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CS145: Lecture 6 Outline
Ø Independent random variables
ØExpectations of multiple discrete variables



Discrete Random Variables

6 Sample Space and Probability Chap. 1

of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.
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(Set of Outcomes)
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Probability
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Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible

X : ⌦ ! R x = X(!) 2 R for ! 2 ⌦

2 Discrete Random Variables Chap. 2

2.1 BASIC CONCEPTS

In many probabilistic models, the outcomes are of a numerical nature, e.g., if
they correspond to instrument readings or stock prices. In other experiments,
the outcomes are not numerical, but they may be associated with some numerical
values of interest. For example, if the experiment is the selection of students from
a given population, we may wish to consider their grade point average. When
dealing with such numerical values, it is often useful to assign probabilities to
them. This is done through the notion of a random variable, the focus of the
present chapter.

Given an experiment and the corresponding set of possible outcomes (the
sample space), a random variable associates a particular number with each out-
come; see Fig. 2.1. We refer to this number as the numerical value or the
experimental value of the random variable. Mathematically, a random vari-
able is a real-valued function of the experimental outcome.

1
1 2

2

3

3

4

4

Real Number Line
1 2 3 4

(a)

(b)

Sample Space
1 x

Random Variable X

Real Number Line

Random Variable:
X = Maximum Roll

Sample Space:
Pairs of Rolls

Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

Ø The range of a random variable is the set of values with positive probability

X = {x 2 R | X(!) = x for some ! 2 ⌦, P (!) > 0}
For a discrete random variable, the range is finite or countably infinite 
(we can map it to the integers).  Coming later: continuous random variables.
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Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

Ø The probability mass function (PMF) or probability distribution of variable:

pX(x) = P (X = x) = P ({! 2 ⌦ | X(!) = x})
pX(x) � 0,

X

x2X
pX(x) = 1.

If range is finite, this is
a vector of non-negative 

numbers that sums to one.



Joint Probability Distributions

Ø Consider two random variables X, Y.  
Suppose range of X is size N, range of Y is size M.

Ø The joint probability mass function or joint distribution of two variables:

pXY (x, y) � 0,
X

x

X

y

pXY (x, y) = 1.

X = 1

X = 2

Y = 1 Y = 8

In this example, N=2 and M=8,
and the joint PMF is a 2x8 matrix.

Ø The joint distribution is uniquely specified by NM-1 numbers  

pXY (x, y) = P (X = x and Y = y)



Marginal Probability Distributions

Ø The joint probability mass function or joint distribution of two variables:

X = 1

X = 2

Y = 1 Y = 8

Ø The range of each variable defines a partition of the sample space,
so the marginal distributions can be computed from the joint distribution:

The marginal distributions are 
defined by (N-1)+(M-1) numbers.
Many joint distributions may
have the same marginals.

pXY (x, y) = P (X = x and Y = y)

pX(x) = P (X = x) =
P

y pXY (x, y)
pY (y) = P (Y = y) =

P
x pXY (x, y)

pXY (x, y)

pX(x)
pY (y)
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Figure 2.11: Illustration of the tabular method for calculating marginal PMFs
from joint PMFs. The joint PMF is represented by a table, where the number in
each square (x, y) gives the value of pX,Y (x, y). To calculate the marginal PMF
pX(x) for a given value of x, we add the numbers in the column corresponding to
x. For example pX(2) = 8/20. Similarly, to calculate the marginal PMF pY (y)
for a given value of y, we add the numbers in the row corresponding to y. For
example pY (2) = 5/20.

More than Two Random Variables

The joint PMF of three random variables X, Y , and Z is defined in analogy with
the above as

pX,Y,Z(x, y, z) = P(X = x, Y = y, Z = z),

for all possible triplets of numerical values (x, y, z). Corresponding marginal
PMFs are analogously obtained by equations such as

pX,Y (x, y) =
∑

z

pX,Y,Z(x, y, z),

and
pX(x) =

∑

y

∑

z

pX,Y,Z(x, y, z).

