CS145: Probability & Computing

Lecture 10: Law of Large Numbers, Central Limit
Theorem, Finite Sample Bounds

Figure credits:
Bertsekas & Tsitsiklis, Introduction to Probability, 2008
Pitman, Probability, 1999
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Convergence in Probability

Convergence in Probability

Let Y7,Ya2,... be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Y,, converges
to a in probability, if for every € > 0, we have

lim P(|Y, —a| >¢€) =0.

n—oo

“(almost all) of the PMF/PDF of Y, eventually gets concentrated (arbitrarily) close to a”

Convergence of a Deterministic Sequence

Let ai,a9,... be a sequence of real numbers, and let a be another real
number. We say that the sequence a,, converges to a, or lim, .~ a, = a, if
for every € > 0 there exists some ng such that

lan, — a] <, for all n > nog.

“a, eventually gets and stays (arbitrarily) close to a”



Convergence in Probability

Convergence in Probability

Let Y7,Ya2,... be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Y;, converges
to a in probability, if for every € > 0, we have

lim P(|Y, —a| >¢€) =0.

n—oo

Example:

X, is a sequence of independent uniform variables on [0,1] and Y,, = min{X1,..., X}

» We expect that Y,, converges to zero. To verify:



The Weak Law of Large Numbers

Theorem

Let x1, ..., x, be independent, identically distributed random
variables with finite mean, E[x;| = p. For any ¢ > 0

1 n
Prob —g i—pl =€ —0
ro{\nilx wl > €}

as h — OQ.



The (Weak) Law of Large Numbers

X1, Xo,...i.i.d. M X1+ -+ Xn  sample mean or
finite mean p and variance o2 " n empirical mean
E[Mn] _ E[Xl]—f——}—E[Xn] _ % _ .

n n

Var[Mn] _ var(X1 4 -+ Xp) _ var(X1) + - -+ + var(X,,) _ no? _ 0_2.

» Chebyshev’s inequality bounds distance between the
true mean and the “empirical” or “sample” mean:

Var(Mp) o

P(|M, —ul>e) < = —
(l n :u|_)_ 62 ’I’L€2

» The empirical mean converges to the true mean in probability
lim P(|M,, —u|>¢€¢) =0
n— oo

» True even if variance not finite, but proof more challenging.



Why is it a “Weak” Law of Large Numbers?

Convergence in Probability

Let Y7,Ya2,... be a sequence of random variables (not necessarily indepen-
dent), and let a be a real number. We say that the sequence Y;, converges
to a in probability, if for every € > 0, we have

lim P(|Y, —a| >¢€) =0.

n—oo

Example:
Lo U fof Y, For every € > 0, lim P(|Y,, — 0| >¢) =0.
n— oo
But even though Y, converges in probability,
! /i n occasionally it takes on very large values:
| -
0 n

E|Y,] =1 for all n.



The Strong Law of Large Numbers

Let x1, ..., x, be independent, identically distributed random
variables with finite mean, E|[x;| = p.

Prob{ lim — Zx, =u}t=1.

n—oo N

» This stronger (but more technically challenging) notion of convergence
rules out cases like the previous example

» For many practical scenarios, both forms of convergence hold, but
convergence in probability is easier to show

» We focus exclusively on the weak law in this course
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Convergence to the Mean

Let X1,...,X, with Pr(X =-1)=Pr(X =1)=1/2.

E[X,] = E[Y,] = E[Z,] =0

Var| X, =n
. J— n .
Sum: X, => ., X; Var[Yn] —1
m X n X,
Sum/sqrt(n): Y, = Zl\:/lﬁ = U[zz::’;?:ll Xi] VCL?“[Zn] = 1/7?,
Sum/n: Z, = (>, X;)/n
4 30 — sum
—— sum/sqrt(n)
—— sum/n
27 20 4
0+ e 10 -
@
-2 - 0 1
= | . -10 -
—— sum/sqrt(n)
—— sum/n
6 2'0 4b Gb 8'0 160 (') 260 460 660 860 10I00
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Scaling of the Sample Mean

