be unknown. On the other hand,
it is easily verified that p(1 − p) ≤ 1/4, which yields

P
(
|Mn − p| ≥ ε

)
≤ 1

4nε2
.

For example, if ε = 0.1 and n = 100, we obtain

P
(
|M100 − p| ≥ 0.1

)
≤ 1

4 · 100 · (0.1)2
= 0.25.

In words, with a sample size of n = 100, the probability that our estimate is wrong
by more than 0.1 is no larger than 0.25.

Suppose now that we impose some tight specifications on our poll. We would
like to have high confidence (probability at least 95%) that our estimate will be
very accurate (within .01 of p). How many voters should be sampled?

The only guarantee that we have at this point is the inequality

P
(
|Mn − p| ≥ 0.01

)
≤ 1

4n(0.01)2
.

We will be sure to satisfy the above specifications if we choose n large enough so
that

1
4n(0.01)2

≤ 1 − 0.95 = 0.05,

which yields n ≥ 50, 000. This choice of n has the specified properties but is actually
fairly conservative, because it is based on the rather loose Chebyshev inequality. A
refinement will be considered in Section 7.4.

7.3 CONVERGENCE IN PROBABILITY

We can interpret the WLLN as stating that “Mn converges to µ.” However,
since M1, M2, . . . is a sequence of random variables, not a sequence of numbers,
the meaning of convergence has to be made precise. A particular definition
is provided below. To facilitate the comparison with the ordinary notion of
convergence, we also include the definition of the latter.

Convergence of a Deterministic Sequence

Let a1, a2, . . . be a sequence of real numbers, and let a be another real
number. We say that the sequence an converges to a, or limn→∞ an = a, if
for every ε > 0 there exists some n0 such that

|an − a| ≤ ε, for all n ≥ n0.

“an eventually gets and stays (arbitrarily) close to a” 

“(almost all) of the PMF/PDF of Yn eventually gets concentrated (arbitrarily) close to a” 
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Example:
Xn is a sequence of independent uniform variables on [0, 1] and Yn = min{X1, . . . , Xn}

Ø We expect that Yn converges to zero.  To verify:
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The Weak Law of Large Numbers

The Weak Law of Large Numbers

Theorem

Let x1, ..., xn be independent, identically distributed random
variables with finite mean, E [xi ] = µ. For any ✏ > 0

Prob{|1
n

nX

i=1

xi � µ| � ✏} ! 0

as n ! 1.



The (Weak) Law of Large Numbers
Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2
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Example 7.2. As in Example 7.1, let X be uniformly distributed on [0, 4]. Let
us use the Chebyshev inequality to bound the probability that |X − 2| ≥ 1. We
have σ2 = 16/12 = 4/3, and

P
(
|X − 2| ≥ 1

)
≤ 4

3
,

which is not particularly informative.
For another example, let X be exponentially distributed with parameter λ =

1, so that E[X] = var(X) = 1. For c > 1, using Chebyshev’s inequality, we obtain

P(X ≥ c) = P(X − 1 ≥ c − 1) ≤ P
(
|X − 1| ≥ c − 1) ≤ 1

(c − 1)2
.

This is again conservative compared to the exact answer P(X ≥ c) = e−c.

7.2 THE WEAK LAW OF LARGE NUMBERS

The weak law of large numbers asserts that the sample mean of a large number
of independent identically distributed random variables is very close to the true
mean, with high probability.

As in the introduction to this chapter, we consider a sequence X1, X2, . . . of
independent identically distributed random variables with mean µ and variance
σ2, and define the sample mean by

Mn =
X1 + · · · + Xn

n
.

We have
E[Mn] =

E[X1] + · · · + E[Xn]
n

=
nµ

n
= µ,

and, using independence,

var(Mn) =
var(X1 + · · · + Xn)

n2
=

var(X1) + · · · + var(Xn)
n2

=
nσ2

n2
=

σ2

n
.

We apply Chebyshev’s inequality and obtain

P
(
|Mn − µ| ≥ ε

)
≤ σ2

nε2
, for any ε > 0.