The expected value rule for functions takes the form

E
[
g(X, Y, Z)

]
=

∑

x,y,z

g(x, y, z)pX,Y,Z(x, y, z),

and if g is linear and of the form aX + bY + cZ + d, then

E[aX + bY + cZ + d] = aE[X] + bE[Y ] + cE[Z] + d.



Conditional Probability Distributions
X = 1

X = 2

Y = 1 Y = 8

Ø By the definition of conditional probability:

pXY (x, y)
pY |X(y | 1)

pY |X(y | 2)

pX|Y (x | 1) pX|Y (x | 8)
…

P (X = x | Y = y) =
P (X = x and Y = y)

P (Y = y)
Ø The conditional probability mass function is then:

pX|Y (x | y) = P (X = x | Y = y) =
pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)
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Figure 2.14: Calculation of the joint PMF pX,Y (x, y) in Example 2.11.

1, 3, 4, 5, 6 with equal probability 1/5. Thus, the conditional PMF pX|Y is binomial
with parameters 4 − y and p = 1/5:

pX|Y (x | y) =

(
4 − y

x

)(
1
5

)x (
4
5

)4−y−x

,

for all x and y such that x, y = 0, 1, . . . , 4, and 0 ≤ x + y ≤ 4. The joint PMF is
now given by

pX,Y (x, y) = pY (y)pX|Y (x | y)

=

(
4
y

)(
1
6

)y (
5
6

)4−y
(

4 − y
x

)(
1
5

)x (
4
5

)4−y−x

,

for all nonnegative integers x and y such that 0 ≤ x + y ≤ 4. For other values of x
and y, we have pX,Y (x, y) = 0.

The conditional PMF can also be used to calculate the marginal PMFs. In
particular, we have by using the definitions,

pX(x) =
∑

y

pX,Y (x, y) =
∑

y

pY (y)pX|Y (x | y).

This formula provides a divide-and-conquer method for calculating marginal
PMFs. It is in essence identical to the total probability theorem given in Chap-
ter 1, but cast in different notation. The following example provides an illustra-
tion.

Ø At office hours, a Professor gets 0, 1, or 2 questions with equal probability
Ø Each question is answered correctly with probability ¾ (independently)

30 Discrete Random Variables Chap. 2
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for all nonnegative integers x and y such that 0 ≤ x + y ≤ 4. For other values of x
and y, we have pX,Y (x, y) = 0.

The conditional PMF can also be used to calculate the marginal PMFs. In
particular, we have by using the definitions,

pX(x) =
∑
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This formula provides a divide-and-conquer method for calculating marginal
PMFs. It is in essence identical to the total probability theorem given in Chap-
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Sec. 2.6 Conditioning 29

The conditional PMF is often convenient for the calculation of the joint
PMF, using a sequential approach and the formula

pX,Y (x, y) = pY (y)pX|Y (x | y),

or its counterpart
pX,Y (x, y) = pX(x)pY |X(y |x).

This method is entirely similar to the use of the multiplication rule from Chap-
ter 1. The following examples provide an illustration.

Example 2.11. Professor May B. Right often has her facts wrong, and answers
each of her students’ questions incorrectly with probability 1/4, independently of
other questions. In each lecture May is asked 0, 1, or 2 questions with equal proba-
bility 1/3. Let X and Y be the number of questions May is asked and the number of
questions she answers wrong in a given lecture, respectively. To construct the joint
PMF pX,Y (x, y), we need to calculate all the probabilities P(X = x, Y = y) for all
combinations of values of x and y. This can be done by using a sequential descrip-
tion of the experiment and the multiplication rule pX,Y (x, y) = pY (y)pX|Y (x | y),
as shown in Fig. 2.14. For example, for the case where one question is asked and is
answered wrong, we have

pX,Y (1, 1) = pX(x)pY |X(y |x) =
1
4
· 1
3

=
1
12

.

