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Conditional Probability

e P(A|B) = probability of A,
given that B occurred

— B IS our new universe

e Definition: Assuming P(B) # 0,

P(AN B)
P(B)

P(A | B) undefined if P(B) =0

P(A|B) =

* Under discrete uniform law, where all outcomes equally likely:

number of elements of ANB  |AN B|

P(A|B) =
(A]B) number of elements of B B




P(ANBNC) =P(A)-P(B| A)-P(C| ANB)

P(A)

P(A°)

Multiplication Rule

P(ANnB) P(ANnBNCQC)

= P(A) - .

P(A) P(AN B)

ANB P(CIANB)

ANBN C

P(BC | A)
ANBCN C

A N
ANBCN CC

Multiplication Rule

Assuming that all of the conditioning events have positive probability, we
have

P(N7, A;) = P(A1)P(A2| A1)P(A3 | A1 N As) - P(A, | NI Ay).




Example: Two-Sided Cards

A hat contains three cards. — ————  Label the faces of the cards:

One card is black on both sides. b/ b b1 and by for the black—black card;
One card is white on both sides. b/ w w; and wy for the white—white card;
One card is black on one side and white on the other. w/w b3 and ws for the black—white card.

The cards are mixed up in the hat. Then a single card
is drawn and placed on a table. If the visible side of
the card is black, what is the chance that the other side
is white?

{black on top} = {b1, b2, b3}

{white on bottom} = {b3, w1, ws}

P(white on bottom|black on top)

_ ##(white on bottom and black on top) 1
N #(black on top) 3

Observing the top face of the card provides information
about the color of the bottom face.



Example: Roll of a 6-Sided Die

e [he probability of "the outcome of a die roll is even” is
e The probability of the event "the outcome is < 4" is %

(@) ][OV

2 1
P(die even | die <4) = 1-9" P(die even)

Observing that the die roll was at most 4
does not provide information about whether it was even.



Independence

Two equivalent definitions of events independence:

e “Defn:” P(B|A)=P(B) e Recall that P(ANB) =P(A) -P(B| A)
— “occurrence of A e Defn: P(ANB)=P(A) P(B)
provides no information
about B’s occurrence” e Symmetric with respect to A and B

— applies even if P(A) =0
— implies P(A | B) = P(A)

Set of events {Aq,..., A, } are Mutually Independent if

n

P(Niz, Aqi) = HP(Az')-

1=1



Sources of Independence

Event associated with "independent” physical processes are
independent.

But independent events do not have to be related to
independent physical processes.

Example:

e The probability of "the outcome of a die roll is even” is
e The probability of the event "the outcome is < 4" is ¢.
e The probability of "an even outcome < 4" is

(@) [O)

2 12 3 4
6 36 6 6

= the two events are independent.
The "intuition” here is that there are the same number of odd
and even outcomes that are < 4. Thus, the "information”
that the outcome is < 4 does not "help” in deciding if it is

odd or even.



Events that are NOT Independent

) W&

() ()

« Assume events are non-degenerate: 0 < P(4)<1,0< P(B) <1

* Nested events are not independent:

If Ac B, P(B|A) =14+ P(B).

* Mutually exclusive events are not independent:

IfANB=(, P(ANB)=0+# P(A)P(B).



Example: Assembly line

ltem —> —

A1

Add feature Add feature

Ao

—

Let A; be the event that the final item has a defect on feature 3.

P(A1) =08, P(Ay)=0.7

We assume that A; and A are independent events.

Final
ltem




Example: Assembly line

Add feature

ltem — —

A1

Let A; be the event that the final item has a defect on feature 3.

P(A;) =03, P(As)=0.2

Add feature
Ao

—

We assume that A; and A are independent events.

Final
ltem

W = {no defect}
W=AINA5 =0\ (41 U A,)
PW)=1—- P(A1 U A5)

P(A1UAy) = P(Ay) + P(Ay) — P(A1 N Aj)
= P(A1) + P(A2) — P(Aq) - P(A2)

O




Example: Assembly line

ltem —>

Add feature

A1

Add feature , Final
Ao ltem

Let A; be the event that the final item has a defect on feature 3.

P(A;) =03, P(As)=0.2

We assume that A; and A are independent events.

