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CS145: Lecture 9 Outline
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ØGaussian (Normal) Distributions
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Figure 3.6: CDFs of some discrete random variables. The CDF is related to the
PMF through the formula

FX(x) = P(X ≤ x) =
∑

k≤x

pX(k),

and has a staircase form, with jumps occurring at the values of positive probability
mass. Note that at the points where a jump occurs, the value of FX is the larger
of the two corresponding values (i.e., FX is continuous from the right).

Properties of a CDF

The CDF FX of a random variable X is defined by

FX(x) = P(X ≤ x), for all x,

and has the following properties.

• FX is monotonically nondecreasing:

if x ≤ y, then FX(x) ≤ FX(y).

• FX(x) tends to 0 as x → −∞, and to 1 as x → ∞.

• If X is discrete, then FX has a piecewise constant and staircase-like
form.

• If X is continuous, then FX has a continuously varying form.

Ø Recall probability mass function (PMF):
pX(x) = P (X = x)

Ø The cumulative distribution function (CDF) 
is the cumulative sum of the PMF:

FX(x) = P (X  x) =
X

kx

pX(k)

Ø The CDF equals 0 below the range of X, 1 above the range of X,
and is monotonically increasing: FX(x2) � FX(x1) if x2 > x1.

Ø The CDF allows quick computation of the probability of intervals: 

P (x1 < X  x2) = FX(x2)� FX(x1)



Examples of Discrete PMFs & CDFs
Uniform Geometric Binomial

n = b� a+ 1



Continuous Random Variables
Ø For any discrete random variable, the CDF is 

discontinuous and piecewise constant
Ø If the CDF is continuous*, we have a continuous 

random variable: 

n = b� a+ 1

LECTURE 8 Continuous r.v.’s and pdf’s

• A continuous r.v. is described by a• Readings: Sections 3.1-3.3
probability density function fX

Lecture outline
f (x)X

S a m p l e  S p a c e

• Probability density functions

• Cumulative distribution functions
a b x Event {a < X < b }

• Normal random variables

P(a ⇥ X ⇥ b) =
⌅ b

fX(x) dx
a

⌅ ⇧
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�⇧
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⌅ x+�

fX(s) ds
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B
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�⇧

x
E[g(X)]

⌅ ⇧
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⌅
fX(t) dt�⇧ �⇧

⇧
• var( ) = 2 =

⌅
( [ ])2X ⇤ x E X fX(x)X � dx

�⇧ f (x CDFX  )

• Continuous Uniform r.v.

f  (x )X

a b x a b x 

• Also for discrete r.v.’s:

a b x FX(x) = P(X ⇥ x) =
⇤

pX(k)
k⇥x

• fX(x) = a ⇥ x ⇥ b
3/6

2/6

• E[X] = 1/6

⌅ b � + ⇥2 1 ( � )2a x 

• 2 a b b 4

⇤ = x
a

�
1 2 4 x 1 2

dx =X 2 b� a 12

1

FX(x)

0  FX(x)  1

lim
x!�1

FX(x) = 0 lim
x!+1

FX(x) = 1

FX(x2) � FX(x1) if x2 > x1.

Ø The probability that continuous random variable 
X lies in the interval (x1,x2] is then
P (x1 < X  x2) = FX(x2)� FX(x1)

0

1



Continuous CDFs Define Probability Laws
Continuous random variables satisfy the axioms of probability.

LECTURE 8 Continuous r.v.’s and pdf’s

• A continuous r.v. is described by a• Readings: Sections 3.1-3.3
probability density function fX
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Ø The probability that continuous random variable X lies in interval (x1,x2] is

P (x1 < X  x2) = FX(x2)� FX(x1)

Non-negativity:
P (x1 < X  x2) � 0 for any x1, x2.