The joint PMF can be represented by a two-dimensional table, as shown in Fig.
2.14. It can be used to calculate the probability of any event of interest. For
instance, we have

P(at least one wrong answer) = pX,Y (1, 1) + pX,Y (2, 1) + pX,Y (2, 2)

=
4
48

+
6
48

+
1
48

.

.

Example 2.12. Consider four independent rolls of a 6-sided die. Let X be the
number of 1’s and let Y be the number of 2’s obtained. What is the joint PMF of
X and Y ?

The marginal PMF pY is given by the binomial formula

pY (y) =

(
4
y

)(
1
6

)y (
5
6

)4−y

, y = 0, 1, . . . , 4.

To compute the conditional PMF pX|Y , note that given that Y = y, X is the
number of 1’s in the remaining 4 − y rolls, each of which can take the 5 values
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Several Random Variables

y

z

pXY Z(x, y, z) = P (X = x and Y = y and Z = z)

Marginal and conditional define new probability spaces.
May compute marginal and conditioned on any other set of variables.

pXY (x, y) =
X

z2Z
pXY Z(x, y, z) pX(x) =

X

y2Y
pXY (x, y) pXY |Z(x, y | z) = pXY Z(x, y, z)

pZ(z)



CS145: Lecture 6 Outline
Ø Independent random variables
ØExpectations of multiple discrete variables



Reminder: Independence of Events

LECTURE 2 Review of probability models

• Readings: Sections 1.3-1.4 • Sample space �

– Mutually exclusive
Collectively exhaustive

Lecture outline
– Right granularity

• Review • Event: Subset of the sample space

• Conditional probability
Allocation of probabilities to events

• Three important tools:
•

1. P(A) � 0

– Multiplication rule 2. P(�) = 1

3. If– Total probability theorem A ⌅B = Ø,
then P(A ⇤B) = P(A) + P(B)

– Bayes’ rule
3’. If A1, A2, . . . are disjoint events, then:

P(A1 ⇤A2 ⇤ · · · ) = P(A1) + P(A2) + · · ·

• Problem solving:

– Specify sample space

– Define probability law

– Identify event of interest

– Calculate...

Conditional probability Die roll example

4A

3
Y = Second 

B
        roll

2

1

• P(A | B) = probability of A,
that B occurred 1 2 3

given 4

is our new universe X– B  = First roll

• Definition: Assuming P(B) = 0, • Let B be the event: min(X, Y ) = 2

P(A
P(A B) =

⌅B)
| • Let M = max(X, Y )

P(B)

P(A | B) undefined if P(B) = 0 • P(M = 1 | B) =

• P(M = 2 | B) =

⇥

1

⌦

A B

Definition of Conditional Probabilities:

Independence of Two Events: P (A \B) = P (A)P (B)
P (A | B) = P (A), P (B | A) = P (B).This implies that

Ø Observing B provides no information about whether A occurred
Ø Observing A provides no information about whether B occurred



Independent Random Variables

X ? Y

for all x 2 X , y 2 Y
pXY (x, y) = pX(x)pY (y)

Ø Equivalent conditions on conditional probabilities:
pX|Y (x | y) = pX(x) for all pY (y) > 0

pY |X(y | x) = pY (y) for all pX(x) > 0



Independent Random Variables

X ? Y

for all x 2 X , y 2 Y
pXY (x, y) = pX(x)pY (y)

Ø For a given set of marginal distributions, there exists a unique
joint distribution under which those variables are independent

Ø Three random variables are independent if and only if

pXY Z(x, y, z) = pX(x)pY (y)pZ(z)



Example:  Independence

Conditional PMF and expectation Geometric PMF

• X: number of independent coin tosses• pX|A(x) = P(X = x | A)
until first head

• E[X | A] =
⌅

xp (x) ( ) = (1� )k�1
X p

x
|A pX k p, k = 1,2, . . .

