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CS145: Lecture 7 Outline
ØExpectation and Payoff
ØMarkov’s Inequality
ØVariance 
ØChebyshev's Inequality



Probability Expectation and Payoff

Consider the following game:

You pay $C and receive $1 if a (fair) dice role gives 6, and 0 
otherwise.

For what values of C would you play the game?

A rational person will play for any C≤1/6.



Probability Expectation and Payoff
Ø The expectation or expected value of a discrete random variable is:

E[X] =
X

x2X
xpX(x)

Consider the following game:

You pay $C and receive $i if a fair dice role gives i.

For what values of C will you pay the game?

A rational person will play for any C≤ 𝐸 𝑋 = 3.5.



Expectation is not Enough
A rational person considers more than just the expectation

Which of these games do you prefer:
1. You pay $1 and receive $2 with probability ½
2. You pay $1 and receive $1,000 with probability !

!,###

3. You pay $5 and receive $1,000,000 with probability !
!,###,###



Expectation is not Enough
Which job would you prefer?

1. A job that pays $150,000 a year
2. A job that pays $100,000 a year plus a bonus of $100,000 
     with probability ½
3. A job that pays $70,000 with equity option of $1,000,000 with
      probability 0.01

The deviation from the expectation captures the risk

[Variance, standard deviation, value at risk, large deviation 
bounds…]
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The Most Basic Deviation BoundBounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable, and
for all a > 0,

Pr(X � a)  E [X ]

a
.

Proof.

E [X ] =

X
iPr(X = i) � a

X

i�a

Pr(X = i) = aPr(X � a).

Example: What is the probability of getting more than
3N
4 heads in

N coin flips?  N/2
3N/4  2

3 .
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7.1 SOME USEFUL INEQUALITIES

In this section, we derive some important inequalities. These inequalities use the
mean, and possibly the variance, of a random variable to draw conclusions on
the probabilities of certain events. They are primarily useful in situations where
the mean and variance of a random variable X are easily computable, but the
distribution of X is either unavailable or hard to calculate.

We first present the Markov inequality. Loosely speaking it asserts that
if a nonnegative random variable has a small mean, then the probability that it
takes a large value must also be small.

Markov Inequality

If a random variable X can only take nonnegative values, then

P(X ≥ a) ≤ E[X]
a

, for all a > 0.

To justify the Markov inequality, let us fix a positive number a and consider
the random variable Ya defined by

Ya =
{

0, if X < a,
a, if X ≥ a.

It is seen that the relation
Ya ≤ X

always holds and therefore,
E[Ya] ≤ E[X].

On the other hand,

E[Ya] = aP(Ya = a) = aP(X ≥ a),

from which we obtain
aP(X ≥ a) ≤ E[X].

Example 7.1. Let X be uniformly distributed on the interval [0, 4] and note that
E[X] = 2. Then, the Markov inequality asserts that

P(X ≥ 2) ≤ 2
2

= 1, P(X ≥ 3) ≤ 2
3

= 0.67, P(X ≥ 4) ≤ 2
4

= 0.5.

Fix some constant a>0, and define

aP (X � a) = E[Ya]  E[X]



Markov’s InequalityBounding Deviation from Expectation

Theorem

[Markov Inequality] For any non-negative random variable, and
for all a > 0,

Pr(X � a)  E [X ]

a
.

Proof.

E [X ] =

X
iPr(X = i) � a

X

i�a

Pr(X = i) = aPr(X � a).

Example: What is the probability of getting more than
3N
4 heads in

N coin flips?  N/2
3N/4  2

3 .

Ø No such inequality would hold if X 
could take negative values.  Why?

Ø If a < E[X], Markov’s inequality is 
vacuous, but no better bound is 
possible.  Why?
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Examples
We flip 100 fair coins. X is the number of heads. E[X] = 50

Prob(X ≥ 75) ≤
50

75
=

2

3
.

