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of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.
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Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible

X : ⌦ ! R x = X(!) 2 R for ! 2 ⌦

2 Discrete Random Variables Chap. 2

2.1 BASIC CONCEPTS

In many probabilistic models, the outcomes are of a numerical nature, e.g., if
they correspond to instrument readings or stock prices. In other experiments,
the outcomes are not numerical, but they may be associated with some numerical
values of interest. For example, if the experiment is the selection of students from
a given population, we may wish to consider their grade point average. When
dealing with such numerical values, it is often useful to assign probabilities to
them. This is done through the notion of a random variable, the focus of the
present chapter.

Given an experiment and the corresponding set of possible outcomes (the
sample space), a random variable associates a particular number with each out-
come; see Fig. 2.1. We refer to this number as the numerical value or the
experimental value of the random variable. Mathematically, a random vari-
able is a real-valued function of the experimental outcome.
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Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

Ø Mathematically:  A function from sample space        to real numbers
Ø May define several random variables on the same sample space,

if there are several quantities you would like to measure
Ø Example:  

Ø Sample space: students at Brown. 
Ø Random variables: grade in CS 145, grade in CS 15, age,…

⌦ R
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Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

Example random variables for a day in a casino:
Ø Number of gamblers who visited
Ø Total money won (or probably, lost)
Ø Number of hands of poker played
Ø Total power consumed
Ø Number of gamblers caught cheating
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Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

Ø The range of a random variable is the set of values with positive probability

X = {x 2 R | X(!) = x for some ! 2 ⌦, P (!) > 0}
For a discrete random variable, the range is finite or countably infinite 
(we can map it to the integers).  Coming later: continuous random variables.
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Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

Ø The probability mass function (PMF) or probability distribution of variable:

pX(x) = P (X = x) = P ({! 2 ⌦ | X(!) = x})
pX(x) � 0,

X

x2X
pX(x) = 1.

If range is finite, this is
a vector of non-negative 

numbers that sums to one.



Computing a PMF

LECTURE 5 Random variables

• Readings: Sections 2.1-2.3, start 2.4 • An assignment of a value (number) to
every possible outcome

Lecture outline
• Mathematically: A function

• Random variables from the sample space � to the real
numbers

• Probability mass function (PMF)
– discrete or continuous values

• Expectation

• Can have several random variables• Variance
defined on the same sample space

• Notation:

– random variable X

– numerical value x

Probability mass function (PMF) How to compute a PMF pX(x)
– collect all possible outcomes for which

• (“probability law”, X is equal to x

“probability distribution” of X) – add their probabilities
– repeat for all x

• Notation:
• Example: Two independent rools of a

pX(x) = P(X = x) fair tetrahedral die
= P({⇤ ⌅ � s.t. X(⇤) = x})

F : outcome of first throw
⇤ S: outcome of second throw

• pX(x) ⇤ 0 x pX(x) = 1 X = min(F, S)

• Example: X=number of coin tosses
until first head 4

– assume independent tosses,
3

P(H) = p > 0
S = Second roll

2

pX(k) = P(X = k)

= P(TT · · ·TH) 1

= (1� p)k�1p, k = 1,2, . . . 1 2 3 4

F = First roll

– geometric PMF

pX(2) =

1
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Computing a PMF
<latexit sha1_base64="LMLLxi1shXrvzXe+PAp24MzirVQ="></latexit>

Sample space = S = {s1, s2, . . . , sm}, a group of students at CIT.
Distribution: P (s) = probability that I choose student s.
Random variables:

• X = 1, 2, 3, 0 - grade in CS 145 of the student I chose

• Y = 1, 2, 3, 0 - grade in CS 155 of the student I chose

• Z = 1, 2, 3, 4 - years in Brown of the student I chose

P (X = 2) =
P

s:X(s)=2 P (s)

P (2  Z  4) =
P

s:2Z(s)4 P (z)



Geometric Probabilities
Ø Repeatedly flip a coin with probability of Heads p,

count the number of tosses X until the first Head is observed:

Example:
Ø Your laptop hard drive independently fails on each 

day with (hopefully small) probability p.  What is the 
distribution of the number of days until failure?

