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CS145: Lecture 3 Outline
ØConditional Probability and Independence
ØBayes’ Rule
ØBayesian Classification Algorithm



Conditional Probability

LECTURE 2 Review of probability models

• Readings: Sections 1.3-1.4 • Sample space �

– Mutually exclusive
Collectively exhaustive

Lecture outline
– Right granularity

• Review • Event: Subset of the sample space

• Conditional probability
Allocation of probabilities to events

• Three important tools:
•

1. P(A) � 0

– Multiplication rule 2. P(�) = 1

3. If– Total probability theorem A ⌅B = Ø,
then P(A ⇤B) = P(A) + P(B)

– Bayes’ rule
3’. If A1, A2, . . . are disjoint events, then:

P(A1 ⇤A2 ⇤ · · · ) = P(A1) + P(A2) + · · ·

• Problem solving:

– Specify sample space

– Define probability law

– Identify event of interest

– Calculate...

Conditional probability Die roll example

4A

3
Y = Second 

B
        roll

2

1

• P(A | B) = probability of A,
that B occurred 1 2 3

given 4

is our new universe X– B  = First roll

• Definition: Assuming P(B) = 0, • Let B be the event: min(X, Y ) = 2

P(A
P(A B) =

⌅B)
| • Let M = max(X, Y )

P(B)

P(A | B) undefined if P(B) = 0 • P(M = 1 | B) =

• P(M = 2 | B) =

⇥

1

⌦

A B
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To verify the additivity axiom, we write for any two disjoint events A1 and
A2,

P(A1 ∪ A2 |B) =
P

(
(A1 ∪ A2) ∩ B

)

P(B)

=
P((A1 ∩ B) ∪ (A2 ∩ B))

P(B)

=
P(A1 ∩ B) + P(A2 ∩ B)

P(B)

=
P(A1 ∩ B)

P(B)
+

P(A2 ∩ B)
P(B)

= P(A1 |B) + P(A2 |B),
where for the second equality, we used the fact that A1 ∩ B and A2 ∩ B are
disjoint sets, and for the third equality we used the additivity axiom for the
(unconditional) probability law. The argument for a countable collection of
disjoint sets is similar.

Since conditional probabilities constitute a legitimate probability law, all
general properties of probability laws remain valid. For example, a fact such as
P(A ∪ C) ≤ P(A) + P(C) translates to the new fact

P(A ∪ C |B) ≤ P(A |B) + P(C |B).

Let us summarize the conclusions reached so far.

Properties of Conditional Probability

• The conditional probability of an event A, given an event B with
P(B) > 0, is defined by

P(A |B) =
P(A ∩ B)

P(B)
,

and specifies a new (conditional) probability law on the same sample
space Ω. In particular, all known properties of probability laws remain
valid for conditional probability laws.

• Conditional probabilities can also be viewed as a probability law on a
new universe B, because all of the conditional probability is concen-
trated on B.

• In the case where the possible outcomes are finitely many and equally
likely, we have

P(A |B) =
number of elements of A ∩ B

number of elements of B
.

• Under discrete uniform law, where all outcomes equally likely:

=
|A \B|
|B|



Multiplication RuleModels based on conditional Multiplication rule

probabilities

P(A B C) = P(A) P(B A) P(C A B)
• Event A: Airplane is flying above

⌅ ⌅ · | · | ⌅

Event B: Something registers on radar
screen

A

U

B P(C | A

U

   B)
P(B | A)=0.99 A

U

B

U

C

P(B | A)
cP(B  | A)=0.01

P(A)=0.05
A

cP(B  | A)
cA

U

B

U

CP(A)

A

U

cBcP(A )=0.95
cA

U

cB

U

CcP(B | A )=0.10

c cP(B  | A )=0.90 cP(A )

cA

P(A ⌅B) =

P(B) =

P(A | B) =

Total probability theorem Bayes’ rule

• Divide and conquer • “Prior” probabilities P(Ai)
– initial “beliefs”

• Partition of sample space into A1, A2, A3
• We know P(B | Ai) for each i

• Have P(B | Ai), for every i
• Wish to compute P(Ai | B)

A
– revise “beliefs”, given that B occurred

1

B

A
1

B

A A2 3

• One way of computing AP( AB): 2 3

P(B) = P(A1)P(B | A1)

+ P(A2)P(B | A2)
P(+ ( ) ( | ) Ai ⌅B)P A3 P B A3 P(Ai | B) =

P(B)

P(Ai)P(B
=

| Ai)

P(B)

P(A )P(B A )
= � i | i

j P(Aj)P(B | Aj)

      

Multiplication rule

P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B)

2
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P(A) = 0.05

P(Ac) = 0.95

P(B | A) = 0.99

P(Bc| A) = 0.01

P(B | A
c ) = 0.10

P(Bc| Ac )= 0.90

False Alarm

Missed
Detection

Aircraft Present

Aircraft not Present

Figure 1.8: Sequential description of the sample space for the radar detection
problem in Example 1.9.

