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» Independent random variables
» Expectations of multiple discrete variables



Discrete Random Variables

» A random variable assigns values to outcomes of uncertain experiments

X: Q=R r=X(w)eR for w e
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» The range of a random variable is the set of values with positive probability
X ={reR| X(w)=x for some w € 2, P(w) > 0}

For a discrete random variable, the range is finite or countably infinite
(we can map it to the integers). Coming later: continuous random variables.



Discrete Random Variables

» A random variable assigns values to outcomes of uncertain experiments

X: Q=R r=X(w)eR for w e
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» The probability mass function (PMF) or probability distribution of variable:
px(x)=P(X =2)=PH{we| X(w) =2x})
o If range is finite, this is
px(z) =0, Z px(z) = 1. a vector of non-negative
reX numbers that sums to one.



Joint Probability Distributions

X = In this example, N=2 and M=38,
X — and the joint PMF is a 2x8 matrix.

Y =1 Y =8
» Consider two random variables X, Y.

Suppose range of X is size N, range of Y is size M.
» The joint probability mass function or joint distribution of two variables:

PXY(JJ,CU) = P(X —x and Y = y)
pXY(Can) > 07 S:SijY(ﬂ%y) = 1.
x Yy

» The joint distribution is uniquely specified by NM-T numbers




Marginal Probability Distributions

Y =1 pxvy (%, y) Y =8
X =1 The marginal distributions are
X — 9 defined by (N-1)+(M-1) numbers.
Many joint distributions may
Px() pove th inal
py (1) ave the same marginals.

» The joint probability mass function or joint distribution of two variables:
pxy(z,y) =P(X =z and Y = y)

» The range of each variable defines a partition of the sample space,
so the marginal distributions can be computed from the joint distribution:

px(xz) =P(X =)=  pxv(z,y)
py(y) = P(Y =2 . Pxv(Z,Y)

|
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Marginal Probability Distributions

Joint PMF Py \(x,y)
in tabular form

4| o [1/20]1/20|1/20—3[20

3 [1/20]|2/20 |3/20 1/20'—7/30 Row Sums:

Marginal PMF P(y)

> |1/20]2/20| 3/20|1/20] 7120

1 |1/20|1/20[ 1/20| o | 3/20

I N _
l1 \2 \3 \4 X
3/20 6/20 8/20 3/20

Column Sums:
Marginal PMF Py({x)




Conditional Probability Distributions

Y1 PY|X(ZJ 1)
A= pY|X(y | 2)
px|y(z | 1) px|y (x| 8)
» By the definition of conditional probability:
P(X =xand Y = y)
P X=z|Y=y) =
P(Y =y)
» The conditional probability mass function is then:
. pxy(z,y) . pxy(z,y)

pX|Y(x ’ y) — P(X — & ‘ Y = y) B py(y) N Z /pXY(x/7y)



Example: The Absent-Minded Prof

Prob: 1/48 y A
21116
]
o 616 Prob: 6/48 ) 0 o |1/48
o /113 9/16 > Prob: 9/48 1T O |4/48|6/48
1
1 Prob: 4/48 0 [16/48[12/48| 9/48
o 1/3 o 1/4 -
0 1 2 X
3/4 Prob: 12/48 Joint PMF Py \(x,y)
1/3 Prob: 16/48 in tabular form

| P(at least one wrong answer)
X : Number of Y : Number of =px,y(L,1) +pxy(2,1) + px,v(2,2)
questions asked questions answered 4 6 1

wrong :4_8+4_8+E'

» At office hours, a Professor gets 0, 1, or 2 questions with equal probability
» Each question is answered correctly with probability % (independently)



Several Random Variables
pxyz(x,y,z) =P(X=xzand Y =y and Z = 2)
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pxy(T,y) ZPXYZ r,y,2) px(@)= pry(x,y) pxy|z(,y | z) =
pz(2)
2€EZ yey

Marginal and conditional define new probability spaces.
May compute marginal and conditioned on any other set of variables.
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Reminder: Independence of Events

Independence of Two Events: P(ANB) = P(A)P(B)
This implies that P(A| B) = P(A),P(B| A) = P(B).

» Observing B provides no information about whether A occurred
» Observing A provides no information about whether B occurred

Definition of Conditional Probabilities:

e Definition: Assuming P(B) # 0,

P(A| B) = P(PA(;)B) .