Wikipedia

P (X = 1) = p, P (X = 2) = (1� p)p, P (X = 3) = (1� p)2p, . . .

P (X = k) = (1� p)k�1p for k = 1, 2, 3, . . .

Ø The number of possible outcomes is infinite:
there is no k after which the next toss is guaranteed to be Heads



Geometric Probabilities
Ø Repeatedly flip a coin with probability of Heads p,

count the number of tosses X until the first Head is observed:

Wikipedia

P (X = 1) = p, P (X = 2) = (1� p)p, P (X = 3) = (1� p)2p, . . .

P (X = k) = (1� p)k�1p for k = 1, 2, 3, . . .

Ø Recall the geometric series: 1X

k=0

qk =
1

1� q
, 0 < q < 1.

Ø Verify that geometric probabilities are normalized:
1X

k=1

(1� p)k�1p = p
1X

k=0

(1� p)k =
p

1� (1� p)
= 1



Geometric Probabilities
Ø Repeatedly flip a coin with probability of Heads p,

count the number of tosses X until the first Head is observed:

Wikipedia

P (X = 1) = p, P (X = 2) = (1� p)p, P (X = 3) = (1� p)2p, . . .

P (X = k) = (1� p)k�1p for k = 1, 2, 3, . . .

Ø What is the probability that the number of tosses X is odd?

P (X odd) =
1X

k=1

(1� p)2(k�1)p =
1

2� p

Ø For a fair coin, this equals

P (X odd) =
2

3
if p =

1

2
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2 Discrete Random Variables Chap. 2

2.1 BASIC CONCEPTS

In many probabilistic models, the outcomes are of a numerical nature, e.g., if
they correspond to instrument readings or stock prices. In other experiments,
the outcomes are not numerical, but they may be associated with some numerical
values of interest. For example, if the experiment is the selection of students from
a given population, we may wish to consider their grade point average. When
dealing with such numerical values, it is often useful to assign probabilities to
them. This is done through the notion of a random variable, the focus of the
present chapter.

Given an experiment and the corresponding set of possible outcomes (the
sample space), a random variable associates a particular number with each out-
come; see Fig. 2.1. We refer to this number as the numerical value or the
experimental value of the random variable. Mathematically, a random vari-
able is a real-valued function of the experimental outcome.
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Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø Computing probabilities of sets of values:

Ø The probability mass function or probability distribution of random variable:

pX(x) = P (X = x) = P ({! 2 ⌦ | X(!) = x})
pX(x) � 0,

X

x2X
pX(x) = 1.

If range is finite, this is
a vector of non-negative 

numbers that sums to one.

P (X 2 S) =
X

x2S

pX(x) for any S ⇢ R.



Functions of Random Variables
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Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

pX(x) = P (X = x)

pX(x) � 0,
X

x2X
pX(x) = 1.

Y = 1.8X + 32Ø Example:  Degrees Celsius X to degrees Fahrenheit Y:

Ø Example:  Current drawn X to power consumed Y: Y = rX2

Ø If we take any non-random (deterministic) function of a random variable, 
we produce another random variable: g : R ! RY = g(X)

g �X : ⌦ ! R
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dealing with such numerical values, it is often useful to assign probabilities to
them. This is done through the notion of a random variable, the focus of the
present chapter.

Given an experiment and the corresponding set of possible outcomes (the
sample space), a random variable associates a particular number with each out-
come; see Fig. 2.1. We refer to this number as the numerical value or the
experimental value of the random variable. Mathematically, a random vari-
able is a real-valued function of the experimental outcome.
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Figure 2.1: (a) Visualization of a random variable. It is a function that assigns
a numerical value to each possible outcome of the experiment. (b) An example
of a random variable. The experiment consists of two rolls of a 4-sided die, and
the random variable is the maximum of the two rolls. If the outcome of the
experiment is (4, 2), the experimental value of this random variable is 4.