Normalization:

Countable Additivity: If x1 < x2 < x3,
P (x1 < X  x3) = P (x1 < X  x2) + P (x2 < X  x3)

FX(x3)� FX(x1) = (FX(x2)� FX(x1)) + (FX(x3)� FX(x2))

P (�1 < X < +1) = FX(+1)� FX(�1) = 1� 0 = 1.
0

1



Borel Set of Intervals

We can assume sample space ⌦ = (�1,1).
The CDF assigns a probability to each interval (�1, x].
Since Pr(⌦) = 1, it also defines probability to each interval [x,1)
Additivity defines probability for any interval [x1, x2]
Countable additivity defines probabilities for any countable union

and intersection of intervals.
<latexit sha1_base64="5t21IBa12eO2JF+Au5v0CSYT0JY="></latexit>



Probability Density Function (PDF)
Ø If the CDF is differentiable, its first derivative is 

called the probability density function (PDF):
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probability density function fX
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1
fX(x) =

dFX(x)

dx
= F 0

X(x)

Ø By the fundamental theorem of calculus:Z x2

x1

fX(x) dx = FX(x2)� FX(x1) = P (x1 < X  x2)
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Ø For any valid PDF: fX(x) � 0Z +1

�1
fX(x) dx = 1

0 
Z x2

x1

fX(x) dx  1



Continuous Uniform Probability Densities
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The Uniform Distribution

The probability distribution function of the uniform distribution in

the interval [a, b) is

F (x) =

8
<

:

0 if x  a
x�a
b�a if a  x  b
1 if x � b

The density function is

f (x) =

8
<

:

0 if x < a
1

b�a if a  x  b
0 if x > b

The Uniform Distribution

The probability distribution function of the uniform distribution in

the interval [a, b) is

F (x) =

8
<

:

0 if x  a
x�a
b�a if a  x  b
1 if x � b

The density function is

f (x) =

8
<

:

0 if x < a
1

b�a if a  x  b
0 if x > b

fX(x) =
dFX(x)

dx
FX(x) =

Z x

�1
fX(x) dx

Ø Relationship between CDF and PDF:

Ø For a continuous uniform random variable, an 
interval’s probability is proportional to length:

If a  x1 < x2  b,

P (x1 < X  x2) =
x2 � x1

b� a

Ø Note that it is possible that fX(x) > 1

If a = 0 and b = 0.1, then
1

b� a
= 10.
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Sec. 3.1 Continuous Random Variables and PDFs 3

Sample Space

x 

PDF fX(x)

Event {a < X < b} a b

Figure 3.1: Illustration of a PDF. The probability that X takes value in an

interval [a, b] is
∫ b

a
fX(x) dx, which is the shaded area in the figure.

Graphically, this means that the entire area under the graph of the PDF must
be equal to 1.

To interpret the PDF, note that for an interval [x, x + δ] with very small
length δ, we have

P
(
[x, x + δ]

)
=

∫ x+δ

x
fX(t) dt ≈ fX(x) · δ,

so we can view fX(x) as the “probability mass per unit length” near x (cf.
Fig. 3.2). It is important to realize that even though a PDF is used to calculate
event probabilities, fX(x) is not the probability of any particular event. In
particular, it is not restricted to be less than or equal to one.

x 

PDF fX(x )

δ

x  + δ 

Figure 3.2: Interpretation of the PDF
fX(x) as “probability mass per unit length”
around x. If δ is very small, the prob-
ability that X takes value in the inter-
val [x, x + δ] is the shaded area in the
figure, which is approximately equal to
fX(x) · δ.

Example 3.1. Continuous Uniform Random Variable. A gambler spins
a wheel of fortune, continuously calibrated between 0 and 1, and observes the
resulting number. Assuming that all subintervals of [0,1] of the same length are
equally likely, this experiment can be modeled in terms a random variable X with
PDF

fX(x) =
{

c if 0 ≤ x ≤ 1,
0 otherwise,

fX(x) � 0

Observation:  For a continuous random variable, the probability of 
observing X=x for any particular  real number x equals zero:

P (X = x) = lim
�!0

P (x� � < X  x) = lim
�!0

Z x

x��
fX(s) ds = 0

As floating point precision increases, probability of any particular number decreases.
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Sec. 3.1 Continuous Random Variables and PDFs 3

Sample Space

x 

PDF fX(x)

Event {a < X < b} a b

Figure 3.1: Illustration of a PDF. The probability that X takes value in an

interval [a, b] is
∫ b

a
fX(x) dx, which is the shaded area in the figure.