P(A | B) undefined if P(B) =0 0O




Independent Random Variables

P(x.y)

X1lY

_ L]

pxy(z,y) = px(z)py (y)

forallz € X,y €)Y

» Equivalent conditions on conditional probabilities:

px|y(z | y) =px(z) for all py(y) > 0
py|x(y | ) = py(y) for all px(z) >0



Independent Random Variables

P(x.y)

X1lY

_ L]

pxy(z,y) = px(z)py (y)

forallz € X,y €)Y

» For a given set of marginal distributions, there exists a unique
joint distribution under which those variables are independent
» Three random variables are independent if and only if

pPxvz(T,y,2) = px(x)py (y)pz(2)



Example: Independence

4 11/20 [2/20 [2/20

3 12/20 | 4/20 |1/20 |2/20

2 1/20 | 3/20 (1/20
1 1/20
1 2 3 4 X

PXY(ZI?,?J) — P(X =z and Y = y)

Verify that X and Y
are not independent:

px(z) =
py (y) =



Conditional Independence

P(x.y)

X1Y|Z==z

] pxviz(T,y | 2) = px|z(z | 2)py (¥ | 2)
foralz € X,y €)Y

» Apply the same definition of independence for X and Y,

but condition all probability distributions on some other variable Z
» Independence does not always imply conditional independence,

and conditional independence does not always imply independence



Example: (Conditional) Independence

y A Y
4| 1/20 |2/20 |2/20 4 11/20{2/20(2/20 | 0
3 (2/20 |4/20 | 1/20 | 2/20 3 [2/20{4/20|1/20 | 2/20
2 1/20 | 3/20 {1/20 2| 0 ([1/20( 3/20(1/20
1 1/20 1 0O |1/20[ O 0
1 2 3 4 X ] > 3 a4 X
pxy(z,y) = P(X =z and Y = y) But X and Y are
Verify that X and Y given
are not independent: 4 = 1{X§2,Y23}
px(z) = px|z(z | 1) =

py (y) = pyiz(y | 1) =



Example:

Consider the following game:
We roll a dice until we obtain an even number.

Define: X = the number of rolls in a game,
Y= the value of the last roll (Y can be either 2, 4 or 6).

1) What is the distribution of (X,Y)?
2) What is the distribution of X?
3) What is the distribution of Y?

4) Are X and Y independent?
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Expectation

» The expectation or expected value of a discrete random variable is:

E|X]| = Z rpx ()

reX

» The expectation is a single number, not a random variable.
It encodes the “center of mass” of the probability distribution:

Tmin = min{z | z € X'}
Lmin S E[m] S Lmax
Tmax = max{zr |z € X'}
» The expectation is an average or interpolation. It is possible that

px (F|x]) = 0 for some random variables X.



Expected Values of Functions

» Consider a non-random (deterministic) function of a random variable:

Y = g(X)

px(z)=P(X=xz) wehp py¥)= » px(@)
{z|g(z)=y}

» What is the expected value of random variable Y?  F|Y| = E[g(X)]

EY] =) ypy(y)

E[Y]=E[g(X)] = ) g(z)px(z)

» |Incorrect approach: g(E[X]) 7& E[g(X)] (except in

special cases)



Examples

X =1,2,3 with probability 1/3,1/3,1/3
Y =X

ElY]=E[X?] =

_I_
Q| >~
_|_
Wl ©
|
T

1
2
(BE[X])*=2*=4

X = —1,0,+1 with probabity 1/3,1/3,1/3.

E[X?) = £, while (E[X])* =0



Expectation of Multiple Variables

» The expectation or expected value of a function of two discrete variables:

Elg(X, V)] => Y gz, y)pxy(z,y)
reX yey
» A similar formula applies to functions of 3 or more variables

» Expectations of sums of functions are sums of expectations:

> gl@)px ()| + {Z h(y)py (y)

reX yey

Elg(X) +h(Y)] = Elg(X)] + E[n(Y)] =

» This is always true, whether or not X and Y are independent
» Specializing to linear functions, this implies that:

ElaX +bY +c¢]=aF|X]|+bE[Y]|+c

|



Examples:

We role 2 die and get the sum of the first role plus the
square of the second role

EX+Y? = Y Y (@+y)Pr(X =2,Y =y)
r=1y=1
6 y6
= ZZCEPT‘(X: —|—ZZy2Pr =x,Y =vy)
r=1y=1 rz=1y=1

6
= ZZCPT(X =)+ ZyQPr(Y =
r=1 r=1

= E[X]+ E[Y?]



Mean of Binomial Probability Distribution

» Suppose you flip n coins with bias p, count number of heads
» A binomial random variable X has parameters n, p:

px (k) = (Z)pk(l —p)nk X = {O, 1, 2, e ,n}

» For binomial, expected values are — oo
expected counts of events: — n=20p-0

> 0.2
z
B 0.15
I
a
0.05 l I
0 v
0 5 10 15 20

» Simple proof uses indicator variables X;
for whether each of n tosses is heads: o) ~eapeas

E[Xi]=p-1+(1—p)-0=p=Pr(X;=1).

n n gm'
> Xi| =) E[X] = np. | l ”
i=1 i=1 3! L

E[X]=E

“lll-lll]l|“|“||]lll
20 30

10



Binomial Mean: The Hard Way
E[X] = ij(’?)ml—p)"—f
_ ZJ.

n n|
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