Here are some examples of random variables:

(a) In an experiment involving a sequence of 5 tosses of a coin, the number of
heads in the sequence is a random variable. However, the 5-long sequence

Ø A random variable assigns values to outcomes of uncertain experiments

pX(x) = P (X = x)

pX(x) � 0,
X

x2X
pX(x) = 1.

Ø If we take any non-random (deterministic) function of a random variable, 
we produce another random variable: g : R ! RY = g(X)

g �X : ⌦ ! R
Ø By definition, the probability mass function of Y equals

pY (y) =
X

{x|g(x)=y}

pX(x) pY (y) � 0,
X

y2Y
pY (y) = 1.
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Figure 2.7: The PMFs of X and Y = |X| in Example 2.1.

2.4 EXPECTATION, MEAN, AND VARIANCE

The PMF of a random variable X provides us with several numbers, the proba-
bilities of all the possible values of X. It would be desirable to summarize this
information in a single representative number. This is accomplished by the ex-
pectation of X, which is a weighted (in proportion to probabilities) average of
the possible values of X.

As motivation, suppose you spin a wheel of fortune many times. At each
spin, one of the numbers m1, m2, . . . , mn comes up with corresponding proba-
bility p1, p2, . . . , pn, and this is your monetary reward from that spin. What is
the amount of money that you “expect” to get “per spin”? The terms “expect”
and “per spin” are a little ambiguous, but here is a reasonable interpretation.

Suppose that you spin the wheel k times, and that ki is the number of times
that the outcome is mi. Then, the total amount received is m1k1 +m2k2 + · · ·+
mnkn. The amount received per spin is

M =
m1k1 + m2k2 + · · · + mnkn

k
.

If the number of spins k is very large, and if we are willing to interpret proba-
bilities as relative frequencies, it is reasonable to anticipate that mi comes up a
fraction of times that is roughly equal to pi:

pi ≈
ki

k
, i = 1, . . . , n.

Thus, the amount of money per spin that you “expect” to receive is

M =
m1k1 + m2k2 + · · · + mnkn

k
≈ m1p1 + m2p2 + · · · + mnpn.

Motivated by this example, we introduce an important definition.

10 Discrete Random Variables Chap. 2

where a and b are scalars. We may also consider nonlinear functions of the
general form

Y = g(X).

For example, if we wish to display temperatures on a logarithmic scale, we would
want to use the function g(X) = log X.

If Y = g(X) is a function of a random variable X, then Y is also a random
variable, since it provides a numerical value for each possible outcome. This is
because every outcome in the sample space defines a numerical value x for X
and hence also the numerical value y = g(x) for Y . If X is discrete with PMF
pX , then Y is also discrete, and its PMF pY can be calculated using the PMF
of X. In particular, to obtain pY (y) for any y, we add the probabilities of all
values of x such that g(x) = y:

pY (y) =
∑

{x | g(x)=y}

pX(x).

Example 2.1. Let Y = |X| and let us apply the preceding formula for the PMF
pY to the case where

pX(x) =
{

1/9 if x is an integer in the range [−4, 4],
0 otherwise.

The possible values of Y are y = 0, 1, 2, 3, 4. To compute pY (y) for some given
value y from this range, we must add pX(x) over all values x such that |x| = y. In
particular, there is only one value of X that corresponds to y = 0, namely x = 0.
Thus,

pY (0) = pX(0) =
1
9
.

Also, there are two values of X that correspond to each y = 1, 2, 3, 4, so for example,

pY (1) = pX(−1) + pX(1) =
2
9
.

Thus, the PMF of Y is

pY (y) =

{
2/9 if y = 1, 2, 3, 4,
1/9 if y = 0,
0 otherwise.