We flip a fair coin till the first head. Y is the numnber of flips.

E[Y ] =
∑

i≥1

Prob(Y ≥ i) =
∑

i≥1

1

2i−1
= 2

Prob(Y ≥ 4) ≤
2

4
=

1

2



Variance
Ø Reminder.  The expectation or expected value of a random variable 

Ø The variance is the expected squared deviation of a random variable
from its mean (the following definitions are equivalent):

Var[X] = E[(X � E[X])2] =
X

x2X
(x� E[X])2pX(x)

Var[X] = E[X2]� E[X]2 =

"
X

x2X
x2pX(x)

#
�

"
X

x2X
xpX(x)

#2

Ø The standard deviation is the square root of the variance:
�X = Std[X] =

p
Var[X]

E[X] =
X

x2X
xpX(x)



Bernoulli Distribution
Ø A Bernoulli or indicator random variable X has one parameter p:

pX(1) = p, pX(0) = 1� p, X = {0, 1}
Ø For an indicator variable, expected values are the probabilities:

E[X] = p
Ø Variance of Bernoulli distribution:

Var[X] = E
h
(X � p)2

i
= p(1� p)

Ø Fair coin (p=0.5) has largest variance
Ø Coins that always come up heads (p=1.0),

or always come up tails (p=0.0), have variance 0



Sums of Independent Variables
Ø If Z=X+Y and random variables X and Y are independent, we have

E[Z] = E[X] + E[Y ] Var[Z] = Var[X] + Var[Y ]

Ø Interpretation:  Adding independent variables increases variance
Var[Z] � Var[X] and Var[Z] � Var[Y ]

Only for independent X, Y.For any variables X, Y.



Examples
Let X and Y be two Bernoulli r.v.  such that P(X=Y)=1, Z=X+Y

0

1

0         1        

𝑃$%= 1- p      0

0          p

𝑉𝑎𝑟 𝑍 = 𝐸 𝑍 − 2𝑝 ! = (2 − 2𝑝)!𝑝 + 1 − 𝑝 (−2𝑝)!
= 1 − 𝑝 𝑝 4 1 − 𝑝 + 4𝑝 = 1 − 𝑝 𝑝

= 𝑉𝑎𝑟 𝑋 = 𝑉𝑎𝑟[𝑌]

0

1

(1- p)2  p(1-p)

P(1-p)      p2

𝑉𝑎𝑟 𝑍 = 𝐸 𝑍 − 2𝑝 !

= 𝑝!(2 − 2𝑝)! + 2 1 − 𝑝 𝑝 1 − 2𝑝 ! + (−2𝑃)! 1 − 𝑃 !

=	p(1-p)[4p(1-p)+2(1 − 2𝑝)!	+4𝑝(1 − 𝑝)]
= 2𝑝 1 − 𝑃 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟[𝑌]

𝑃$%=

0       1        



Sums of Independent Variables

Ø Identity used in proof:  If X and Y are independent random variables,

E[XY ] = E[X]E[Y ] if pXY (x, y) = pX(x)pY (y)

This equality does not hold for general, dependent random variables.

Ø If Z=X+Y and random variables X and Y are independent, we have
E[Z] = E[X] + E[Y ] Var[Z] = Var[X] + Var[Y ]

Only for independent X, Y.For any variables X, Y.

Ø The standard deviation of a sum of independent variables is then
�Z =

q
�2
X + �2

Y �X =
p
Var[X],�Y =

p
Var[Y ],�Z =

p
Var[Z]



Some Math
Assume that X and Y are independent random variable.