Graphically, this means that the entire area under the graph of the PDF must
be equal to 1.

To interpret the PDF, note that for an interval [x, x + δ] with very small
length δ, we have

P
(
[x, x + δ]

)
=

∫ x+δ

x
fX(t) dt ≈ fX(x) · δ,

so we can view fX(x) as the “probability mass per unit length” near x (cf.
Fig. 3.2). It is important to realize that even though a PDF is used to calculate
event probabilities, fX(x) is not the probability of any particular event. In
particular, it is not restricted to be less than or equal to one.

x 

PDF fX(x )

δ

x  + δ 

Figure 3.2: Interpretation of the PDF
fX(x) as “probability mass per unit length”
around x. If δ is very small, the prob-
ability that X takes value in the inter-
val [x, x + δ] is the shaded area in the
figure, which is approximately equal to
fX(x) · δ.

Example 3.1. Continuous Uniform Random Variable. A gambler spins
a wheel of fortune, continuously calibrated between 0 and 1, and observes the
resulting number. Assuming that all subintervals of [0,1] of the same length are
equally likely, this experiment can be modeled in terms a random variable X with
PDF

fX(x) =
{

c if 0 ≤ x ≤ 1,
0 otherwise,

fX(x) � 0

Observation: A PDF may take on arbitrarily large positive values:
6 General Random Variables Chap. 3

Example 3.3. A PDF can be arbitrarily large. Consider a random variable
X with PDF

fX(x) =

{
1

2
√

x
if 0 < x ≤ 1,

0 otherwise.

Even though fX(x) becomes infinitely large as x approaches zero, this is still a valid
PDF, because ∫ ∞

−∞
fX(x) dx =

∫ 1

0

1

2
√

x
dx =

√
x
∣∣∣
1

0
= 1.

Summary of PDF Properties

Let X be a continuous random variable with PDF fX .

• fX(x) ≥ 0 for all x.

•
∫ ∞
−∞ fX(x) dx = 1.

• If δ is very small, then P
(
[x, x + δ]

)
≈ fX(x) · δ.

• For any subset B of the real line,

P(X ∈ B) =
∫

B
fX(x) dx.

Expectation

The expected value or mean of a continuous random variable X is defined
by†

E[X] =
∫ ∞

−∞
xfX(x) dx.

† One has to deal with the possibility that the integral
∫ ∞
−∞ xfX(x) dx is infi-

nite or undefined. More concretely, we will say that the expectation is well-defined if∫ ∞
−∞ |x|fX(x) dx < ∞. In that case, it is known that the integral

∫ ∞
−∞ xfX(x) dx takes

a finite and unambiguous value.
For an example where the expectation is not well-defined, consider a random vari-

able X with PDF fX(x) = c/(1 + x2), where c is a constant chosen to enforce the nor-
malization condition. The expression |x|fX(x) is approximately the same as 1/|x| when
|x| is large. Using the fact

∫ ∞
1

(1/x) dx = ∞, one can show that
∫ ∞
−∞ |x|fX(x) dx = ∞.

Thus, E[X] is left undefined, despite the symmetry of the PDF around zero.
Throughout this book, in lack of an indication to the contrary, we implicitly

assume that the expected value of the random variables of interest is well-defined.
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Expectations of Continuous Variables
Ø The expectation or expected value of a continuous random variable is:

Ø The expected value of a function of a continuous random variable:

E[X] =

Z +1

�1
xfX(x) dx

E[g(X)] =

Z +1

�1
g(x)fX(x) dx

Ø The variance of a continuous random variable:

Var[X] = E[X2]� E[X]2 = E[(X � E[X])2] =

Z +1

�1
(x� E[X])2fX(x) dx

Ø Intuition:  Create a discrete variable by quantizing X and compute discrete 
expectation.  As number of discrete values grows, sum approaches integral. 