» Sequence of independent, identically distributed random variables:
X1, Xo,...,Xn  E[Xj]=p  Var[X;]=0° < oo
» The variance of their sum increases with n:

Sn=>1X; E[S,] =nu  Var[S,] = no?
» Law of Large Numbers: variance of the empirical mean decreases with n:

M, = 1Sn E[Mn] — W V&I’[Mn] = %

n

» Standardized sum: transform so mean and variance constant for all n

7, = i;;j[[gz]] — S%Z“ E[Z,]=0 Var[Z,] =1

What is the shape of the distribution of Z, for large n?




Central Limit Theorem (CLT)

e ‘“Standardized” Sp = X1+ -+ Xn:

L =
" oS, Vno

— Z€ero mean

— unit variance

e Let Z be a standard normal r.v.
(zero mean, unit variance)

fz(z) = ez

e T heorem: For every c:

P(Zn<c) = P(Z<c)

e P(Z < ¢) is the standard normal CDF,
®d(c), available from the normal tables




Central Limit Theorem (CLT)

Usefulness

_ _ e T heorem: For every c:
e universal; only means, variances matter

e accurate computational shortcut P(Z,<c¢c)—P(Z<c)
e justification of normal models

What exactly does it say? e P(Z < ¢) is the standard normal CDF,

e CDF of Z, converges to normal CDF ®(c), available from the normal tables

— not a statement about convergence of
PDFs or PMFs

e Treat Z, as if normal 0l

— also treat S, as if normal

Can we use it when n is “moderate” ?
e Yes, but no nice theorems to this effect o4
e Symmetry helps a lot 02}




CLT: Uniform Random Variables

1,0 otherwise.




Probability density in multiples of A

1.0

0.0

CLT: Exponential Random Variables

fx.(x) =Xe ™ x>0, BlX]=y VarlX;

10 15

time in multiples of 1/A

)\2



Basic Central Limit Theorem

Theorem (DeMoivre-Laplace-Liapounoff)

Let x1,....,x, be n independent, identically distributed random
variables with mean . and variance o, Let X, = %27—1 X;, then

O/\F<b)%<b(b) d(a)

as n — oo,



Proof of Central Limit Theorem

We need:
Let /1, 2>, .... be a sequence of random variables with distributions

F., and moment generating functions M,. Let Z be a random

variable with distribution F and moment generating function M. If
M,(t) — M(t) for all t then F, — F for all X in which F(X) is
continuous.

By this lemma if M, — e /2 then Z has a N(0, 1) distribution.



Proof of Central Limit Theorem

Assume first that xi, ..., x, such that for all i E[x;] =0, and
Var[x;] = 1.
The moment generation function of x;/\/n is

t

etXi/Vn) — ).

E ] M(ﬁ)

Thus, .
E[et =] = (M(72)"

Let L(t) = log M(t)
M(0) =1, L(0) =0, L'(0) = MO _ F[x] = 0.




Proof of Central Limit Theorem

We need to show that that (M/(
nL(t/\/n) — t?/2 as n — oo.

%)) — et’/2 or

Le/m) =LA

”HOO n—1 n—00 —2n—2

_L//(t/\/’)n—3/2t2

- nll—U;o —2n—3/2
o t2

= Jim L(t/v/n)
t2

2

Applying L'Hospital’s rule (twice).



More General Version of CLT

Let x1,....,x, be n independent random variable, with E|[x;| = p;
and Var[x;| = o?. Assume that

@ For some value M, P(|x;| < M) =1 for all i;
@ 0 = o0

then,

as n — oQ.