In mathematical terms, we are dealing with an event A which occurs if and
only if each one of several events A1, . . . , An has occurred, i.e., A = A1 ∩ A2 ∩
· · · ∩ An. The occurrence of A is viewed as an occurrence of A1, followed by
the occurrence of A2, then of A3, etc, and it is visualized as a path on the tree
with n branches, corresponding to the events A1, . . . , An. The probability of A
is given by the following rule (see also Fig. 1.9).

Multiplication Rule

Assuming that all of the conditioning events have positive probability, we
have

P
(
∩n

i=1 Ai

)
= P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P

(
An | ∩n−1

i=1 Ai

)
.

The multiplication rule can be verified by writing

P
(
∩n

i=1 Ai

)
= P(A1)

P(A1 ∩ A2)
P(A1)

P(A1 ∩ A2 ∩ A3)
P(A1 ∩ A2)

· · ·
P

(
∩n

i=1 Ai

)

P
(
∩n−1

i=1 Ai

) ,

and by using the definition of conditional probability to rewrite the right-hand
side above as

P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P
(
An | ∩n−1

i=1 Ai

)
.

= P (A) · P (A \B)

P (A)
· P (A \B \ C)

P (A \B)



Example: Two-Sided Cards

34 Chapter 1. Introduction 

Example 2. 

Problem. 

Solution. 

Example 3. 

Problem. 

Solution. 

Tickets. 

A box contains 10 capsules, similar except that four are black 
and six are white. Inside each capsule is a ticket marked 
either win or lose. The capsules are opaque, so the result on 
the ticket inside cannot be read without breaking open the 
capsule. Suppose a capsule is drawn at random from the box, 
then broken open to read the result. If it says win, you win a 
prize. Otherwise, you win nothing. The numbers of winning 
and losing tickets of each color are given in the diagram, 
which shows the tickets inside the capsules. Suppose that 
the capsule has just been drawn, but not yet broken to read 
the result. The capsule is black. Now what is the probability 
that you win a prize? 

@ 

@ 
@ 
C§V 
@ 
@ 
@ 

This conditional probability is the proportion of winners among black capsules: 

P( . Ibl k) = #(win and black) = = 0 5 
Win ac #(black) 4' 

Compare with the unconditional probability P(win) = 4/10 = 0.4 

Two-sided cards. 

A hat contains three cards. 

One card is black on both sides. 

One card is white on both sides. 

One card is black on one side and white on the other. 

The cards are mixed up in the hat. Then a single card 
is drawn and placed on a table. If the visible side of 
the card is black, what is the chance that the other side 
is white? 

Label the faces of the cards: 

bl and b2 for the black-black card; 

WI and W2 for the white-white card; 

b3 and W3 for the black-white card. 

bib 

b/w 

w/w 

Assume that each of these six faces is equally likely to be the face showing up-
permost. Experience shows that this assumption does correspond to long-run fre-
quencies, provided the cards are similar in size and shape, and well mixed up in 
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Discussion. 

Section 1.4. Conditional Probability and Independence 35 

the hat. The outcome space is then the set of six possible faces which might show 
uppermost: 

The event {black on top} is identified as 

Similarly, 

Given that the event {black on top} has occurred, the face showing is equally likely 
to be b1, b2 , or b3 . Only in the last case is the card white on the bottom. So the 
chance of white on bottom given black on top is 

P(white on bottomlblack on top) 

#(white on bottom and black on top) 1 
#(black on top) 3 

You might reason as follows: The card must be either the black-black card or the 
black-white card. These are equally likely possibilities, so the chance that the other 
side is white is 1/2. Many people find this argument convincing, but it is basically 
wrong. The assumption of equally likely outcomes, given the top side is black, is 
not consistent with long-run frequencies. If you repeat the experiment of drawing 
from the hat over and over, replacing the cards and mixing them up each time, you 
will find that over the long run, among draws when the top side is black, the bottom 
side will be white only about 1/3 of the time, rather than 1/2 of the time. 