We observe that for any fixed ε > 0, the right-hand side of this inequality goes to
zero as n increases. As a consequence, we obtain the weak law of large numbers,
which is stated below. It turns out that this law remains true even if the Xi
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Ø Chebyshev’s inequality bounds distance between the
true mean and the “empirical” or “sample” mean:

Ø The empirical mean converges to the true mean in probability
lim

n!1
P (|Mn � µ| � ✏) = 0

Ø True even if variance not finite, but proof more challenging.

E[Mn] =

Var[Mn] =



Why is it a “Weak” Law of Large Numbers?
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Intuitively, for any given accuracy level ε, an must be within ε of a, when
n is large enough.

Convergence in Probability

Let Y1, Y2, . . . be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Yn converges
to a in probability, if for every ε > 0, we have

lim
n→∞

P
(
|Yn − a| ≥ ε

)
= 0.

Given this definition, the WLLN simply says that the sample mean con-
verges in probability to the true mean µ.

If the random variables Y1, Y2, . . . have a PMF or a PDF and converge in
probability to a, then according to the above definition, “almost all” of the PMF
or PDF of Yn is concentrated to within a an ε-interval around a for large values
of n. It is also instructive to rephrase the above definition as follows: for every
ε > 0, and for every δ > 0, there exists some n0 such that

P
(
|Yn − a| ≥ ε

)
≤ δ, for all n ≥ n0.

If we refer to ε as the accuracy level, and δ as the confidence level, the definition
takes the following intuitive form: for any given level of accuracy and confidence,
Yn will be equal to a, within these levels of accuracy and confidence, provided
that n is large enough.

Example 7.5. Consider a sequence of independent random variables Xn that are
uniformly distributed over the interval [0, 1], and let

Yn = min{X1, . . . , Xn}.

The sequence of values of Yn cannot increase as n increases, and it will occasionally
decrease (when a value of Xn that is smaller than the preceding values is obtained).
Thus, we intuitively expect that Yn converges to zero. Indeed, for ε > 0, we have
using the independence of the Xn,

P
(
|Yn − 0| ≥ ε

)
= P(X1 ≥ ε, . . . , Xn ≥ ε)

= P(X1 ≥ ε) · · ·P(Xn ≥ ε)

= (1 − ε)n.

Since this is true for every ε > 0, we conclude that Yn converges to zero, in proba-
bility.

Example:

LECTURE 19 Chebyshev’s inequality

Limit theorems – I
• Random variable X

• Readings: Sections 5.1-5.3; (with finite mean µ and variance 2⇥ )
start Section 5.4 2⇥ =

⌅
( � )2x µ fX(x) dx

c
• 2 2X1, . . . , Xn i.i.d. ⇤

⌅ �
(x� µ) fX(x) dx +

⌅ ⇧
(x� µ) fX(x) dx

c
X1 + · · · +

�⇧
Xn

Mn =
n

What happens as ?
⇤ 2c · P(|X � µ| ⇤ c)

n⌅⇧

• Why bother? 2⇥
P(|X � µ| ⇤ c) ⇥

c2
• A tool: Chebyshev’s inequality

• Convergence “in probability”
1

P( X ⇥
Convergence of

| � µ| ⇤ k ) ⇥
k2

• Mn

(weak law of large numbers)

Deterministic limits Convergence “in probability”

• Sequence an • Sequence of random variables Yn

Number a
• converges in probability to a number a:

“(almost all) of the PMF/PDF of Yn ,
• an converges to a eventually gets concentrated

(arbitrarily) close to a”lim an = a
n⌅⇧

“an eventually gets and stays
(arbitrarily) close to a” • For every � > 0,

lim P(|Yn � a| ⇤ �) = 0
n⌅⇧

• For every � > 0,
there exists n0,
such that for every n ⇤ n0,
we have |an � a| ⇥ �. 1 -  1 /n pmf of Yn

1 /n 

0 n 

Does Yn converge?

1

For every ✏ > 0, lim
n!1

P (|Yn � 0| � ✏) = 0.