Moments of Uniform Distribution

The Uniform Distribution

The probability distribution function of the uniform distribution in

the interval [a, b) is

F (x) =

8
<

:

0 if x  a
x�a
b�a if a  x  b
1 if x � b

The density function is

f (x) =

8
<

:

0 if x < a
1

b�a if a  x  b
0 if x > b

The expectation of X is

E[X ] =

Z b

a

x

b � a
dx =

b2 � a2

2(b � a)
=

b + a

2
,

and the second moment is

E[X 2
] =

Z b

a

x2

b � a
dx =

b3 � a3

3(b � a)
=

b2 + ab + a2

3
.

The variance is computed by

Var[X ] = E[X 2
]� (E[X ])

2
=

b2 + ab + a2

3
� (b + a)2

4

=
(b � a)2

12
.

The expectation of X is
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a

x
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2
,

and the second moment is

E[X 2
] =

Z b

a

x2

b � a
dx =

b3 � a3

3(b � a)
=

b2 + ab + a2

3
.

The variance is computed by

Var[X ] = E[X 2
]� (E[X ])

2
=

b2 + ab + a2

3
� (b + a)2

4

=
(b � a)2

12
.

LECTURE 8 Continuous r.v.’s and pdf’s

• A continuous r.v. is described by a• Readings: Sections 3.1-3.3
probability density function fX

Lecture outline
f (x)X

S a m p l e  S p a c e

• Probability density functions

• Cumulative distribution functions
a b x Event {a < X < b }

• Normal random variables

P(a ⇥ X ⇥ b) =
⌅ b

fX(x) dx
a

⌅ ⇧
fX(x) dx = 1

�⇧

P(x ⇥ X ⇥ x + �) =
⌅ x+�

fX(s) ds
x

⌅ fX(x) · �

P(X ⌃ B) =
⌅

fX(x) dx, for “nice” sets B
B

Means and variances Cumulative distribution function

• E[X] =
⌅ ⇧ (CDF)

xfX(x) dx
�⇧

x
E[g(X)]

⌅ ⇧
• = g(x)fX(x) dx FX(x) = P(X ⇥ x) =

⌅
fX(t) dt�⇧ �⇧

⇧
• var( ) = 2 =

⌅
( [ ])2X ⇤ x E X fX(x)X � dx

�⇧ f (x CDFX  )

• Continuous Uniform r.v.

f  (x )X

a b x a b x 

• Also for discrete r.v.’s:

a b x FX(x) = P(X ⇥ x) =
⇤

pX(k)
k⇥x

• fX(x) = a ⇥ x ⇥ b
3/6

2/6

• E[X] = 1/6

⌅ b � + ⇥2 1 ( � )2a x 

• 2 a b b 4

⇤ = x
a

�
1 2 4 x 1 2

dx =X 2 b� a 12

1

1

b� a



Conditioning a Uniform Distribution
Lemma

Let X be a uniform random variable on [a, b]. Then for c  d

Pr(X  c |X  d) =
c � a

d � a
.

That is, conditioned on the fact that X  d , X is uniform on [a, d ].

Proof.

Pr(X  c |X  d) =
Pr((X  c) \ (X  d))

Pr(X  d)

=
Pr(X  c)

Pr(X  d)

=
c � a

d � a
.

Lemma

Let X be a uniform random variable on [a, b]. Then for c  d

Pr(X  c |X  d) =
c � a

d � a
.

That is, conditioned on the fact that X  d , X is uniform on [a, d ].

Proof.

Pr(X  c |X  d) =
Pr((X  c) \ (X  d))

Pr(X  d)

=
Pr(X  c)

Pr(X  d)

=
c � a

d � a
.