For another related example, let Z = X2. To obtain the PMF of Z, we
can view it either as the square of the random variable X or as the square of the
random variable Y . By applying the formula pZ(z) =

∑
{x | x2=z} pX(x) or the

formula pZ(z) =
∑

{y | y2=z} pY (y), we obtain

pZ(z) =

{
2/9 if z = 1, 4, 9, 16,
1/9 if z = 0,
0 otherwise.
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pY (y) =
X

{x|g(x)=y}

pX(x)g(X) = |X|



CS145: Lecture 5 Outline
ØDiscrete random variables
ØExpectations of discrete variables



Expectation
Ø The expectation or expected value of a discrete random variable is:

Ø The random variable has an expectation iff 

Ø We may also use the terms mean, average, first moment

Ø Median is a different concept. It’s the value M such that

E[X] =
X

x2X
xpX(x)

E[|X|] < 1
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P (X  M) � 1/2 and P (X � M) � 1/2

Ø The expectation is a single number, not a random variable.
It encodes the “center of mass” of the probability distribution:



Bernoulli Probability Distribution
Ø A Bernoulli or indicator random variable X has one parameter p:

pX(1) = p, pX(0) = 1� p, X = {0, 1}

The expectation of an indicator random variable is its
 probability:

Examples:
Ø Flip a possibly biased coin with probability of coming up heads p
Ø A user answers a true/false question in an online survey
Ø Does it snow or not on some day

Jakob Bernoulli

<latexit sha1_base64="tx7On03zv0yNqBpBzAGuKhRwB5M=">AAACM3icbZBPSyMxGMYz6q7a/Vf16OXFutCybJnIgnspiCLorYLdDswMJZOmNpjJhCSztAz9TF78JIKH3YOCePU7mHZ6cNt9IfDL87wvyfskSnBjff+Pt7K69u79+sZm5cPHT5+/VLe2f5ks15R1aCYyHSTEMMEl61huBQuUZiRNBOsm1ydTv/ubacMzeWnHisUpuZJ8wCmxTupVz/dPwyBuRSZPe8Uo4hKKiBIBwWQCI4hoP7PQrgetUQNagMu7gm/gl1jH31UDnKX2e9Wa3/RnBcuA51BD82r3qndRP6N5yqSlghgTYl/ZuCDacirYpBLlhilCr8kVCx1KkjITF7OVJ/DVKX0YZNodaWGmvp0oSGrMOE1cZ0rs0Cx6U/F/Xpjbwc+44FLllklaPjTIBdgMpvlBn2tGrRg7IFRz91egQ6IJtS7ligsBL668DN2DJv7RxPjioHZ0PM9jA+2iPVRHGB2iI3SG2qiDKLpB9+gBPXq33l/vyXsuW1e8+cwO+qe8l1ctwqYi</latexit>

E[X] =
P

x2X x · P (X = x) = 1 · p+ 0 · (1� p) = p



Expectation – First Moment
Ø The expectation or expected value of a discrete random variable is:

E[X] =
X

x2X
xpX(x)

Ø The expectation is a single number, not a random variable.
It encodes the “center of mass” of the probability distribution:

Example 1. 

Example 2. 
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for the binomial (n, p) distribution, used in Chapter 2. In n independent trials with 
probability p of success on each trial, you expect to get around J.L = np successes. 
So it is natural to say that the expected number of successes in n trials is np. This 
suggests the following definition of the expected value E(X) of a random variable 
X. For X the number of successes in n trials, this definition makes E(X) = np. See 
Example 7. 

Definition of Expectation 
The expectation (also called expected value, or mean) of a random variable X, 
is the mean of the distribution of X, denoted E(X). That is 

E(X) = LXP(X = x) 
all x 

the average of all possible values of X, weighted by their probabilities. 

Random sampling. 
Suppose n tickets numbered Xl,"" Xn are put in a box and a ticket is drawn at 
random. Let X be the x-value on the ticket drawn. Then E(X) = x, the ordinary 
average of the list of numbers in the box. This follows from the above definition, 
and the weighted average formula (1) for x, because the distribution of X is the 
empirical distribution of x-values in the list: 

P(X = x) = Pn(x) = #{i: 1 :::; i:::; n and Xi = x}/n 

Two possible values. 
If X takes two possible values, say a and b, with probabilities P(a) and P(b), then 

E(X) = aP(a) + bP(b) 

where P(a) + P(b) = 1. This weighted average of a and b is a number between a 
and b, proportion P(b) of the way from a to b. The larger P(a), the closer E(X) is 
to a; and the larger P(b), the closer E(X) is to b. 

a a b b 

Example 1. 