E[XY ] =
∑

x

∑

y

xyProb(X = x, Y = y)

=
∑

x

∑

y

xyProb(X = x)Prob(Y = y)

=
∑

x

xProb(X = x)

(

∑

y

yProb(Y = y)

)

= E[X]E[Y ]



More Math

Assume that X and Y are independent random variables,

V ar[X + Y ] = E[(X + Y )2]− (E[X] + Y [Y ])2

= E[X2] + E[Y 2] + 2E[XY ]− (E[X])2 − (E[Y ])2 − 2E[X]E[Y ]

= V ar[X] + V ar[Y ]



Binomial Probability Distribution
Ø Suppose you flip n coins with bias p, count number of heads
Ø A binomial random variable X has parameters n, p:

Xi is a Bernoulli variable indicating      
whether toss i comes up heads, 

pX(k) =

✓
n

k

◆
pk(1� p)n�k X = {0, 1, 2, . . . , n}

X =
Pn

i=1 Xi

because tosses are independent:

Var[X] = np(1� p)E[X] = np

𝑛 = 20, 𝑝 = 0.5
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Binomial Probability Distribution
Ø Suppose you flip n coins with bias p, count number of heads
Ø A binomial random variable X has parameters n, p:

Xi is a Bernoulli variable indicating      
whether toss i comes up heads, 

pX(k) =

✓
n

k

◆
pk(1� p)n�k X = {0, 1, 2, . . . , n}

X =
Pn

i=1 Xi

because tosses are independent:

Var[X] = np(1� p)E[X] = np

𝑛 = 100, 𝑝 = 0.5



Variance: What comes next?
ØExpectation and Variance
ØMarkov’s Inequality
ØVariance 
ØChebyshev's Inequality



Chebyshev’s InequalityChebyshev’s Inequality

Theorem

For any random variable X , and any a > 0,

Pr(|X � E [X ]| � a)  Var [X ]

a2
.

Proof.

Pr(|X � E [X ]| � a) = Pr((X � E [X ])
2 � a2)

By Markov inequality

Pr((X � E [X ])
2 � a2)  E [(X � E [X ])

2
]

a2

=
Var [X ]

a2
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Chebyshev’s InequalityChebyshev’s Inequality

Theorem

For any random variable X , and any a > 0,

Pr(|X � E [X ]| � a)  Var [X ]

a2
.

Proof.

Pr(|X � E [X ]| � a) = Pr((X � E [X ])
2 � a2)

By Markov inequality

Pr((X � E [X ])
2 � a2)  E [(X � E [X ])

2
]

a2

=
Var [X ]

a2

Ø Another way of parameterizing Chebyshev’s inequality:
µ = E[X], � =

p
Var[X]

P (|X � µ| � k�)  1

k2

Ø Chebyshev bound is vacuous (above one)
for events less than one standard deviation
from the mean.  But this could be likely!

1

k2



Chebyshev’s Inequality

Ø Another way of parameterizing Chebyshev’s inequality:
µ = E[X], � =

p
Var[X]

P (|X � µ| � k�)  1

k2

Ø Chebyshev bound is vacuous (above one)
for events less than one standard deviation
from the mean.  But this could be likely!

1

k2

192 Chapter 3. Random Variables 

Example 7. 
Problem. 

FIGURE 2. The probability bounded by Chebychev's inequality. 

E(X) 

Proof. Let 11 = E(X) and a = SD(X). The first step is yet another way of writing 
the event [IX - 111 ka], namely, [(X -11)2 k2a2]. Now define Y = (X - 11)2, 
a = k2a 2 , to see 

P[lX - 111 ka] = P(Y a) 

:::; E(Y) by Markov's inequality of Section 3.2, using Y 0, 
a 

a2 1 
k2a2 k2 by definition of Y, a, and a.D 

Comparison of the Chebychev bound with normal probabilities. Chebychev's 
inequality gives universal inequalities, satisfied by all distributions, no what 
their shape. For k :::; 1 the inequality is trivial, because then 1/k2 1. Here are the 
bounds for some values of k 1 compared with corresponding probabilities for the 
normal distribution with parameters 11 and a. 