⇤ ⇤
p  (x ) E[X] = (1 kkp ( 1

X
⌅

X k) = p
k

⌅
k �

=1
� p)

k=1

• Memoryless property: Given that X > 2,
1/4

the r.v. X � 2 has same geometric PMF

p   
p (k) p (k)

X X |X>2

2p(1-p)
p  

1 2 3 4 x  

... ...
• Let A = {X ⇥ 2} k1 3 k

p (k)X-  2|X>2
pX|A(x) =

p   

E[X | A] =
...

1 k

Total Expectation theorem Joint PMFs

• Partition of sample space • pX,Y (x, y) = P(X = x and Y = y)
into disjoint events A1, A2, . . . , An

y

A
1 4 1/20 2/20 2/20

B

3 2/20 4/20 1/20 2/20

2 1/20 3/20 1/20

A A 1
2 3 1/20

x
1 2 3 4

P(B) = P(A1)P(B | A1)+· · ·+P(An)P(B | An) • pX,Y (x, y) =
pX(x) = P(A1)pX A (x)+· · ·+P(An)pX A (x)

n

⌅

x

⌅

y| 1 |

E[X] = P(A1)E[X | A1]+· · ·+P(An)E[X | An] • pX(x) =
⌅

pX,Y (x, y)
y

• Geometric example: pX,Y (x, y)
pX Y (x y) = P(X = x Y = y) =

A1 : {X = 1}, A2 : {X > 1
•

} | | |
pY (y)

E[X] = P(X = 1)E[X | X = 1] •
⌅

pX Y (x | y) =|
+P(X > 1)E[X | X > 1] x

• Solve to get E[X] = 1/p

2

pXY (x, y) = P (X = x and Y = y)

pX(x) =

pY (y) =

Verify that X and Y 
are not independent:



Conditional Independence

for all x 2 X , y 2 Y

Ø Apply the same definition of independence for X and Y, 
but condition all probability distributions on some other variable Z

Ø Independence does not always imply conditional independence,
and conditional independence does not always imply independence

pXY |Z(x, y | z) = pX|Z(x | z)pY (y | z)

X ? Y | Z = z
<latexit sha1_base64="pJmO6+oY3w4okZj/fgecx85kMcE=">AAAB+nicbVDLTgIxFO3gC/E16NJNI5i4IjO40I0J0Y1LTOShMCGd0oGGTqdpOxoc4E/cuNAYt36JO//GArNQ8CQ3OTnn3tx7jy8YVdpxvq3Myura+kZ2M7e1vbO7Z+f36yqKJSY1HLFINn2kCKOc1DTVjDSFJCj0GWn4g6up33ggUtGI3+qhIF6IepwGFCNtpI6dLzbbgkgB7yajCby/eCp27IJTcmaAy8RNSQGkqHbsr3Y3wnFIuMYMKdVyHaG9BElNMSPjXDtWRCA8QD3SMpSjkCgvmZ0+hsdG6cIgkqa4hjP190SCQqWGoW86Q6T7atGbiv95rVgH515CuYg14Xi+KIgZ1BGc5gC7VBKs2dAQhCU1t0LcRxJhbdLKmRDcxZeXSb1cck9L5ZtyoXKZxpEFh+AInAAXnIEKuAZVUAMYPIJn8ArerJH1Yr1bH/PWjJXOHIA/sD5/AP7/kyw=</latexit>



Example:  (Conditional) Independence

Conditional PMF and expectation Geometric PMF

• X: number of independent coin tosses• pX|A(x) = P(X = x | A)
until first head

• E[X | A] =
⌅

xp (x) ( ) = (1� )k�1
X p

x
|A pX k p, k = 1,2, . . .