Example 2. 
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Expectation
Ø The expectation or expected value of a discrete random variable is:

E[X] =
X

x2X
xpX(x)

Ø The expectation is a number, not a random variable.
It encodes the “center of mass” of the probability distribution

Ø Example: Uniform 
distribution on {0,1,…,n}

Binomial PMF Expectation

• X: number of heads in n independent • Definition:

coin tosses E[X] =
⌅

xpX(x)
x

• P(H) = p

• Interpretations:
• Let n = 4 – Center of gravity of PMF

– Average in large number of repetitions
pX(2) = P(HHTT ) + P(HTHT ) + P(HTTH) of the experiment

+P(THHT ) + P(THTH) + P(TTHH) (to be substantiated later in this course)

= 6 2(1� )2p p • Example: Uniform on 0,1, . . . , n

4
=

�

2

⇥
2 � )2p (1 p p (x )X

In general:
1/(n+1)

k )n�kpX(k) =
�n⇥

p (1�p , k = 0,1, . . . , n . . .
k

0 1 x 
n- 1 n

1 1 1
E[X] = 0⇥ +1⇥ +· · ·+n =

n + 1 n + 1
⇥

n + 1

Properties of expectations Variance

• Let X be a r.v. and let Y = g(X) Recall: E[g(X)] =
⌅

g(x)pX(x)
x

– Hard: E[Y ] =
⌅

ypY (y)
y • Second moment: E[ 2 2X ] =

⇤
x x p (

– Easy: E[Y ] =
⌅

X x)

g(x)pX(x)
x • Variance

• Caution: In general, E[g(X)] = g(E[X]) var(X) = E
⇧
(X � E[X])2

⌃

=
⌅

( [ ])2x E X pX(x)
x

�

2erties: If �, ⇥ are constants, then: = E[ 2Prop X ]� (E[X])

• E[�] =
Properties:

• E[�X] = • var(X) ⇤ 0

• E[�X + ⇥] = • var(�X + ⇥) = 2� var(X)

⇧

2

n(n+ 1)

2(n+ 1)
=

n

2



Expectation
Ø The expectation or expected value of a discrete random variable is:

E[X] =
X

x2X
xpX(x)

Ø Example: Uniform distribution on {0,1,…,n},   P(X=i) = !
"#!

	 ,   E[X] = "
$

Ø Example: 

<latexit sha1_base64="1aMBViUTFdO1S3zRqdkT23z4b5E="></latexit>

Proper distribution:
Pn

i=0 P (X = i) =
Pn

i=0
i

1
2n(n+1)

= 1

E[X] =
Pn

i=0 i
i

1
2n(n+1)

=
1
6n(n+1)(2n+1)

1
2n(n+1)

= 2
3n+ 1

3
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P (X = i) =

(
i

1
2n(n+1)

for 0  i  n

0 otherwise



Expectation
Ø The expectation or expected value of a discrete random variable is:

E[X] =
X

x2X
xpX(x)

xmin = min{x | x 2 X}
xmax = max{x | x 2 X}

xmin  E[x]  xmax

Ø The expectation is an average or interpolation.  It is possible that

pX(E[x]) = 0 for some random variables X.

pX(1) = p, pX(0) = 1� p, X = {0, 1} E[X] = pExample:



Geometric Probability Distribution

Ø A geometric random variable X has parameter p, countably infinite range:

Examples:
Ø Flip a coin with bias p, count number of 

tosses until first heads (success)
Ø Your laptop hard drive independently fails on each 

day with (hopefully small) probability p.  What is the 
distribution of the number of days until failure? Wikipedia

pX(k) = (1� p)k�1p X = {1, 2, 3, . . .}

Ø Recall the geometric series:
1X

k=0

qk =
1

1� q
, 0 < q < 1.