Frequency interpretation of conditional probability. This is illustrated by the 
previous example. If P(A) approximates to the relative frequency of A in a long 
series of trials, then P(AIB) approximates the relative frequency of trials producing 
A among those trials which happen to result in B. A general formula for P(AIB), 
consistent with this interpretation, is found as follows. Start with the counting formula 
for P(AIB) in a setting of equally likely outcomes, then divide both numerator and 
denominator by #(f!) to express P(AIB) in terms of the unconditional probabilities 
P(AB) = #(AB)/#(fl) and P(B) = #(B)/#(f!): 

P(AIB) = #(AB) 
#(B) 

#(AB)/#(f!) 
#(B)/#(f!) 

P(AB) 
P(B) 
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Observing the top face of the card provides information
about the color of the bottom face.



Example: Roll of a 6-Sided Die

• Event associated with ”independent” physical processes are

independent.

• But independent events do not have to be related to

independent physical processes.

• Example:

• The probability of ”the outcome of a die roll is even” is
3
6

• The probability of the event ”the outcome is  4” is
4
6 .

• The probability of ”an even outcome  4” is

2

6
=

12

36
=

3

6
· 4
6

) the two events are independent.

• The ”intuition” here is that there are the same number of odd

and even outcomes that are  4. Thus, the ”information”

that the outcome is  4 does not ”help” in deciding if it is

odd or even.

P (die even | die  4) =
2

4
=

1

2
= P (die even)

Observing that the die roll was at most 4
does not provide information about whether it was even.



Independence

LECTURE 3 Models based on conditional
probabilities

• Readings: Section 1.5
• 3 tosses of a biased coin:

• Review P(H) = p, P(T ) = 1� p

• Independence of two events p HHH

• Independence of a collection of events p
HHT1 -  p

p HTH
Review p 1 -  p

1 -  p HTT

P(A ⇤B)
) 0

p
P(A | B) = , assuming P(B > THH

P(B) 1 -  p p
1 -  p THT

• Multiplication rule: p TTH

1 -  p

P(A ⇤B) = P(B) · P(A | B) = P(A) · P(B | A)
1 -  p TTT

• Total probability theorem:

P( ) = P( )P( | ) + P( c)P( | c P(THT ) =B A B A A B A )

• Bayes rule: P(1 head) =
P(Ai)P(B Ai)P(Ai | B) =

|
P(B) P(first toss is H | 1 head) =

Independence of two events Conditioning may a�ect independence

• “Defn:” P(B | A) = P(B) • Conditional independence, given C,
is defined as independence

– “occurrence of A
under probability law P(

provides no information
· | C)

about B’s occurrence”

• Assume A and B are independent
• Recall that P(A ⇤B) = P(A) · P(B | A)

• Defn: P(A ⇤B) = P(A) · P(B)
C

A

• Symmetric with respect to A and B
B

– applies even if P(A) = 0

– implies P(A | B) = P(A) • If we are told that C occurred,
are A and B independent?

1
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1

Two equivalent definitions of events independence:

<latexit sha1_base64="BW1HNz8m5gwZtcRZfm0ET7KBdmI="></latexit>

Set of events {A1, . . . , An} are Mutually Independent if

P (\n
i=1Ai) =

nY

i=1

P (Ai).



Sources of Independence
• Event associated with ”independent” physical processes are

independent.

• But independent events do not have to be related to

independent physical processes.

• Example:

• The probability of ”the outcome of a die roll is even” is
3
6

• The probability of the event ”the outcome is  4” is
4
6 .

• The probability of ”an even outcome  4” is

2

6
=

12

36
=

3

6
· 4
6

) the two events are independent.

• The ”intuition” here is that there are the same number of odd

and even outcomes that are  4. Thus, the ”information”

that the outcome is  4 does not ”help” in deciding if it is

odd or even.

• Event associated with ”independent” physical processes are

independent.

• But independent events do not have to be related to

independent physical processes.

• Example:

• The probability of ”the outcome of a die roll is even” is
3
6

• The probability of the event ”the outcome is  4” is
4
6 .

• The probability of ”an even outcome  4” is

2

6
=

12

36
=

3

6
· 4
6

) the two events are independent.

• The ”intuition” here is that there are the same number of odd

and even outcomes that are  4. Thus, the ”information”

that the outcome is  4 does not ”help” in deciding if it is

odd or even.