Exponential DistributionThe Exponential Distribution

Definition

The exponential distribution with parameter ✓:

F (x) =

⇢
1� e�✓x

for x � 0

0 otherwise.

f (x) = ✓e�✓x , for x � 0.

E [X ] =

Z 1

0
t✓e�✓tdt =

1

✓
.

E [X 2
] =

Z 1

0
t2✓e�✓tdt =

2

✓2
.

Var[X ] = E[X 2
]� (E[X ])

2
=

1

✓2
.



From Geometric to ExponentialSec. 3.2 Cumulative Distribution Functions 15

1

0 x
Geometric CDF 

1 - (1 - p)n with p = 1 - e -λδ

δ

nδ

Exponential CDF 1 - e -λx

Figure 3.8: Relation of the geometric and the exponential CDFs. We have

F exp(nδ) = F geo(n), n = 1, 2, . . . ,

if the interval δ is such that e−λδ = 1− p. As δ approaches 0, the exponential
random variable can be interpreted as the “limit” of the geometric.

λ of this exponential is such that e−λδ = 1 − p or λ = − ln(1 − p)/δ. This relation
between the geometric and the exponential random variables will play an important
role in the theory of the Bernoulli and Poisson stochastic processes in Chapter 5.

Sometimes, in order to calculate the PMF or PDF of a discrete or contin-
uous random variable, respectively, it is more convenient to first calculate the
CDF and then use the preceding relations. The systematic use of this approach
for the case of a continuous random variable will be discussed in Section 3.6.
The following is a discrete example.

Example 3.7. The Maximum of Several Random Variables. You are
allowed to take a certain test three times, and your final score will be the maximum
of the test scores. Thus,

X = max{X1, X2, X3},

where X1, X2, X3 are the three test scores and X is the final score. Assume that
your score in each test takes one of the values from 1 to 10 with equal probability
1/10, independently of the scores in other tests. What is the PMF pX of the final
score?

We calculate the PMF indirectly. We first compute the CDF FX(k) and then
obtain the PMF as

pX(k) = FX(k) − FX(k − 1), k = 1, . . . , 10.

Ø With the matched exponential and geometric parameters given above:
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Figure 3.8: Relation of the geometric and the exponential CDFs. We have

F exp(nδ) = F geo(n), n = 1, 2, . . . ,

if the interval δ is such that e−λδ = 1− p. As δ approaches 0, the exponential
random variable can be interpreted as the “limit” of the geometric.

λ of this exponential is such that e−λδ = 1 − p or λ = − ln(1 − p)/δ. This relation
between the geometric and the exponential random variables will play an important
role in the theory of the Bernoulli and Poisson stochastic processes in Chapter 5.

Sometimes, in order to calculate the PMF or PDF of a discrete or contin-
uous random variable, respectively, it is more convenient to first calculate the
CDF and then use the preceding relations. The systematic use of this approach
for the case of a continuous random variable will be discussed in Section 3.6.
The following is a discrete example.

Example 3.7. The Maximum of Several Random Variables. You are
allowed to take a certain test three times, and your final score will be the maximum
of the test scores. Thus,

X = max{X1, X2, X3},

where X1, X2, X3 are the three test scores and X is the final score. Assume that
your score in each test takes one of the values from 1 to 10 with equal probability
1/10, independently of the scores in other tests. What is the PMF pX of the final
score?

We calculate the PMF indirectly. We first compute the CDF FX(k) and then
obtain the PMF as

pX(k) = FX(k) − FX(k − 1), k = 1, . . . , 10.

Ø Interpretation:  If we very quickly toss a coin (every                  seconds)
toss a coin with a very small probability of coming up heads,
the distribution of the time until the first head is approximately exponential

� ⌧ 1



Exponential Distributions are MemorylessMemoryless property

Lemma

For an exponential random variable with parameter ✓,

Pr(X > s + t | X > t) = Pr(X > s)

Proof.