⇤ ⇤
p  (x ) E[X] = (1 kkp ( 1

X
⌅

X k) = p
k

⌅
k �

=1
� p)

k=1

• Memoryless property: Given that X > 2,
1/4

the r.v. X � 2 has same geometric PMF

p   
p (k) p (k)

X X |X>2

2p(1-p)
p  

1 2 3 4 x  

... ...
• Let A = {X ⇥ 2} k1 3 k

p (k)X-  2|X>2
pX|A(x) =

p   

E[X | A] =
...

1 k

Total Expectation theorem Joint PMFs

• Partition of sample space • pX,Y (x, y) = P(X = x and Y = y)
into disjoint events A1, A2, . . . , An

y

A
1 4 1/20 2/20 2/20

B

3 2/20 4/20 1/20 2/20

2 1/20 3/20 1/20

A A 1
2 3 1/20

x
1 2 3 4

P(B) = P(A1)P(B | A1)+· · ·+P(An)P(B | An) • pX,Y (x, y) =
pX(x) = P(A1)pX A (x)+· · ·+P(An)pX A (x)

n

⌅

x

⌅

y| 1 |

E[X] = P(A1)E[X | A1]+· · ·+P(An)E[X | An] • pX(x) =
⌅

pX,Y (x, y)
y

• Geometric example: pX,Y (x, y)
pX Y (x y) = P(X = x Y = y) =

A1 : {X = 1}, A2 : {X > 1
•

} | | |
pY (y)

E[X] = P(X = 1)E[X | X = 1] •
⌅

pX Y (x | y) =|
+P(X > 1)E[X | X > 1] x

• Solve to get E[X] = 1/p

2

pXY (x, y) = P (X = x and Y = y)

pX(x) =

pY (y) =

Verify that X and Y 
are not independent:
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Figure 2.15: Example illustrating that conditional independence may not imply
unconditional independence. For the PMF shown, the random variables X and
Y are not independent. For example, we have

pX|Y (1 | 1) = P(X = 1 |Y = 1) = 0 != P(X = 1) = pX(1).

On the other hand, conditional on the event A = {X ≤ 2, Y ≥ 3} (the shaded
set in the figure), the random variables X and Y can be seen to be independent.
In particular, we have

pX|Y,A(x | y) =
{

1/3 if x = 1,
2/3 if x = 2,

for both values y = 3 and y = 4.

A very similar calculation also shows that if X and Y are independent, then

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E

[
h(Y )

]
,

for any functions g and h. In fact, this follows immediately once we realize that
if X and Y are independent, then the same is true for g(X) and h(Y ). This is
intuitively clear and its formal verification is left as an end-of-chapter problem.

Consider now the sum Z = X + Y of two independent random variables
X and Y , and let us calculate the variance of Z. We have, using the relation
E[X + Y ] = E[X] + E[Y ],

var(Z) = E
[(

X + Y − E[X + Y ]
)2]

= E
[(

X + Y − E[X] − E[Y ]
)2]

= E
[((

X − E[X]
)

+
(
Y − E[Y ]

))2]

= E
[(

X − E[X]
)2] + E

[(
Y − E[Y ]

)2]

+ 2E
[(

X − E[X]
)(

Y − E[Y ]
)]

= E
[(

X − E[X]
)2] + E

[(
Y − E[Y ]

)2]
.

But X and Y are conditionally
independent given
Z = 1{X2,Y�3}
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Example:

Consider the following game: 
We roll a dice until we obtain an even number. 

Define:  X = the number of rolls in a game, 
              Y= the value of the last roll (Y can be either 2, 4 or 6).

1) What is the distribution of (X,Y)?

2) What is the distribution of X?

3) What is the distribution of Y?

4) Are X and Y independent?



CS145: Lecture 6 Outline
Ø Independent random variables
ØExpectations of multiple discrete variables



Expectation
Ø The expectation or expected value of a discrete random variable is:

E[X] =
X

x2X
xpX(x)

Ø The expectation is a single number, not a random variable.
It encodes the “center of mass” of the probability distribution:

xmin = min{x | x 2 X}
xmax = max{x | x 2 X}

xmin  E[x]  xmax

Ø The expectation is an average or interpolation.  It is possible that

pX(E[x]) = 0 for some random variables X.