W = {no defect}
W=AINA5 =0\ (41 U A,)
PW)=1—- P(A1 U A5)

P(A1UAy) = P(Ay) + P(Ay) — P(A1 N Aj)
= P(A1) + P(A2) — P(Aq) - P(A2)

P(W)=1-P(A;) — P(Az) - (1 — P(A41))
= (1= P(A41)) - (1 = P(A2))
= P(AS) - P(AS) = 0.56




Example: Assembly line

Add feature
A1

ltem —>

Add feature , Final
Ao ltem

Let A; be the event that the final item has a defect on feature 3.

P(A;) =03, P(As)=0.2

We assume that A; and A are independent events.

W = {no defect}
W =ATNA5|=Q\ (A1 U As)
PW)=1—- P(A1 U A5)

P(A1UAy) = P(Ay) + P(Ay) — P(A1 N Aj)
= P(A1) + P(A2) — P(Aq) - P(A2)

P(W)=1-P(A;) — P(Az) - (1 — P(A41))
= (1 - P(A41))- (1 - P(A2))
=[P(A¢) - P(4S)|= 0.56

Complements maintain
iIndependence




Example: Assembly line

ltem —>

Add feature
A1

Let A; be the event that the final item has a defect on feature 3.
P(Ay)=0.3, P(A3)=0.2

Add feature
Ao

—

We assume that A; and A are independent events.

Final
ltem

W = {defect only on feature As}

W = ASN Ay

A independent with Ay = A7 independent with A,
P(W) = P(AS N As) = P(AS) - P(As) = (1 — P(A1))P(A42) =0.7-0.2 =0.14



Serial versus Parallel Systems

¢ “ Assume component failures are
Let W; be the event that component C; works without failure |ndependent eventS and that
{system works} = Wy N Wy P(W;) = 0.9 and P(W;) = 0.8

P(system works) = P(W1W3) = P(W;)P(W5) =0.9 x 0.8 = 0.72

G

Gy

{system works} = W7 U W5
P(system works) =1 — (0.1)(0.2) = 0.98



Conditioning may Affect Independence

Conditional independence, given C, Definition of conditional independence:
is defined as independence P(A "B ’ C) _ P(A ‘ C)P(B ’ C)

under probability law P(- | C)

Assume A and B are independent For this example:

N
%k\ P(AN B) = P(A)P(B)

If we are told that C occurred,
are A and B independent?

P(ANB|C)=0+ P(A|C)P(B|C)




Conditioning may Affect Independence

. . Definition of conditional independence:
A - dice outcome is even

B - dice outcome is <= 4 P(ANB|C)=PA|C)P(B|CO)

14 2

P(A N B) = P(A)P(B) = > = ;
C= dice outcome >1

P(AﬂBIC)=P(AanC)/p(c)=§ =2

33 9
# P(AIC)P(B|C) = Z==—



Example: Conditioning & Independence

Two unfair coins, A and B:
P(H | coin A) = 0.9, P(H | coin B) = 0.1
choose either coin with equal probability

Once we know it is coin A, are tosses

independent?

Yes, by definition.

If we do not know which coin it is, are
tosses independent?

No, consider probability that
second toss is heads given first.

Coin A

Coin B

H in the first toss increases the probability that we chose
the first coin and therefore of H is the second toss

0.9

0.1

0.1

0.9

0.9 HH
0.1
HT
0.9
0.1
0.1 HH
0.9
0.1

0.9



Example: Conditioning & Independence

e [wo unfair coins, A and B:
P(H | coin A) = 0.9, P(H | coin B) = 0.1
choose either coin with equal probability

e Once we know it is coin A, .ar.e.tosses
independent? YES, by definition.

e If we do not know which coin it is, are
tosses independent?

No, consider probability that
second toss is head given the first.