Pr(X > s + t | X > t) =
Pr(X > s + t)

Pr(X > t)

=
1� Pr(X  s + t)

1� Pr(X  t)

=
e�✓(s+t)

e�✓t

= e�✓s
= Pr(X > s).

Memoryless property

Lemma

For an exponential random variable with parameter ✓,

Pr(X > s + t | X > t) = Pr(X > s)

Proof.

Pr(X > s + t | X > t) =
Pr(X > s + t)

Pr(X > t)

=
1� Pr(X  s + t)

1� Pr(X  t)

=
e�✓(s+t)

e�✓t

= e�✓s
= Pr(X > s).



”Theory”

Probability Space (⌦,F ,P)

• ⌦ - set of all possible outcomes.

• F set of ”allowable” (measurable) events. Must be a �-field.
• ; 2 F
• Closed under complements: if A 2 F then Ā = ⌦ \ A 2 F
• Closed under countable unions (and intersections).

• Example: Borel Set - set of all open intervals in R.

• P - probability function P : F ! [0, 1].
• P(⌦) = 1

• P is countably additive: for any countable collection of disjoint

sets Ai 2 F
P([iAi ) =

X

i

P(Ai ).

Advanced topic not covered in homeworks or exams! 



CS145: Lecture 9 Outline
ØContinuous Random Variables & Probability Densities
ØGaussian (Normal) Distributions



Gaussian (Normal) DistributionsNormal Distribution

The density function of the Normal distribution N(µ,�2
) is:

fX (x) =
1p
2⇡�2

e
� 1

2 (
x�µ
� )2

The distribution function:

FX (x) =
1p
2⇡�2

Z x

�1
e
� 1

2 (
t�µ
� )2

dt

Properties: Z 1

�1

1p
2⇡�2

e
� 1

2 (
x�µ
� )2

dx = 1.

E (X ) = µ Var(X ) = �2

The integral has no closed form.

fX(x)

FX(x)



Some History (⇡ 1700)

The de Moivre-Laplace theorem:

Theorem

For k = np ± O(
p
npq), q = 1� p:

lim
n!1

✓
n

k

◆
p
k
(1� p)

n�k ⇡ 1p
2⇡npq

e
� (k�np)2

2npq

Setting µ = np and �2
= npq

lim
n!1

✓
n

k

◆
p
k
(1� p)

n�k ⇡ 1p
2⇡�2

e
� (k�µ)2

2�2

Note: that’s discrete probability, not density!



Why the Normal Distribution?

Why Normal Distribution?

Empirical observation: Many random phenomena follow (at least

approximately) Normal distribution.

• Height, weight, income,....

• The velocity of molecule in gas (Brownian Motion)

• Measurement error, noise...

• ....

The Central Limit Theorem:
“The distribution of the average of large number of independent

random variable converges to the Normal distribution”.

Why Normal Distribution?
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• ....
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“The distribution of the average of large number of independent

random variable converges to the Normal distribution”.

Binomial PMF Expectation

• X: number of heads in n independent • Definition:

coin tosses E[X] =
⌅

xpX(x)
x

• P(H) = p

• Interpretations:
• Let n = 4 – Center of gravity of PMF

– Average in large number of repetitions
pX(2) = P(HHTT ) + P(HTHT ) + P(HTTH) of the experiment

+P(THHT ) + P(THTH) + P(TTHH) (to be substantiated later in this course)