Geometric Probability Distribution
Ø A geometric random variable X has parameter p, countably infinite range:

pX(k) = (1� p)k�1p X = {1, 2, 3, . . .}
Ø The expected value equals:

Ø In general, for any non-negative random variable X:
<latexit sha1_base64="Szxv5tirK0tIZPCbMM+TIVlf49U="></latexit>

E[X] =
X

k�1

kP (X = k) =
X

k�1

X

j�k

P (X = j) =
X

k�1

P (X � k)
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E[X] =
X

k�1

k(1� p)k�1p =
X

k�1

(1� p)k�1 =
1

p



Expectation of Non-Negative R. V.
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E[X] = P (X = 1) + 2P (X = 2) + 3P (X = 3) + 4P (X = 4) + 5P (X = 5) + . . .
= P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5) + . . .

+ P (X = 2) + P (X = 3) + P (X = 4) + P (X = 5) + . . .
+ P (X = 3) + P (X = 4) + P (X = 5) + . . .

+ P (X = 4) + P (X = 5) + . . .
+ P (X = 5) + . . .

...
...

...
... . . .

= P (X � 1) + P (X � 2) + P (X � 3) + P (X � 4) + P (X � 5) + . . .

=
P

k�1 P (X � k)

<latexit sha1_base64="Szxv5tirK0tIZPCbMM+TIVlf49U="></latexit>

E[X] =
X

k�1

kP (X = k) =
X

k�1

X

j�k

P (X = j) =
X

k�1

P (X � k)



Expected Values of Functions
Ø Consider a non-random (deterministic) function of a random variable:

pX(x) = P (X = x) pY (y) =
X

{x|g(x)=y}

pX(x)

Y = g(X)

Ø What is the expected value of random variable Y? E[Y ] = E[g(X)]

Ø Correct approach #1: E[Y ] =
X

y

ypY (y)

Ø Correct approach #2: E[Y ] = E[g(X)] =
X

x

g(x)pX(x)

Ø Incorrect approach: (except in
special cases)g(E[X]) 6= E[g(X)]
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Figure 2.7: The PMFs of X and Y = |X| in Example 2.1.

2.4 EXPECTATION, MEAN, AND VARIANCE

The PMF of a random variable X provides us with several numbers, the proba-
bilities of all the possible values of X. It would be desirable to summarize this
information in a single representative number. This is accomplished by the ex-
pectation of X, which is a weighted (in proportion to probabilities) average of
the possible values of X.

As motivation, suppose you spin a wheel of fortune many times. At each
spin, one of the numbers m1, m2, . . . , mn comes up with corresponding proba-
bility p1, p2, . . . , pn, and this is your monetary reward from that spin. What is
the amount of money that you “expect” to get “per spin”? The terms “expect”
and “per spin” are a little ambiguous, but here is a reasonable interpretation.

Suppose that you spin the wheel k times, and that ki is the number of times
that the outcome is mi. Then, the total amount received is m1k1 +m2k2 + · · ·+
mnkn. The amount received per spin is

M =
m1k1 + m2k2 + · · · + mnkn

k
.

If the number of spins k is very large, and if we are willing to interpret proba-
bilities as relative frequencies, it is reasonable to anticipate that mi comes up a
fraction of times that is roughly equal to pi:

pi ≈
ki

k
, i = 1, . . . , n.

Thus, the amount of money per spin that you “expect” to receive is

M =
m1k1 + m2k2 + · · · + mnkn

k
≈ m1p1 + m2p2 + · · · + mnpn.

Motivated by this example, we introduce an important definition.
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where a and b are scalars. We may also consider nonlinear functions of the
general form

Y = g(X).

For example, if we wish to display temperatures on a logarithmic scale, we would
want to use the function g(X) = log X.

If Y = g(X) is a function of a random variable X, then Y is also a random
variable, since it provides a numerical value for each possible outcome. This is
because every outcome in the sample space defines a numerical value x for X
and hence also the numerical value y = g(x) for Y . If X is discrete with PMF
pX , then Y is also discrete, and its PMF pY can be calculated using the PMF
of X. In particular, to obtain pY (y) for any y, we add the probabilities of all
values of x such that g(x) = y:

pY (y) =
∑

{x | g(x)=y}

pX(x).

Example 2.1. Let Y = |X| and let us apply the preceding formula for the PMF
pY to the case where

pX(x) =
{

1/9 if x is an integer in the range [−4, 4],
0 otherwise.