Pollster’s Problem: Chebyshev

f: fraction of population that “

1th (randomly selected) person polled:

1, if
S P
0, if no.

e Use Chebyshev’s inequality:

o My=(X14+ -+ Xn)/n
fraction of “yes” in our sample

e Goal: 95% confidence of <1% error

P(|My — f| > .01) < .05

For any binary variable,

2
O'Mn
P(Mn — f12.01) < 0155 1
B 0% _ 1 Va,r(Xz) S a9
~ n(0.01)2 ~ 4n(0.01)2 2

e If n = 50,000,
then P(|M, — f| > .01) < .05
(conservative)



Pollster s Problem: CLT

e f: fraction of population that

e ith (randomly selected) person polled:

1,

e Event of interest: |M, —

if yes,
if no.

fI> .01

‘X1+"'+Xn_nf

n

X1+ + Xn—nf
Vno

01y/n

o

Find the smallest n such that
P(|M,, — f| > .01)

= Pr(|Z] > 22") < 0.05

o My,=(X1+- -I—Xn)/n
fraction of “yes” in our sample

e Goal: 95% confidence of <1% error

P(|My — f| > .01) < .05

For any binary variable,

1
V&I’(Xi) S 2—2

Std(X;

Q

=

Mli—\



Pollster’s Problem: CLT

/ Probability Content
S . from -ootoZ

Find the smallest n such that

Ofl\/f__ z ] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
. n
P(‘Mn - f| > 01) — P?"(‘Z| > —) < 005 0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
- - g - 0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
()]_\//;i 0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
. 0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
Pr(’Z| —) 0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
— 0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
g 1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
()]_\//;i ()]'\V/;i 1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
. P Z > N P Z > . 1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
— T I — ‘l— T ——— 1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
- - o 1.5 | 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
,()]_qv/c;i 1.8 | 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
— 2 1 _ P'I"(Z < ) < O 05 1.9 | 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
iy = . 2.0 | 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
[0} 2.1 | 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 | 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 | 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 | 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
‘()]7\/;{ 2.5 | 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
Vve need PT(Z < —) > 0975 ~ @(196) 2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
— o — 2.7 | 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
Oﬁl\/ﬂ;i 2.8 | 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
. 2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
—0' Z 196 = n Z 10000 3.0 | 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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How the Poll Was Conducted

The latest New York Times/CBS
News poll is based on telephone in-
terviews conducted Feb. 24-27 with
984 adults throughout the United
States.

The sample of land-line telephone
exchanges called was randomly se-
lected by a computer from a complete
list of more than 69,000 active resi-
dential exchanges across' the country.
The exchanges were chosen to ensure
that each region of the country was
represented in proportion te its pop-
ulation. ‘

Within each exchange, random dig-
its were added to form a complete
telephone number, thus permitting ac-
cess to listed and unlisted numbers
alike. Within each household, one
adult was designated by a random
procedure to be the respondent for the
survey.

To increase coverage, this land-line
sample was supplemented by re-
spondents reached through random
dialing of cellphone numbers. The two
samples were then combined. ;

Interviewers made multiple efforts
to reach every phone number in the
survey, calling back unanswered
numbers on different days at different
times of both day and evening.

The combined results have been

weighted to adjust for variation in the
sample relating to geographic region,
sex, race, Hispanic origin, marital sta-
tus, age, education and number of
adults in the household. In addition,
the land-line respondents were
weighted to take account of the num-
ber of telephone lines into the resi-
dence, while the cellphone respond-
ents were weighted according to
whether they were reachable only by

In theory, in 19 cases out of 20, over-
all results based on such samples will

«differ by no more than three percent-

age points in either direction from
what would have been obtained by
seeking to interview all American
adults. For smaller subgroups, the
margin of sampling error is larger.
Shifts in results between polls over
time also have a larger sampling er-
101,

In addition to sampling error, the
practical difficulties of conducting any
survey of public opinion may intro-
duce other sources of error into the
poll. Variation in the wording and or-
der of questions, for example, may
lead to somewhat different results.

Complete questions and results are
available at nytimes.com/polls.