= 6 2(1� )2p p • Example: Uniform on 0,1, . . . , n

4
=

�

2

⇥
2 � )2p (1 p p (x )X

In general:
1/(n+1)

k )n�kpX(k) =
�n⇥

p (1�p , k = 0,1, . . . , n . . .
k

0 1 x 
n- 1 n

1 1 1
E[X] = 0⇥ +1⇥ +· · ·+n =

n + 1 n + 1
⇥

n + 1

Properties of expectations Variance

• Let X be a r.v. and let Y = g(X) Recall: E[g(X)] =
⌅

g(x)pX(x)
x

– Hard: E[Y ] =
⌅

ypY (y)
y • Second moment: E[ 2 2X ] =

⇤
x x p (

– Easy: E[Y ] =
⌅

X x)

g(x)pX(x)
x • Variance

• Caution: In general, E[g(X)] = g(E[X]) var(X) = E
⇧
(X � E[X])2

⌃

=
⌅

( [ ])2x E X pX(x)
x

�

2erties: If �, ⇥ are constants, then: = E[ 2Prop X ]� (E[X])

• E[�] =
Properties:

• E[�X] = • var(X) ⇤ 0

• E[�X + ⇥] = • var(�X + ⇥) = 2� var(X)

⇧

2

Binomial Distribution:



Normal Binomial Approximation

Let t =
k�npp
nqp , and ”pretend that k is continuous”, then

dk/dt =
p
nqp.

lim
n!1

Pr(np � a
p
npq  k  np + b

p
npq)

⇡
np+b

p
npqX

k=np�a
p
npq

1p
2⇡npq

e
� (k�np)2

2npq ⇡
Z np+b

p
npq

k=np�a
p
npq

1p
2⇡npq

e
� (k�np)2

2npq dk

⇡ 1p
2⇡

Z b

a
e
�t2/2

dt
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The Normal is a Proper Distribution
Non-negative: since the density 1p

2⇡�2
e�

1
2 (

x�µ
� )2 is non-negative so is the

CDF.
Next we need to show that

Z 1

�1

1p
2⇡�2

e�
1
2 (

x�µ
� )2dx = 1.

Let y = (x� µ)/�, then we need to show that I =
R1
�1 e�y2/2dy =

p
2⇡.

I2 =

Z 1

�1

Z 1

�1
e�(s2+z2)/2dsdz

.
Set s = r cos ✓, z = r sin ✓,

I2 =

Z 1

0

Z 2⇡

0
e�r2/2r d✓ dr = 2⇡

<latexit sha1_base64="jHE8olrr63mdr9Wqf3ka0nhWMyc="></latexit>



Scaling a Gaussian Variable
fX(x)fX(x) =

1p
2⇡�2

e�
1
2 (

x�µ
� )2

E[X] = µ

Var[X] = E[(X � µ)2] = �2

p
Var[X] = � is the standard deviation

Any linear transformation of a Gaussian variable is Gaussian!
Y = aX + b fY (y) =

1p
2⇡�̄2

e�
1
2 (

y�µ̄
�̄ )2

µ̄ = aµ+ b, �̄ = |a|�Ø Mean and variance of linear functions:
Ø Proof that PDF is Gaussian will come later …



Standard Normal Random Variables

Standard Normal Random Variable

• If X ⇠ N(µ,�2
) then for any constants a and b the random

variable aX + b is distributed N(aµ+ b, a2�2
).

• If X ⇠ N(µ,�2
) then Z =

X�µ
� is distribution N(0, 1)

• N(0, 1) is the standard Normal distribution.

Pr(Z  z) = �Z (z) =
1p
2⇡

Z z

�1
e
�t2/2

dt

�Z (z) =
1p
2⇡

e
�z2/2



Classic Computation of Normal CDF
Using the Standard Normal Table

• If X ⇠ N(µ,�2
) then Z =

X�µ
�

•
Pr(X  x) = Pr(

X � µ

�
 x � µ

�
) = �(

x � µ

�
)

• The standard Normal random variable is symmetric around 0.