The possible values of Y are y = 0, 1, 2, 3, 4. To compute pY (y) for some given
value y from this range, we must add pX(x) over all values x such that |x| = y. In
particular, there is only one value of X that corresponds to y = 0, namely x = 0.
Thus,

pY (0) = pX(0) =
1
9
.

Also, there are two values of X that correspond to each y = 1, 2, 3, 4, so for example,

pY (1) = pX(−1) + pX(1) =
2
9
.

Thus, the PMF of Y is

pY (y) =

{
2/9 if y = 1, 2, 3, 4,
1/9 if y = 0,
0 otherwise.

For another related example, let Z = X2. To obtain the PMF of Z, we
can view it either as the square of the random variable X or as the square of the
random variable Y . By applying the formula pZ(z) =

∑
{x | x2=z} pX(x) or the

formula pZ(z) =
∑

{y | y2=z} pY (y), we obtain

pZ(z) =

{
2/9 if z = 1, 4, 9, 16,
1/9 if z = 0,
0 otherwise.

pY (y) =
X

{x|g(x)=y}

pX(x)g(X) = |X|

E[X] = 0
g(E[X]) = g(0) = 0 E[Y ] =

1

9
(0) +

2

9
(1 + 2 + 3 + 4) =

20

9
⇡ 2.22



Linearity of Expectation
Ø Consider a linear function:
Ø Example:  Change of units (temperature, length, mass, currency, …)
Ø In this special case, mean of Y is the linear function applied to E[X]:

Y = g(X) = aX + b

E[Y ] = g(E[X]) = aE[X] + b

16 Discrete Random Variables Chap. 2

which is consistent with the result obtained earlier.

As we have noted earlier, the variance is always nonnegative, but could it
be zero? Since every term in the formula

∑
x

(
x−E[X]

)2
pX(x) for the variance

is nonnegative, the sum is zero if and only if
(
x −E[X])2pX(x) = 0 for every x.

This condition implies that for any x with pX(x) > 0, we must have x = E[X]
and the random variable X is not really “random”: its experimental value is
equal to the mean E[X], with probability 1.

Variance

The variance var(X) of a random variable X is defined by

var(X) = E
[(

X − E[X]
)2]

and can be calculated as

var(X) =
∑

x

(
x − E[X]

)2
pX(x).

It is always nonnegative. Its square root is denoted by σX and is called the
standard deviation.

Let us now use the expected value rule for functions in order to derive some
important properties of the mean and the variance. We start with a random
variable X and define a new random variable Y , of the form

Y = aX + b,

where a and b are given scalars. Let us derive the mean and the variance of the
linear function Y . We have

E[Y ] =
∑

x

(ax + b)pX(x) = a
∑

x

xpX(x) + b
∑

x

pX(x) = aE[X] + b.

Furthermore,
var(Y ) =

∑

x

(
ax + b − E[aX + b]

)2
pX(x)

=
∑

x

(
ax + b − aE[X] − b

)2
pX(x)

= a2
∑

x

(
x − E[X]

)2
pX(x)

= a2var(X).

Example:  You went on vacation to Europe, and want to find the average 
amount you spent on lodging per day.  The following are equivalent
(assuming a fixed exchange rate from Euros to US dollars):
Ø E[g(X)] = convert each receipt from Euros to US dollars, average result
Ø g(E[X]) = average receipts in Euros, convert result to US dollars



Linearity of Expectation
Ø Consider a linear function:
Ø Example:  Change of units (temperature, length, mass, currency, …)
Ø In this special case, mean of Y is the linear function applied to E[X]:

Y = g(X) = aX + b

E[Y ] = g(E[X]) = aE[X] + b

Example:  I offer you to let you play a game where you pay a $20
entrance fee, and then I let you roll a fair 6-sided die, and pay you
the rolled value times $5.  What is your expected change in money?