But even though Yn converges in probability, 
occasionally it takes on very large values:

E[Yn] = 1 for all n.



The Strong Law of Large Numbers

Ø This stronger (but more technically challenging) notion of convergence 
rules out cases like the previous example

Ø For many practical scenarios, both forms of convergence hold, but 
convergence in probability is easier to show

Ø We focus exclusively on the weak law in this course

The Strong Law of Large Numbers

Theorem

Let x1, ..., xn be independent, identically distributed random
variables with finite mean, E [xi ] = µ.

Prob{ lim
n!1

1

n

nX

i=1

xi = µ} = 1.



CS145: Lecture 10 Outline
Ø Laws of Large Numbers
ØCentral Limit Theorem
ØFinite Sample Bounds



Convergence to the Mean
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FIGURE 2. Relative frequencies of heads in two long series of coin tosses. For a small number 
of trials, the relative frequencies fluctuate quite noticeably as the number oi trials varies. But these 
fluctuations tend to decrease as the number of trials increases. Initially, the two sequences of relative 
frequencies look quite different. But after a while, both relative frequencies settle down around 1/2. 
(The two series were obtained using a computer random number generator to simulate coin tosses.) 
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Convergence to the Mean
<latexit sha1_base64="tf2ic1nIQz61BfJqCWrIUM+xebU="></latexit>

Let X1, . . . , Xn with Pr(X = �1) = Pr(X = 1) = 1/2.

E[Xi] = 0. V ar[Xi] = �[Xi] = 1

Sum: Xn =
Pn

i=1 Xi

Sum/sqrt(n): Yn =
Pn

i=1 Xip
n

=
Pn

i=1 Xi

�[
Pn

i=1 Xi]

Sum/n: Zn = (
Pn

i=1 Xi)/n

E[Xn] = E[Yn] = E[Zn] = 0
V ar[Xn] = n
V ar[Yn] = 1
V ar[Zn] = 1/n



Convergence to the Mean



Scaling of the Sample Mean
Ø Sequence of independent, identically distributed random variables:

X1, X2, . . . , Xn E[Xi] = µ Var[Xi] = �2 < 1
Ø The variance of their sum increases with n:

Sn =
Pn

i=1 Xi E[Sn] = nµ Var[Sn] = n�2

Ø Law of Large Numbers: variance of the empirical mean decreases with n:

Var[Mn] =
�2

nMn = 1
nSn E[Mn] = µ

Ø Standardized sum: transform so mean and variance constant for all n

Zn = Sn�E[Sn]p
Var[Sn]

= Sn�nµp
n� E[Zn] = 0 Var[Zn] = 1

What is the shape of the distribution of Zn for large n?



Central Limit Theorem (CLT)

Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:
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X1 + · · · + 1 if yes,X ,n
i =M = Xn
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�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s
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• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2

fZ(z) =
1p
2⇡

e�
z2

2

Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2



Central Limit Theorem (CLT)

Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2

LECTURE 20 Usefulness

THE CENTRAL LIMIT THEOREM • universal; only means, variances matter

• accurate computational shortcut• Readings: Section 5.4
• justification of normal models

• , Xn i.i.d., finite variance 2X1, . . . �

• “Standardized” Sn = X1 + · · · + Xn:
What exactly does it say?

Sn E[Sn] Sn nE[X]
Zn =

�
=

�
⌦ • CDF of Zn converges to normal CDF

�Sn n�
– not a statement about convergence of

– E[Zn] = 0, var(Z ) = 1 PDFs or PMFsn

• Let Z be a standard normal r.v.
(zero mean, unit variance) Normal approximation

• • Treat Zn as if normalTheorem: For every c:
– also treat Sn as if normal

P(Zn ⇥ c)⇧ P(Z ⇥ c)

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

Can we use it when n is “moderate”?