Events that are NOT IndependentSec. 1.2 Probabilistic Models 15

A A B

A B

C

B

(a) (b)

(c)

A B

U UA Bc

C

UA Bc Uc UA Bc

Figure 1.6: Visualization and verification of various properties of probability
laws using Venn diagrams. If A ⊂ B, then B is the union of the two disjoint
events A and Ac ∩ B; see diagram (a). Therefore, by the additivity axiom, we
have

P(B) = P(A) + P(Ac ∩ B) ≥ P(A),

where the inequality follows from the nonnegativity axiom, and verifies prop-
erty (a).

From diagram (b), we can express the events A ∪ B and B as unions of
disjoint events:

A ∪ B = A ∪ (Ac ∩ B), B = (A ∩ B) ∪ (Ac ∩ B).

The additivity axiom yields

P(A ∪ B) = P(A) + P(Ac ∩ B), P(B) = P(A ∩ B) + P(Ac ∩ B).

Subtracting the second equality from the first and rearranging terms, we obtain
P(A∪B) = P(A)+P(B)−P(A∩B), verifying property (b). Using also the fact
P(A ∩ B) ≥ 0 (the nonnegativity axiom), we obtain P(A ∪ B) ≤ P(A) + P(B),
verifying property (c)

From diagram (c), we see that the event A ∪ B ∪ C can be expressed as a
union of three disjoint events:

A ∪ B ∪ C = A ∪ (Ac ∩ B) ∪ (Ac ∩ Bc ∩ C),

so property (d) follows as a consequence of the additivity axiom.

⌦

A B

⌦

• Assume events are non-degenerate: 0 < P (A) < 1, 0 < P (B) < 1

• Nested events are not independent:

• Mutually exclusive events are not independent:
If A \B = ;, P (A \B) = 0 6= P (A)P (B).

If A ⇢ B, P (B | A) = 1 6= P (B).



Example: Assembly line  

Add feature
A2

Add feature
A1

Item Final
Item

Let Ai be the event that the final item has a defect on feature i.

P (A1) = 0.8, P (A2) = 0.7

We assume that A1 and A2 are independent events.



Example: Assembly line  

Add feature
A2

Add feature
A1

Item Final
Item

Let Ai be the event that the final item has a defect on feature i.

P (A1) = 0.3, P (A2) = 0.2

We assume that A1 and A2 are independent events.

W = {no defect}
A1 A2

⌦

W = A
c

1 ∩A
c

2 = Ω \ (A1 ∪A2)

P (W ) = 1− P (A1 ∪A2)

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2)

= P (A1) + P (A2)− P (A1) · P (A2)



Example: Assembly line  

Add feature
A2

Add feature
A1

Item Final
Item

Let Ai be the event that the final item has a defect on feature i.

P (A1) = 0.3, P (A2) = 0.2
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= P (A1) + P (A2)− P (A1) · P (A2)

P (W ) = 1− P (A1)− P (A2) · (1− P (A1))

= (1− P (A1)) · (1− P (A2))

= P (Ac

1) · P (Ac

2) = 0.56
W = A

c

1 ∩A
c

2 = Ω \ (A1 ∪A2)



Example: Assembly line  

Add feature
A2

Add feature
A1

Item Final
Item

Let Ai be the event that the final item has a defect on feature i.

P (A1) = 0.3, P (A2) = 0.2

We assume that A1 and A2 are independent events.

W = {no defect}
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= P (A1) + P (A2)− P (A1) · P (A2)
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= P (Ac

1) · P (Ac

2) = 0.56
W = A

c

1 ∩A
c

2 = Ω \ (A1 ∪A2)

Complements maintain 
independence



Example: Assembly line  

Add feature
A2

Add feature
A1

Item Final
Item

Let Ai be the event that the final item has a defect on feature i.

P (A1) = 0.3, P (A2) = 0.2

We assume that A1 and A2 are independent events.

W = {defect only on feature A2}

W = A
c

1 ∩A2

A1 independent with A2 ⇒ A
c

1 independent with A2

P (W ) = P (Ac

1 ∩A2) = P (Ac

1) · P (A2) = (1− P (A1))P (A2) = 0.7 · 0.2 = 0.14
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and (1) can be turned around similarly. 

Assuming A and B are independent, all of these formulae hold also with either AC 
substituted for A, B C for B, or with both substitutions. This is obvious for (1), hence 
also true for the others. To spell out an example, since A splits into ABc and AB, 

P(ABC ) = P(A) - P(AB) 

= P(A)-P(A)P(B) assuming the multiplication rule for A and B 

= P(A)(l - P(B)) 

= P(A)P(BC ) by the rule of complements. 