Probability

CLT: Binomial Distribution

e FiXxp, where0<p<1

e X;: Bernoulli(p)

o S, =X1+4+ -4+ Xn: Binomial(n,p)

— mean np, variance np(1l — p)

Sn —np

vnp(l —p)

e CDF of

o
w

o
N
[

o
N

o
-
wn

o
-

o
o
wn

o

II|‘|||‘||l-]|ll|||””|||||I|l.
10 20 30

40
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standard normal

— n=5p=0.5
_n=20 p=0.5
— n=50 p=0.5

k1 k1

De Moivre — Laplace Approximation to the Binomial

If S, is a binomial random variable with parameters n and p, n is large, and
k, ¢ are nonnegative integers, then

(+1_pn k—L_
P(kgSngl)z<I><+2 ”p><1>(2 ”7’>,

np(1 —p) np(1 —p)

because Sj, is integer

e Compromise: consider P(S, < 21.5)




CLT: Binomial Distribution

e When the 1/2 correction is used, CLT
can also approximate the binomial p.m.f.
(not just the binomial CDF)

P(S, = 19) = P(18.5 < S, < 19.5)
n=36p=0.5
185< S, <195 <+

185—-18 _S,—18 _19.5-—18
< <
3 - 3 ~- 3
0.17< Z, < 0.5

<~

Q

P(S, = 19) P(0.17 < Z < 0.5)
= P(Z<0.5)-P(Z<0.17)
= 0.6915 — 0.5675

= 0.124

e EXxact answer:

36y /1\3°
(19) <2> =0.1251

k1 kK 1

De Moivre — Laplace Approximation to the Binomial

If S, is a binomial random variable with parameters n and p, n is large, and
k, ¢ are nonnegative integers, then

[ E—L_n
P(kgSngl)zCI><+2 7”’)@(2 “7’>,

np(1 —p) np(1 —p)

because Sj, is integer

e Compromise: consider P(S, < 21.5)
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homeworks or exams!



Large Deviation Bound — The Basic Idea

Advanced topic not covered in homeworks or exams!

[Markov Inequality] For any non-negative random variable, and
for all a > 0,

E[X]
< .

Pr(X > a)

d

[Chebyshev’s Inequality] For any random variable X, and any
a>0,

Var[X]

Pr(|X — E[X]| > a) <

For any t > 0, Pr(X > a) < Bl

_ eta



Example — Chernoff Bound

Advanced topic not covered in homeworks or exams!

Theorem: Let X, ..., X,, be independent random variables with

1

Let X = > | X;. For any a > 0,

a2

Pr(X >a)<e 2.

de Moivre — Laplace approximation: For any k, such that |k —np| < a

—
PPl —p)" Tk~ e Zn(i=p
k V2mnp(1 — p)




For anyt>0 Elet

e—l—l—t—|—2,+ +%+---
and ,
e—tzl_t+%+...+(—1)lt.——l—...

.
[E—

Pr(X > a) = Pr(e™ > ') <

Setting ¢t = a/n yields Pr(X > a) < e 2.
By symmetry Pr(|X| > a) < 2e~ =S



Asymptotic vs Bounded Sample

Advanced topic not covered in homeworks or exams!

Theorem (DeMoivre-Laplace-Liapounoff)

Let x1,...., x, be n independent, identica//y distributed random
var/ab/es with mean 1. and variance o2, Let X L 27:1 x;, then

Xn —

Aoz =

< b) = ©(b) — @(a)

as n — oo,

Theorem (Hoeffding's Inequality)

Let Xi,...,X, be independent random variables such that for all
1<i<n, E[X;]=p and Pr(a < X; < b)=1. Then

1 n
P 30X — i > ) < 2e720/(b=)



Comparison of Bounded Sample Bounds

Advanced topic not covered in homeworks or exams!

Let Xi,...,X,, independent, with Pr(X = —-1)=Pr(X =1) =1/2.

Y=>",X, E[Y] =0, Var[Y] =n
Chebyshev’s Inequality: P(|Y|>a) < V“(;[Y] =2
For a = v/nlogn, P(|Y|>a) < lo;n

Chernoff Bound: P(|Y| > a) <

_ﬁ
2n

[\D

For a = y/nlogn, P(|Y]| > a) < %
Hoeffding’s Bound: P(|Y| > ) < 2¢ -2
For a = /nlogn, P(|Y|>a) < ==