• Yes, but no nice theorems to this e⇥ect

• Symmetry helps a lot
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CLT: Uniform Random Variables
Section 5.4. Operations 381 

FIGURE 4. Density of the sum of n independent uniform (0,1) variables. The graphs are all 

centered at the mean with a constant horizontal distance on the page representing one standard 

unit in each graph. This shows how rapidly the shape of the distribution becomes normal as n 
increases. 

n=l 

o 1 

n=2 

o 1 2 

n=3 

o 1 2 3 

n=4 

o 1 2 3 4 

n=5 

o 1 2 3 4 5 

Sn =
Pn

i=1 Xi

fXi(xi) = 1 if 0  xi  1, 0 otherwise.



CLT: Exponential Random Variables
1.0 

0.0 

o 

Section 4.2. Exponential and Gamma Distributions 287 

negative binomial (r, p) distribution of the number of trials until the rth success, as 
derived in Section 3.4. As the display shows, the formulae relating the gamma to the 
Poisson distribution are like similar formulae relating the negative binomial to the 
binomial distribution. 

FIGURE 2. Gamma density of the rth arrival for r = 1 to 10. Note how the distributions shift to 

the righl and flatten out as r increases, in keeping with the formulae r /.\ and Vi /.\ for the mean 

and SD. Due to the central limit theorem, the gamma (r,.\) distribution becomes asymptotically 

normal as r -+ 00. 

5 10 15 20 25 

time in multiples of 1/,\ 

fXi(x) = �e��x, x � 0. Var[Xi] =
1

�2
E[Xi] =

1

�

n=1

n=2
n=3

n=10

Sn =
Pn

i=1 Xi



Basic Central Limit Theorem

The Central Limit Theorem

Theorem (DeMoivre-Laplace-Liapouno↵)

Let x1, ...., xn be n independent, identically distributed random
variables with mean µ and variance �2. Let X̄n = 1

n

Pn
i=1 xi , then

P(a  X̄n � µ

�/
p
n

 b) ! �(b)� �(a)

as n ! 1,



Proof of Central Limit Theorem

Proof of the Central Limit Theorem

We need:

Lemma

Let Z1,Z2, .... be a sequence of random variables with distributions
Fn and moment generating functions Mn. Let Z be a random
variable with distribution F and moment generating function M. If
Mn(t) ! M(t) for all t then Fn ! F for all X in which F (X ) is
continuous.

By this lemma if Mn ! et
2/2 then Z has a N(0, 1) distribution.



Proof of Central Limit TheoremWe prove the theorem under the assumption that Mz exists and is
finite.
Assume first that x1, ..., xn such that for all i E [xi ] = 0, and
Var [xi ] = 1.
The moment generation function of xi/

p
n is

E [etxi/
p
n] = M(

tp
n
).

Thus,

E [et
Pn

i=1 xi/
p
n] = (M(

tp
n
))n.

Let L(t) = logM(t)

M(0) = 1, L(0) = 0, L0(0) = M0(0)
M(0) = E [xi ] = 0.

L00(0) =
M(0)M 00(0)� (M 0(0))2

(M(0))2
= E [x2i ] = 1



Proof of Central Limit Theorem
We need to show that that (M( tp

n
))n ! et

2/2 or

nL(t/
p
n) ! t2/2 as n ! 1.

lim
n!1

L(t/
p
n)

n�1
= lim

n!1

�L0(t/
p
n)n�3/2t

�2n�2

= lim
n!1

L0(t/
p
n)t

2n�1/2

= lim
n!1

�L00(t/
p
n)n�3/2t2

�2n�3/2

= lim
n!1

L00(t/
p
n)

t2

2

=
t2

2

Applying L’Hospital’s rule (twice).



More General Version of CLT

Theorem

Let x1, ...., xn be n independent random variable, with E [xi ] = µi

and Var [xi ] = �2
i . Assume that

1 For some value M, P(|xi | < M) = 1 for all i ;

2
Pn

i=1 �
2
i ! 1;

then,

P(a 
Pn

i=1(Xi � µi )qPn
i=1 �

2
i

 b) ! �(b)� �(a)

as n ! 1.