So the multiplication rule works just as well with BC instead of B. The same goes 
for AC instead of A. 
Here the various probabilities determined by inde- I 

pendent events A and B are illustrated graphically A C 

as proportions in a Venn diagram. Event A is repre-
sented by a rectangle lying horizontally, event B by ;:.f-------+----1 
a rectangle standing vertically. 

A 

Reliability of two components in series. 
A system consists of two components C1 and C2 , each of which must remain oper-
ative for the overall system to function. The components C1 and C2 are then said to 
be connected in series, and represented diagrammatically as follows: 

Let Wi be the event that component Ci works without failure for a given period 
of time, say one day. The event that the whole system operates without failure for 
one day is the event that both C1 and C2 operate without failure, that is, the event 
WI W2 . The probabilities P(Wd and P(W2 ) are called the reliabilities of components 
C1 and C2 . The probability P(WI W2 ) is the reliahility of the whole system. Suppose 
that the component reliabilities P(Wd and P(W2 ) are known from empirical data of 
past performances of similar components, say P(Wd = 0.9 and P(W2 ) = 0.8. If the 
particular components C1 and C2 have never heen used together before, P(WI W2 ) 

cannot be known empirically. But it may still be reasonable to assume that the events 
WI and W2 are independent. Then the reliability of the whole system would be given 
hy the formula 

P(system works) = P(WI W2 ) = P(WdP(W2 ) = 0.9 x 0.8 = 0.72 
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Assume component failures are
independent events, and that
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Hopefully this number, 0.72, would give an indication of the long-run relative fre-
quency of satisfactory performance of the system. But bear in mind that such a num-
ber is based on a theoretical assumption of independence which mayor may not 
prove well founded in practice. The sort of thing which might prevent independence 
is the possibility of failures of both components due to a common cause, for exam-
ple, voltage fluctuations in a power supply, the whole system being flooded, the 
system catching fire, etc. For the series system considered here such factors would 
tend to make the reliability P(WI W2 ) greater than if WI and W2 were independent, 
suggesting that the number, 0.72, would be too Iowan estimate of the reliability. 

Reliability of two components in parallel. 
A method of increasing the reliability of a system is to put components in parallel, 
so the system will work if either of the components works. Two components C1 and 
C2 in parallel may be represented diagrammatically as follows: 

Suppose, as in the last example, that the individual components C1 and C2 have 
reliabilities P(Wd and P(W2)' where WI is the event that C1 works. The event that 
the whole system functions is now the event WI U W2 that either C1 or C2 works. 
The complementary event of system failure is the event FIF2 that both C1 and C2 

fail, where Fi is the complement of Wi. Thus the reliability of the whole system is 

If WI and W2 are assumed independent, so are Fl and F2 . In that case 

P(system works) = 1 - P(F1)P(F2) 

For example, if the component reliabilities are P(Wd = 0.9 and P(W2 ) = 0.8 as 
before, then P(F1 ) = 0.1 and P(F2) = 0.2, and the system reliability is 

P(system works) = 1 - (0.1)(0.2) = 0.98 

This is a considerable improvement over the reliability of the individual components. 
The assumption of independent failures must be viewed with particular suspicion in 
parallel systems, as it tends to lead to exaggerated estimates of system reliabilities. 
Suppose, for example, that all failures of component C1 and half the failures of 
component C2 occur due to severe voltage fluctuation in a power supply common 
to C1 and C2 . Then Fl is the event of a voltage fluctuation, and it should be assumed 

{system works} = W1 \W2

{system works} = W1 [W2
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Conditioning may Affect Independence

LECTURE 3 Models based on conditional
probabilities

• Readings: Section 1.5
• 3 tosses of a biased coin:

• Review P(H) = p, P(T ) = 1� p

• Independence of two events p HHH

• Independence of a collection of events p
HHT1 -  p

p HTH
Review p 1 -  p

1 -  p HTT

P(A ⇤B)
) 0

p
P(A | B) = , assuming P(B > THH

P(B) 1 -  p p
1 -  p THT

• Multiplication rule: p TTH

1 -  p

P(A ⇤B) = P(B) · P(A | B) = P(A) · P(B | A)
1 -  p TTT

• Total probability theorem:

P( ) = P( )P( | ) + P( c)P( | c P(THT ) =B A B A A B A )