H1 - H in the first toss, H2 - H in the second toss.
P(H2 | H1) = P(H1NH2) _ 0.5(0.9)*40.5(0.1)% _ 0.82

P(HI) 0.5-0.940.5-0.1

Coin A

0.5

0.5

Coin B

0.9

0.1

0.1

0.9

0.9

0.1

0.9

0.1

0.1

0.9
0.1

0.9

HH

HT

HH
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Total Probability Theorem

Divide and conquer
Partition of sample space into A1, Ap, A3

Have P(B | A;), for every i

P(A | B)
P(ANB)
B
P(B)
P(B)
One way of computing P(B):
P(B) = P(A1)P(B | A1)

+ P(A2)P(B| Ap)
+ P(A3)P(B | A3z)

P(B)P(A | B)

= (BNA)U(BNAy)U(BNA;3)

P(BNAy)+ P(BNAy)+ P(BnN Aj)
P(A1)P(B | A1) + P(A2)P(B | A2) + P(A3)P(B | A3)



Bayes’ Rule

e “Prior" probabilities P(A;)
— initial “beliefs”

e We know P(B | A;) for each i

e Wish to compute P(4; | B)
— revise ‘“beliefs”, given that B occurred

P(A;| B) = P(’sz;)B) S Bayes.
_ P(A)P(B | A)
o P(B)
P(A;)P(B | A;)

> P(A)P(B | Aj)



Example: Witness reliability

A witness testifies that they saw a robber escaping with a yellow taxi

How reliable is this information?

« Taxi are either - or yellow
A witness is accurate 80% of the times (independent of the color)



Example: Witness reliability

A witness testifies that they saw a robber escaping with a yellow taxi

How reliable is this information?

« TJaxi are either red or yellow

A witness is accurate 80% of the times (independent of the color)
« 70% of taxi are red and 30% of taxi are yellow

T = {taxi of the robber is yellow}, W = {witness says yellow}

_ P(r) P(WI|T)- P(T)
PAW) = PWIL) 50y = BOvimP(T) + POVITo)PT?)
0.8-0.3

— ~ (.63
0.8-0.34+0.7-0.2



Face Detection
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Boxes and Balls

» Three boxes, box i contains i white balls and one black ball

» | pick one of the boxes at random,
then randomly draw one of its balls

» If | show you that the ball | drew was white,

what box would you guess it came from?
» With what probability is your guess correct?

P(Box i|white) =

P(Box ¢ and white) = P(Box ¢)P(white|Box 1) =

P(white) =

P(Box i and white)

1
- X
3

DN | =

1/3 R

Pick Bozx

0@

1/3

P(white) (1=1,2,3)
1 ;
_ =1
+1X2+1X3_23
373 374 36
) 1 2 3
P(Box i|white) | 6/23 | 8/23 | 9/23

O
0@

OO
0O®

1/2

Pick Ball

1/4
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Classification Problems

Athitsos et al., CVPR 2004 & PAMI 2008

949900019

» Which of the 10 digits did a person write by hand?

s an email spam or not spam (ham)?
s this image taken in an indoor our outdoor environment?
s a pedestrian visible from a self-driving car’s camera?

» What language is a webpage or document written in?
» How many stars would a user rate a movie that they’ve never seen?



Models Based on Conditional Probabilities

Event A: An airplane is flying above Bayesian Classifier
Event B: A “blip” appears on radar > If | observe a blip B,
predict A if and only if
P(A|B) > P(A° | B)
(or, P(A| B) > 0.5)
» If | observe no blip B¢,
predict A if and only if
P(B | A%)=0.10 P(A ‘ BC) > P(AC ‘ BC)
(B€ 1 A©=0.90 (OI', P(A | BC) > 05)

P(B | A)=0.99

P(BC | A)=0.01
P(A)=0.05

P(A€)=0.95

B | A)P(A)
P(B)

B A)P(A)

- _ P
Blip: P(A|B) = (B

No Blip: P(A | B) = P(



A Simplified Classification Rule
> If | observe B, | will predict A is true if and only If:
P(A | B) > P(A° | B)

» By Bayes’ rule, this is equivalent to checking:

P(B| A)P(A) _ P(B| A°)P(A°)
P(B) P(B)
» Because P(B) > 0, | can ignore the denominator, and check:

P(B| A)P(A) > P(B | A°)P(A°)

» Because the /ogarithm is monotonic: A
log P(B | A) +log P(A) > log P(B | A°) + log P(A°)

More numerically robust when probabilities small.




Testing: How good is my classifier?
» Suppose | have a dataset of M labeled test examples:

» For each test example, the classifier makes a prediction
about A; given the information from B;:

Predict A =1 if

Otfaer\mse predict A; = 0.