Pollster’s Problem: ChebyshevConvergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables
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LECTURE 20 Usefulness

THE CENTRAL LIMIT THEOREM • universal; only means, variances matter

• accurate computational shortcut• Readings: Section 5.4
• justification of normal models

• , Xn i.i.d., finite variance 2X1, . . . �

• “Standardized” Sn = X1 + · · · + Xn:
What exactly does it say?

Sn E[Sn] Sn nE[X]
Zn =

�
=

�
⌦ • CDF of Zn converges to normal CDF

�Sn n�
– not a statement about convergence of

– E[Zn] = 0, var(Z ) = 1 PDFs or PMFsn

• Let Z be a standard normal r.v.
(zero mean, unit variance) Normal approximation

• • Treat Zn as if normalTheorem: For every c:
– also treat Sn as if normal

P(Zn ⇥ c)⇧ P(Z ⇥ c)

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

Can we use it when n is “moderate”?

• Yes, but no nice theorems to this e⇥ect

• Symmetry helps a lot

0.14 0.1

n =4

0.12
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0.1

0.06
0.08
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0.04

The pollster’s problem using the CLT
0.04

0.02

0.02 f : fraction of population that “ . . .��
0 0
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•

ith (randomly selected) person polled:
0.25 0.035

n =32

•
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<
8

, if yes,
X =

0.15

i
0.02 0, if no.
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0

• Mn = (X1 + · · · + Xn)/n
0
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P( M f .01) ⇥ .05
0.12 0.0

| n
8

� | ⇤
n = 16

0.07
n = 8
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0.06 • Event of interest: |Mn � f | ⇤ .01
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�
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P(|Mn � f | ⇤ .01) ⌅ P(|Z| ⇤ .01
⌦

n/�)
0 0
0 1 2 3 4 5 6 7 30 40 50 60 70 80 90 100 ⇥ P(|Z| ⇤ .02

⌦
n)

n =2

1

Std(Xi) 
1

2

Find the smallest n such that
P (|Mn � f | � .01) = Pr(|Z| � .01

p
n

� )  0.05
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Pollster’s Problem: CLTTables of the Normal Distribution

Probability Content
from   -oo to Z

  Z | 0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09 

----+----------------------------------------------------------------------

0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 | 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 | 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 | 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 | 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 | 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 | 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

2.3 | 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 | 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 | 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

2.7 | 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 

2.8 | 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 | 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Find the smallest n such that
P (|Mn � f | � .01) = Pr(|Z| � .01

p
n

� )  0.05

Pr(|Z| � .01
p
n

�
)

= Pr(Z � � .01
p
n

�
) + Pr(Z � .01

p
n

�
)

= 2

✓
1� Pr(Z  .01

p
n

�
)

◆
 0.05

We need Pr(Z  .01
p
n

� ) � 0.975 ⇡ �(1.96)
.01

p
n

� � 1.96 ) n � 10000
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CLT: Binomial DistributionApply to binomial The 1/2 correction for binomial

approximation
• Fix p, where 0 < p < 1

• P(Sn ⇥ 21) = P(Sn < 22),
• Xi: Bernoulli(p) because Sn is integer

• Sn = X1 + · · · + Xn: Binomial(n, p) • Compromise: consider P(Sn ⇥ 21.5)

– mean np, variance np(1� p)

CDF of q
Sn � np

•
np(1 p)

�⇧ standard normal
�

Example
18 19 20 21 22

• n = 36, p = 0.5; find P(Sn ⇥ 21)

• Exact answer:

X21 ⇣36⌘ ✓1◆36
= 0.8785

k 2k=0

De Moivre–Laplace CLT (for binomial) Poisson vs. normal approximations of

the binomial• When the 1/2 correction is used, CLT
can also approximate the binomial p.m.f.
(not just the binomial CDF) • Poisson arrivals during unit interval equals:

sum of n (independent) Poisson arrivals
P(Sn = 19) = P(18.5 ⇥ Sn ⇥ 19.5) during n intervals of length 1/n