Y = 5X � 20

E[X] = 3.5

(change in money Y for dice outcome X)

E[Y ] = 5E[X]� 20 = �2.5



Travel at a Random Speed

LECTURE 6 Review

Random variable X: function from• Readings: Sections 2.4-2.6
•

sample space to the real numbers

Lecture outline • PMF (for discrete random variables):
pX(x) = P(X = x)

• Review: PMF, expectation, variance • Expectation:

• Conditional PMF E[X] =
⌅

xpX(x)
x

• Geometric PMF
E[g(X)] = g(x)p (x)

• X
Total expectation theorem

⌅

x

• Joint PMF of two random variables E[�X + ⇥] = �E[X] + ⇥

• E
�
X � E[X]

⇥
=

var(X) = E

=

⇧
( 2X � E[X])

(x E[X])2p

⌃

=

⌅

x
� X(x)

E[ 2X ]� ( 2E[X])

Standard deviation: ⇤X =
⌥

var(X)

Random speed Average speed vs. average time

• Traverse a 200 mile distance at constant • Traverse a 200 mile distance at constant
but random speed V but random speed V

p  (v ) 1/2 1/2 p  (v ) 1/2 1/2V V

1 200 v 1 200 v

• d = 200, T = t(V ) = 200/V • time in hours = T = t(V ) =

• E[T ] = E[t(V )] =
⇤

v t(v)pV (v) =
• E[V ] =

• E[TV ] = 200 = E[T ] · E[V ]

• var(V ) = • E[200/V ] = E[T ] = 200/E[V ].

• ⇤V =

⌅

⌅
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Ø You want to travel 200 miles to New York
Ø With 50% probability, the new high-speed train 

runs at a constant velocity of 200 mph
Ø With 50% probability, the train engine overheats

and it runs at a constant velocity of 1 mph
E[V ] =

201

2
= 100.5

E[T ] = 1 ⇤ 1/2 + 200 ⇤ 1/2 = 100.5
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Expectation of Multiple Variables
Ø The expectation or expected value of a function of two discrete variables:

Ø A similar formula applies to functions of 3 or more variables

E[g(X,Y )] =
X

x2X

X

y2Y
g(x, y)pXY (x, y)

Ø Expectations of sums of functions are sums of expectations:

E[g(X) + h(Y )] = E[g(X)] + E[h(Y )] =

"
X

x2X
g(x)pX(x)

#
+

2

4
X

y2Y
h(y)pY (y)

3

5

Ø This is always true, whether or not X and Y are independent
Ø Specializing to linear functions, this implies that:

E[aX + bY + c] = aE[X] + bE[Y ] + c



Mean of Binomial Probability Distribution
Ø Suppose you flip n coins with bias p, count number of heads
Ø A binomial random variable X has parameters n, p:

Ø For binomial, expected values are 
expected counts of events:

pX(k) =

✓
n

k

◆
pk(1� p)n�k X = {0, 1, 2, . . . , n}

E[X] = pn
Ø Simple proof uses indicator variables Xi 

for whether each of n tosses is heads:
Xi is a random variable

E[Xi ] = p · 1 + (1� p) · 0 = p = Pr(Xi = 1).

Using linearity of expectations

E[X ] = E

"
nX

i=1

Xi

#
=

nX

i=1

E[Xi ] = np.

Xi is a random variable

E[Xi ] = p · 1 + (1� p) · 0 = p = Pr(Xi = 1).

Using linearity of expectations

E[X ] = E

"
nX

i=1

Xi

#
=

nX

i=1

E[Xi ] = np.



Binomial Mean:  The Hard Way
Expectation of a Binomial Random Variable

E[X ] =

nX

j=0

j

✓
n

j

◆
pj(1� p)n�j

=

nX

j=0

j
n!

j!(n � j)!
pj(1� p)n�j

=

nX

j=1

n!

(j � 1)!(n � j)!
pj(1� p)n�j

= np
nX

j=1

(n � 1)!

(j � 1)!((n � 1)� (j � 1))!
pj�1

(1� p)(n�1)�(j�1)

= np
n�1X

k=0

(n � 1)!

k!((n � 1)� k)!
pk(1� p)(n�1)�k

= np
n�1X

k=0

✓
n � 1

k

◆
pk(1� p)(n�1)�k

= np.