» The test accuracy of our classifier is then

) 1 .
accuracy = % Z I(A; = A;) error-rate = 7 Z I(A

log P(B; | A; = 1) +log P(A; = 1) > log P(B; | A; = 0) + log P(A;

— )



Training: What are the probabilities?”?

Data

Training Data (size N)

Test Data (size M)

log P(B | A)+1log P(A) >log P(B | A°) + log P(A°)

Nog

N = Ni1 + Nig + No1 4+ Noo

A simple way to estimate probabilities
IS to count frequencies of training events:

P(A) = (N4o+N44)/N

P(A°) = (Ngo+Ngy)/N
(B ‘ A) N11/ N11+N+)
P(B | A°) = Ngi/(Ngp+Nyo)



The “Naive” Bayesian Classifier

We often classify based on a set of observations.

Example: classify the subject of a document based on a set of keywords
We have a set of subjects S={s,, s,,...,S,} and a set of keyworks W={w,,
Wo,...,W}

A document d is represented by a Boolean vector b(d)=(b,, b,,...,b,)
where b=1 if word w; is in the document d.

To apply the Bayesian classification method we need for every subject s
and Boolean vector b an estimate of P(b | s) - we need to estimate 2"|S|
probabilities — not practical.

Instead — we assume that occurrences of keywords in a document are
“independent” events, P(b | s) = [[; P (b; | s). In that case we need to
estimate only n|S| probabilities.

While the assumption in naive, it works very well in practice.



Review on Bayes Rule



Review on Bayes Rule

e “Prior" probabilities P(A;)
— initial “beliefs”

e We know P(B | A;) for each i

e Wish to compute P(4; | B)
— revise ‘“beliefs”, given that B occurred

P(A; | B) = P(ﬁzg)’g)
_ P(4)P(B| 4)

o P(B)
P(A)P(B | A;)

> P(A)P(B | Aj)



Example: Spam Detection

B BN N .
/

NT

—— Classifier




Example: Spam Detection
» We want to build a spam detection system

» We have access to a huge dataset of emails that are labeled as
‘spam’ or ‘not spam’

» We identify a set of keywords W = {w.,...,w,} thatare
discriminative (e.g., most likely to appear if email is spam)

» We describe an email through a Boolean vector
B = (by,...,b,) Where b; =1 if and only if the keyword
w; appears in the document



Example: Spam Detection

S = {email is spam}, B = (by,...,b,)
Bayesian Classifier: classify spam iff Pr(S|B) > Pr(S¢|B)

Bayes Rule
Pr(S|B) > Pr(S¢|B) < Pr(B|S)Pr(S) > Pr(B|S°) Pr(S5°)




Example: Spam Detection
S = {email is spam}, B = (by,...,b,)

Bayesian Classifier: classify spam iff Pr(S|B) > Pr(S5¢|B)

Bayes Rule

Pr(S|B) > Pr(S¢|B) < Pr(B|S)[Pr(S)|> Pr(B|S°)|Pr(S°)

\/

Easy to estimate from dataset



Example: Spam Detection
S = {email is spam}, B = (by,...,b,)

Bayesian Classifier: classify spam iff Pr(S|B) > Pr(S5¢|B)

Bayes Rule
Pr(S|B) > Pr(S¢|B) < Pr(B|S)[Pr(S)|> Pr(B|S°)|Pr(S°)

\/

Easy to estimate from dataset

Naive Assumption: given the true classification, the words
appear independently (conditional independence)

Hard to estimate, 2An Pr b ’ S H PI‘ ‘S We only need to estimate n

possible keywords «— o probabilities (event that a
combination keyword appears if the email is

spam)




Example: Spam Detection

Probability w_1 w_2 w_n
appearing
Spam 0.7 0.4 0.2
Not Spam 0.1 0.7 0.6
B=(1,0,...,1)
Pr(B|S) = H Pr(b;|S) =




Example: Spam Detection

Probability w_1 w_2 : w_n
appearing
Spam 0.7 | 04 _ , 0.2
Not Spam 0.1 7 \\ / 0.6
B =(1,0,...,1) \\ /1

Pr(B|S) = | [ Pr(b:|S) =0.7-06-...-0.2

1=1