Probability Chebychev bound Normal value 

P(lX -111 a) at most 1 0.3173 

P(IX - 111 2a) at most 1/22 = 0.25 0.0465 

P(IX - 111 3a) at most 1/32 0.11 0.00270 

P(IX - 111 4a) at most 1/42 0.06 0.000063 

As the table shows, Chebychev's bound will be very crude for a distribution that 
is approximately normal. Its importance is that it holds no matter what the shape 
of the distribution, so it gives some information about two-sided tail probabilities 
whenever the mean and standard deviation of a distribution can be calculated. 

Bounds for a list of numbers. 
The average of a list of a million numbers is 10 and the average of the squares of 
the numbers is 101. Find an upper bound on how many of the entries in the list are 
14 or more. 



Markov vs. Chebyshev’s Inequalities
We flip a fair coin n times.
What is the probability of getting more than 3n/4 heads?

X = number of heads. E[X] = n/2, V ar[X] = n/4.

Markov’s Inequality:
Pr{X � 3n

4 }  E[X]
3n/4  n/2

3n/4 = 2
3

Chebyshev’s Inequality:
Pr{X � 3n

4 }  Pr{|X � n
2 | �

n
4 }  V ar[X]

(n/4)2 = n/4
n2/16 = 4

n
<latexit sha1_base64="EVcL9YCjYwVzERsnMjpSsr7u/kU="></latexit><latexit sha1_base64="EVcL9YCjYwVzERsnMjpSsr7u/kU="></latexit><latexit sha1_base64="EVcL9YCjYwVzERsnMjpSsr7u/kU=">AAADmniclVLbbtNAEHViLsXcUnjgAR5GxIgildwaAUKKqFpxqRBSkJomUpxG6804XsVeu7vrSpG7/8S38MbfsE5MFVpeGMnS2XNmds6Ox08jJlWr9atStW/cvHV7645z9979Bw9r249OZJIJigOaRIkY+URixDgOFFMRjlKBJPYjHPqLw0IfnqOQLOHHapniJCZzzgJGiTLUdLvyY4gQRCwFAgFhAmjCOLjcBcVilA1wnGFIFDAJKkRIReITn0VMLSEJYI5KMT6HOBFodGIq93iz60KIZCY/OI4X40wuWOq4o54LPIt9FEXhSm+A+3E8mvR4s+PugntCxPrUdRsbld+IWCTnLyUccTzLSNH6vXHl9oWXj7w5noEXCELzPa7zrvY0eNElV1yv88KS3mBNv5LslUxx1u5G08MQ/aUM8b/7FurF6HXZSJubLzZyy9QNL+tH63zH2Hl12tHQ++Oxq3N+2mm231xyBaPdaa3earRWAddBuwR1q4z+tPbTmyU0i5ErGhEpx+1WqiY5EYrRCLXjZRJTQhdkjmMDOTH/fZKvVkvDC8PMIEiE+biCFbtZkZNYymXsm8yYqFBe1QryX9o4U8G7Sc54minkdN0oyCJQCRR7CjMmkKpoaQChghmvQENixqDMNjtmCO2rT74OTjqNtsHfO/X9g3IcW9ZT67m1Y7Wtt9a+9cXqWwOLVp9Ue9VP1c/2M/vAPrK/rlOrlbLmsfVX2Me/AWSEHnU=</latexit><latexit sha1_base64="EVcL9YCjYwVzERsnMjpSsr7u/kU="></latexit>



The Weak Law of Large Numbers

The Weak Law of Large Numbers

Theorem

Let x1, ..., xn be independent, identically distributed random
variables with finite mean, E [xi ] = µ. For any ✏ > 0

Prob{|1
n

nX

i=1

xi � µ| � ✏} ! 0

as n ! 1.