– Let n⇧ , apply CLT (??)
18.5 ⇥ Sn ⇥ 19.5 ⌃⌥

– Poisson=normal (????)
18.5� 18 Sn � 18 19.5� 18

3
⇥

3
⇥

3
⌃⌥

.17 ⇥ Z • Binomial( )
n ⇥ n, p0 0.5

– p fixed, n⇧ : normal
P(Sn = 19) ⌅ P(0.17 ⇥ Z ⇥ 0.5)

– np fixed, n⇧ , p⇧ 0: Poisson

= P(Z ⇥ 0.5)�P(Z ⇥ 0.17) • p = 1/100, n = 100: Poisson

= 0.6915� 0.5675 • p = 1/10, n = 500: normal

= 0.124

• Exact answer:
⇣36⌘ ✓1

1251
19 2

◆36
= 0.

2

Sec. 7.4 The Central Limit Theorem 15

k l k l

(a) (b)

Figure 7.1: The central limit approximation treats a binomial random variable
Sn as if it were normal with mean np and variance np(1− p). This figure shows a
binomial PMF together with the approximating normal PDF. (a) A first approx-
imation of a binomial probability P(k ≤ Sn ≤ !) is obtained by integrating the
area under the normal PDF from k to !, which is the shaded area in the figure.
(b) With the approach in (a), if we have k = !, the probability P(Sn = k) would
be approximated by zero. A potential remedy would be to use the normal prob-
ability between k − 1

2 and k + 1
2 to approximate P(Sn = k). By extending this

idea, P(k ≤ Sn ≤ !) can be approximated by using the area under the normal
PDF from k − 1

2 to ! + 1
2 , which corresponds to the shaded area.

De Moivre – Laplace Approximation to the Binomial

If Sn is a binomial random variable with parameters n and p, n is large, and
k, ! are nonnegative integers, then

P(k ≤ Sn ≤ !) ≈ Φ

(
! + 1

2 − np
√

np(1 − p)

)
− Φ

(
k − 1

2 − np
√

np(1 − p)

)
.

Example 7.11. Let Sn be a binomial random variable with parameters n = 36
and p = 0.5. An exact calculation yields

P(Sn ≤ 21) =

21∑

k=0

(
36
k

)
(0.5)36 = 0.8785.

The central limit approximation, without the above discussed refinement, yields

P(Sn ≤ 21) ≈ Φ

(
21 − np√
np(1 − p)

)
= Φ

(
21 − 18

3

)
= Φ(1) = 0.8413.

Using the proposed refinement, we have

P(Sn ≤ 21) ≈ Φ

(
21.5 − np√
np(1 − p)

)
= Φ

(
21.5 − 18

3

)
= Φ(1.17) = 0.879,
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Sn as if it were normal with mean np and variance np(1− p). This figure shows a
binomial PMF together with the approximating normal PDF. (a) A first approx-
imation of a binomial probability P(k ≤ Sn ≤ !) is obtained by integrating the
area under the normal PDF from k to !, which is the shaded area in the figure.
(b) With the approach in (a), if we have k = !, the probability P(Sn = k) would
be approximated by zero. A potential remedy would be to use the normal prob-
ability between k − 1

2 and k + 1
2 to approximate P(Sn = k). By extending this

idea, P(k ≤ Sn ≤ !) can be approximated by using the area under the normal
PDF from k − 1

2 to ! + 1
2 , which corresponds to the shaded area.

De Moivre – Laplace Approximation to the Binomial

If Sn is a binomial random variable with parameters n and p, n is large, and
k, ! are nonnegative integers, then

P(k ≤ Sn ≤ !) ≈ Φ

(
! + 1

2 − np
√

np(1 − p)

)
− Φ

(
k − 1

2 − np
√

np(1 − p)

)
.

Example 7.11. Let Sn be a binomial random variable with parameters n = 36
and p = 0.5. An exact calculation yields

P(Sn ≤ 21) =

21∑

k=0

(
36
k

)
(0.5)36 = 0.8785.

The central limit approximation, without the above discussed refinement, yields

P(Sn ≤ 21) ≈ Φ

(
21 − np√
np(1 − p)

)
= Φ

(
21 − 18

3

)
= Φ(1) = 0.8413.