• For
x�µ
� < 0,

�(
x � µ

�
) = 1� �(�x � µ

�
)

• With a table of �(Z ) for Z > 0 we can compute F (x) for any

Normal random variable

Tables of the Normal Distribution

Probability Content
from   -oo to Z

  Z | 0.00   0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09 

----+----------------------------------------------------------------------

0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 

0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 

0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 

1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 

1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 

1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 | 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 | 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 | 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 

2.0 | 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 | 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 

2.2 | 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 

2.3 | 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 | 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 | 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 

2.7 | 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 

2.8 | 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 

2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3.0 | 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990



Modern Computation of Normal CDF

p = �(x)

x = ��1(p)



Moment Generating Function
Moment Generating Function

Definition

For any random variable X the Moment Generating Function of
X is

MX (t) = E [etX ].

Theorem

If MX (t) exists in some interval (��, �), then for any n � 1,

dkMX (t)

dt
|t=0= E [X k ].



Proof
Theorem

If MX (t) exists in some interval (��, �), then for any n � 1,

dkMX (t)

dt
|t=0= E [X k ].

Proof.

dkMX (t)

dt
=

dkE [etX ]

dt
= E [

dketX

dt
] = E [X ketX ]

dkMX (t)

dt
|t=0= E [X ketX ] |t=0= E [X k ]



Generating Function of a Sum
Theorem

Let X ,Y be independent random variable then

MX+Y (t) = MX (t)MY (t)

.

Proof.

MX+Y (t) = E [et(X+Y )] = E [etX ]E [etY ].



Examples
Assume Pr(X = 1) = p, Pr(X = 0) = 1� p, then

MX (t) = pet + (1� p)

M 0
X (t) |t=0= pet |t=0= p M 00

X (t) |t=0= pet |t=0= p

Let X ⇠ B(n, p). MX (t) = (pet + (1� p))n

M 0
X (t) |t=0= npet(pet + (1� p))n�1 |t=0= np

M 00
X (t) |t=0

= [npet(pet + (1� p))n�1 + n(n � 1)p2e2t(pet + (1� p))n�2] |t=0

= np + n(n � 1)p2



Back to the Normal Distribution
We first compute the moment generating function of x ⇠ N(0, 1).

Mx(t) = E [etx ]

=
1p
2⇡

Z 1

�1
etxe�

x2

2 dx

=
1p
2⇡

Z 1

�1
e�

(x�t)2

2 + t2

2 dx

= et
2/2 1p

2⇡

Z 1

�1
e�

(x�t)2

2 dx

= et
2/2



Moments of the Normal Distribution

Assume now that x ⇠ N(µ,�2). Let z = x�µ
� , then �dz = dx .

Mx(t) = E [etx ]

=
1p
2⇡�2

Z 1

�1
etxe�

(x�µ)2

2�2 dx

=
1p
2⇡�2

Z 1

�1
et�z+tµe�

z2

2 �dz

=
1p
2⇡

eµt
Z 1

�1
e�

(z��t)2

2 + (�t)2

2 dz

= e
t2�2

2 +µt



Expectation and Variance of N(𝜇,𝜎)
M 0

x(t) = (µ+ t�2)e
t2�2

2 +µt

M 00
X (T ) = (µ+ t�2)2e

t2�2

2 +µt + �2e
t2�2

2 +µt

E [x ] = M 0(0) = µ

E [x2] = M 00(0) = µ2 + �2

.

Var [x ] = E [x2]� (E [x ])2 = �2



M.G.F Defines a Distribution

Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t 2 (��, �) for some � > 0, then X and Y have the same
distribution.

Theorem

If X and Y are independent random variables then

MX+Y (t) = MX (t)MY (t).

Proof.

MX+Y (t) = E[et(X+Y )] = E[etX ]E[etY ] = MX (t)MY (t).



Sum of Normal Random VariablesSum of Normal Random Variables

Theorem

Let X ,Y be independent random variables with X ⇠ N(µ1,�2
1)

and Y ⇠ N(µ2,�2
2) then

X + Y ⇠ N(µ1 + µ2,�
2
1 + �2

2).

Proof.

MX+Y (t) = e
t2�2

1
2 +µ1te

t2�2
2

2 +µ2t = e
t2(�2

1+�2
2)

2 +(µ1+µ2)t .