Expected Values of Functions
Ø Consider a non-random (deterministic) function of a random variable:

pX(x) = P (X = x) pY (y) =
X

{x|g(x)=y}

pX(x)

Y = g(X)

Ø What is the expected value of random variable Y? E[Y ] = E[g(X)]

Ø Correct approach #1: E[Y ] =
X

y

ypY (y)

Ø Correct approach #2: E[Y ] = E[g(X)] =
X

x

g(x)pX(x)

Ø Incorrect approach: (except in
special cases)g(E[X]) 6= E[g(X)]



Examples

X = 1,2,3 with probability 1/3,1/3,1/3
Y = X2 

E[Y ] = E[X2] =
1

2
+

4

3
+

9

3
= 4

2

3

(E[X])2 = 22 = 4

X = −1, 0,+1 with probabity 1/3, 1/3, 1/3.
E[X2] = 2

3
, while (E[X])2 = 0



Expectation of Multiple Variables
Ø The expectation or expected value of a function of two discrete variables:

Ø A similar formula applies to functions of 3 or more variables

E[g(X,Y )] =
X

x2X

X

y2Y
g(x, y)pXY (x, y)

Ø Expectations of sums of functions are sums of expectations:

E[g(X) + h(Y )] = E[g(X)] + E[h(Y )] =

"
X

x2X
g(x)pX(x)

#
+

2

4
X

y2Y
h(y)pY (y)

3

5

Ø This is always true, whether or not X and Y are independent
Ø Specializing to linear functions, this implies that:

E[aX + bY + c] = aE[X] + bE[Y ] + c



Examples:
We role 2 die and get the sum of the first role plus the 
square of the second role

E[X + Y 2] =
6∑

x=1

6∑

y=1

(x+ y2)Pr(X = x, Y = y)

=
6∑

x=1

6∑

y=1

xPr(X = x, Y = y) +
6∑

x=1

6∑

y=1

y2Pr(X = x, Y = y)

=
6∑

x=1

xPr(X = x) +
6∑

x=1

y2Pr(Y = y)

= E[X] + E[Y 2]



Mean of Binomial Probability Distribution
Ø Suppose you flip n coins with bias p, count number of heads
Ø A binomial random variable X has parameters n, p:

Ø For binomial, expected values are 
expected counts of events:

pX(k) =

✓
n

k

◆
pk(1� p)n�k X = {0, 1, 2, . . . , n}

E[X] = pn
Ø Simple proof uses indicator variables Xi 

for whether each of n tosses is heads:
Xi is a random variable

E[Xi ] = p · 1 + (1� p) · 0 = p = Pr(Xi = 1).

Using linearity of expectations

E[X ] = E

"
nX

i=1

Xi

#
=

nX

i=1

E[Xi ] = np.

Xi is a random variable

E[Xi ] = p · 1 + (1� p) · 0 = p = Pr(Xi = 1).

Using linearity of expectations

E[X ] = E

"
nX

i=1

Xi

#
=

nX

i=1

E[Xi ] = np.



Binomial Mean:  The Hard Way
Expectation of a Binomial Random Variable

E[X ] =

nX

j=0

j

✓
n

j

◆
pj(1� p)n�j

=

nX

j=0

j
n!

j!(n � j)!
pj(1� p)n�j

=

nX

j=1

n!

(j � 1)!(n � j)!
pj(1� p)n�j

= np
nX

j=1

(n � 1)!

(j � 1)!((n � 1)� (j � 1))!
pj�1

(1� p)(n�1)�(j�1)

= np
n�1X

k=0

(n � 1)!

k!((n � 1)� k)!
pk(1� p)(n�1)�k

= np
n�1X

k=0

✓
n � 1

k

◆
pk(1� p)(n�1)�k

= np.