Using the proposed refinement, we have

P(Sn ≤ 21) ≈ Φ

(
21.5 − np√
np(1 − p)

)
= Φ

(
21.5 − 18

3

)
= Φ(1.17) = 0.879,
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Apply to binomial The 1/2 correction for binomial

approximation
• Fix p, where 0 < p < 1

• P(Sn ⇥ 21) = P(Sn < 22),
• Xi: Bernoulli(p) because Sn is integer

• Sn = X1 + · · · + Xn: Binomial(n, p) • Compromise: consider P(Sn ⇥ 21.5)

– mean np, variance np(1� p)

CDF of q
Sn � np

•
np(1 p)

�⇧ standard normal
�

Example
18 19 20 21 22

• n = 36, p = 0.5; find P(Sn ⇥ 21)

• Exact answer:

X21 ⇣36⌘ ✓1◆36
= 0.8785

k 2k=0

De Moivre–Laplace CLT (for binomial) Poisson vs. normal approximations of

the binomial• When the 1/2 correction is used, CLT
can also approximate the binomial p.m.f.
(not just the binomial CDF) • Poisson arrivals during unit interval equals:

sum of n (independent) Poisson arrivals
P(Sn = 19) = P(18.5 ⇥ Sn ⇥ 19.5) during n intervals of length 1/n

– Let n⇧ , apply CLT (??)
18.5 ⇥ Sn ⇥ 19.5 ⌃⌥

– Poisson=normal (????)
18.5� 18 Sn � 18 19.5� 18

3
⇥

3
⇥

3
⌃⌥

.17 ⇥ Z • Binomial( )
n ⇥ n, p0 0.5

– p fixed, n⇧ : normal
P(Sn = 19) ⌅ P(0.17 ⇥ Z ⇥ 0.5)

– np fixed, n⇧ , p⇧ 0: Poisson

= P(Z ⇥ 0.5)�P(Z ⇥ 0.17) • p = 1/100, n = 100: Poisson

= 0.6915� 0.5675 • p = 1/10, n = 500: normal

= 0.124

• Exact answer:
⇣36⌘ ✓1

1251
19 2

◆36
= 0.

2
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CS145: Lecture 10 Outline
Ø Laws of Large Numbers
ØCentral Limit Theorem
ØFinite Sample Bounds -Advanced topic not covered in 

homeworks or exams! 



Large Deviation Bound – The Basic Idea
Bounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable, and
for all a > 0,

Pr(X � a)  E [X ]

a
.

Proof.

E [X ] =

X
iPr(X = i) � a

X

i�a

Pr(X = i) = aPr(X � a).

Example: What is the probability of getting more than
3N
4 heads in

N coin flips?  N/2
3N/4  2

3 .

Chebyshev’s Inequality

Theorem

[Chebyshev’s Inequality] For any random variable X , and any
a > 0,

Pr(|X � E [X ]| � a)  Var [X ]

a2
.

Proof.

Pr(|X � E [X ]| � a) = Pr((X � E [X ])
2 � a2)

By Markov inequality

Pr((X � E [X ])
2 � a2)  E [(X � E [X ])

2
]

a2

=
Var [X ]

a2

For any t > 0, Pr(X ≥ a) ≤ E[etx]
eta

Advanced topic not covered in homeworks or exams! 



Example – Chernoff Bound

<latexit sha1_base64="B+AJqVEX6PlwW9UffZcSYv2F6So="></latexit>

Theorem: Let X1, ..., Xn be independent random variables with

Pr(Xi = 1) = Pr(Xi = �1) =
1

2
.

Let X =
Pn

1 Xi. For any a > 0,

Pr(X � a)  e�
a2

2n .

de Moivre – Laplace approximation: For any k, such that |k� np|  a

✓
n

k

◆
pk(1� p)n�k ⇡ 1p

2⇡np(1� p)
e�

a2

2np(1�p)

Advanced topic not covered in homeworks or exams! 