The (Weak) Law of Large Numbers
Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2
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Example 7.2. As in Example 7.1, let X be uniformly distributed on [0, 4]. Let
us use the Chebyshev inequality to bound the probability that |X − 2| ≥ 1. We
have σ2 = 16/12 = 4/3, and

P
(
|X − 2| ≥ 1

)
≤ 4

3
,

which is not particularly informative.
For another example, let X be exponentially distributed with parameter λ =

1, so that E[X] = var(X) = 1. For c > 1, using Chebyshev’s inequality, we obtain

P(X ≥ c) = P(X − 1 ≥ c − 1) ≤ P
(
|X − 1| ≥ c − 1) ≤ 1

(c − 1)2
.

This is again conservative compared to the exact answer P(X ≥ c) = e−c.

7.2 THE WEAK LAW OF LARGE NUMBERS

The weak law of large numbers asserts that the sample mean of a large number
of independent identically distributed random variables is very close to the true
mean, with high probability.

As in the introduction to this chapter, we consider a sequence X1, X2, . . . of
independent identically distributed random variables with mean µ and variance
σ2, and define the sample mean by

Mn =
X1 + · · · + Xn

n
.

We have
E[Mn] =

E[X1] + · · · + E[Xn]
n

=
nµ

n
= µ,

and, using independence,

var(Mn) =
var(X1 + · · · + Xn)

n2
=

var(X1) + · · · + var(Xn)
n2

=
nσ2

n2
=

σ2

n
.

We apply Chebyshev’s inequality and obtain

P
(
|Mn − µ| ≥ ε

)
≤ σ2

nε2
, for any ε > 0.

We observe that for any fixed ε > 0, the right-hand side of this inequality goes to
zero as n increases. As a consequence, we obtain the weak law of large numbers,
which is stated below. It turns out that this law remains true even if the Xi
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Mn =
X1 + · · · + Xn

n
.

We have
E[Mn] =

E[X1] + · · · + E[Xn]
n

=
nµ

n
= µ,

and, using independence,

var(Mn) =
var(X1 + · · · + Xn)

n2
=

var(X1) + · · · + var(Xn)
n2

=
nσ2

n2
=

σ2

n
.

We apply Chebyshev’s inequality and obtain

P
(
|Mn − µ| ≥ ε

)
≤ σ2

nε2
, for any ε > 0.

We observe that for any fixed ε > 0, the right-hand side of this inequality goes to
zero as n increases. As a consequence, we obtain the weak law of large numbers,
which is stated below. It turns out that this law remains true even if the Xi

sample mean or
empirical mean 

Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance ⇥

X1 + · · · + 1 if yes,X ,n
i =M = Xn

⇤
�

0, if no.n

• Mn = (X

⇥

1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ⇥1% error

• Var(Mn) = P(|Mn � f | ⇤ .01) ⇥ .05

Use Chebyshev’s

Var( 2

• inequality:

M ⇥
(| n) 2⇥P Mn � µ| ⇤ �) ⇥ = 2 P(|Mn � f | ⇤ M

2 .01)� n� ⇥ n

(0.01)2
2⇥ 1• Mn converges in probability to µ = x

n(0.01)2
⇥

4n(0.01)2

• If n = 50,000,
then P(|Mn � f | ⇤ .01) ⇥ .05
(conservative)

Di�erent scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance ⇥ Sn E[Sn] Sn

Zn =
� nE[X]

=
�

⇥
⌃

n ⇥• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · n⇥

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2⇥ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• ⌃ constant variance 2⇥

• Theorem: For

n
P(Zn ⇥ c)⌅ P(Z ⇥ c)

– Asymptotic shape?

• P(Z ⇥ c) is the standard normal CDF,
�(c), available from the normal tables

2

Ø Chebyshev’s inequality bounds distance between the
true mean and the “empirical” or “sample” mean:

Ø The empirical mean converges to the true mean in probability
lim

n!1
P (|Mn � µ| � ✏) = 0

Ø True even if variance not finite, but proof more challenging.

E[Mn] =

Var[Mn] =