Proof:
<latexit sha1_base64="pGOAcvYUIfRio5WJkw2aycxv1+I="></latexit>

For any t > 0, E[etXi ] = 1
2e

t + 1
2e

�t.

et = 1 + t+ t2

2! + · · ·+ ti

i! + . . .
and
e�t = 1� t+ t2

2! + · · ·+ (�1)i t
i

i! + . . .

E[etXi ] =
1

2
et +

1

2
e�t =

X

i�0

t2i

(2i)!


X

i�0

( t
2

2 )
i

i!
= et

2/2

E[etX ] =
nY

i=1

E[etXi ]  ent
2/2,

P r(X � a) = Pr(etX > eta)  E[etX ]

eta
 et

2n/2�ta.

Setting t = a/n yields Pr(X � a)  e�
a2

2n .

By symmetry Pr(|X| > a)  2e�
a2

2n .



Asymptotic vs Bounded Sample
The Central Limit Theorem

Theorem (DeMoivre-Laplace-Liapouno↵)

Let x1, ...., xn be n independent, identically distributed random
variables with mean µ and variance �2. Let X̄n = 1

n

Pn
i=1 xi , then

P(a  X̄n � µ

�/
p
n

 b) ! �(b)� �(a)

as n ! 1,

Hoe↵ding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoe↵ding’s Inequality)

Let X1, . . . ,Xn be independent random variables such that for all
1  i  n, E [Xi ] = µ and Pr(a  Xi  b) = 1. Then

Pr(|1
n

nX

i=1

Xi � µ| � ✏)  2e�2n✏2/(b�a)2

Lemma

(Hoe↵ding’s Lemma) Let X be a random variable such that
Pr(X 2 [a, b]) = 1 and E [X ] = 0. Then for every � > 0,

E[e�X ]  e�
2(a�b)2/8.

Advanced topic not covered in homeworks or exams! 



Comparison of Bounded Sample BoundsFor any random variable X and constant t > 0,

P (X � a) = P (etX � eta)  E[etx]

eta
Markov I
Let X1, . . . , Xn, independent, with Pr(X = �1) = Pr(X = 1) = 1/2.

E[Xi] = 0. V ar[Xi] = �[Xi] = 1

Y =
P

n

i=1 Xi, E[Y ] = 0, V ar[Y ] = n

Chebyshev’s Inequality: P (|Y | � a)  V ar[Y ]
a2

= n

a2

For a =
p
n log n, P (|Y | � a)  1

logn

Cherno↵ Bound: P (|Y | � a)  2e�
a2

2n

For a =
p
n log n, P (|Y | � a)  2p

n

Hoe↵ding’s Bound: P (|Y | � a)  2e�
2a2

4

For a =
p
n log n, P (|Y | � a)  2p

n

Let X1, . . . , Xn, independent, with Pr(X = �1) = Pr(X = 1) = 1/2.
E[Xi] = 0. V ar[Xi] = �[Xi] = 1

Xn =
P

n

i=1 Xi. E[Xn] = 0, V arXn = n

Chebyshev’s Inequality: P (|Xn| � a)  V ar[Xn]
a2

= n

a2

For a =
p
n log n, P (|Xn| � a)  1

logn

Cherno↵ Bound: P (|Xn| � a)  e�
a2

2n

For a =
p
n log n, P (|Xn| � a)  1p

n

Let X1, . . . , Xn, independent, with Pr(X = �1) = Pr(X = 1) = 1/2.
E[Xi] = 0. V ar[Xi] = �[Xi] = 1

Xn =
P

n

i=1 Xi. E[Xn] = 0, V arXn = n

Chebyshev’s Inequality: P (|Xn| � a)  V ar[Xn]
a2

= n

a2

For a =
p
n log n, P (|Xn| � a)  1

logn

Cherno↵ Bound: P (|Xn| � a)  e�
a2

2n

For a =
p
n log n, P (|Xn| � a)  1p

n

E[X] =
R1
0 x✓e�✓xdx = [�xe�✓x � 1

✓
e�✓x]1

x=0 =
1
✓

⇥ = smallest angel between the needle
and a parallel line, 0  ⇥  ⇡/2

1

Advanced topic not covered in homeworks or exams! 