• Bayes rule: P(1 head) =
P(Ai)P(B Ai)P(Ai | B) =

|
P(B) P(first toss is H | 1 head) =

Independence of two events Conditioning may a�ect independence

• “Defn:” P(B | A) = P(B) • Conditional independence, given C,
is defined as independence

– “occurrence of A
under probability law P(

provides no information
· | C)

about B’s occurrence”

• Assume A and B are independent
• Recall that P(A ⇤B) = P(A) · P(B | A)

• Defn: P(A ⇤B) = P(A) · P(B)
C

A

• Symmetric with respect to A and B
B

– applies even if P(A) = 0

– implies P(A | B) = P(A) • If we are told that C occurred,
are A and B independent?

1

P (A \B | C) = P (A | C)P (B | C)

Definition of conditional independence:
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Conditioning may Affect Independence

P (A \B | C) = P (A | C)P (B | C)

Definition of conditional independence:A - dice outcome is even
B - dice outcome is <= 4

P(A ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) = !
"
#
$
= "

%

C= dice outcome >1

P(A ∩ 𝐵 	𝐶 = 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)/𝑃(𝐶) = !/#
$/#

	 = !
$

≠ 	 𝑃 𝐴	 𝐶)	𝑃(𝐵	|	𝐶) = %
$
	%
$
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Example: Conditioning & IndependenceConditioning may a�ect independence Independence of a collection of events

• Two unfair coins, A and B: • Intuitive definition:
P(H | coin A) = 0.9, P(H | coin B) = 0.1 Information on some of the events tells
choose either coin with equal probability

us nothing about probabilities related to
0.9 the remaining events

0.10.9 – E.g.:
Coin A

P( ⇤ ( c ⇥ ) | ⇤ c ) = P( ⇤ ( c
0.9 A1 A2 A3 A5 A6 A1 A2 ⇥A3))

0.5 0.1
0.1

• Mathematical definition:
0.1 Events A1, A2, . . . , An

0.5
0.1

0.9
are called independent if:

Coin B 0.1

0.9
P(Ai⇤Aj⇤· · ·⇤Aq) = P(Ai)P(Aj) · · ·P(Aq)

0.9 for any distinct indices i, j, . . . , q,
(chosen from {1, . . . , n )

• Once we know it is coin A, are tosses
}

independent?

• If we do not know which coin it is, are
tosses independent?

– Compare:
P(toss 11 = H)
P(toss 11 = H | first 10 tosses are heads)

Independence vs. pairwise The king’s sibling

independence
• The king comes from a family of two

• Two independent fair coin tosses children. What is the probability that

– A: First toss is H his sibling is female?

– B: Second toss is H

– P(A) = P(B) = 1/2

HH HT

TH TT

– C: First and second toss give same
result

– P(C) =

– P(C ⇤A) =

– P(A ⇤B ⇤ C) =

– P(C | A ⇤B) =

• Pairwise independence does not

imply independence
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Yes, by definition.

No, consider probability that
second toss is heads given first.

H in the first toss increases the probability that we chose 
the first coin and therefore of H is the second toss

HH

HT

HH
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0.9 the remaining events

0.10.9 – E.g.:
Coin A

P( ⇤ ( c ⇥ ) | ⇤ c ) = P( ⇤ ( c
0.9 A1 A2 A3 A5 A6 A1 A2 ⇥A3))

0.5 0.1
0.1

• Mathematical definition:
0.1 Events A1, A2, . . . , An

0.5
0.1

0.9
are called independent if:

Coin B 0.1

0.9
P(Ai⇤Aj⇤· · ·⇤Aq) = P(Ai)P(Aj) · · ·P(Aq)

0.9 for any distinct indices i, j, . . . , q,
(chosen from {1, . . . , n )

• Once we know it is coin A, are tosses
}

independent?

• If we do not know which coin it is, are
tosses independent?

– Compare:
P(toss 11 = H)
P(toss 11 = H | first 10 tosses are heads)

Independence vs. pairwise The king’s sibling

independence
• The king comes from a family of two

• Two independent fair coin tosses children. What is the probability that

– A: First toss is H his sibling is female?

– B: Second toss is H

– P(A) = P(B) = 1/2

HH HT

TH TT

– C: First and second toss give same
result

– P(C) =

– P(C ⇤A) =

– P(A ⇤B ⇤ C) =

– P(C | A ⇤B) =

• Pairwise independence does not

imply independence
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Yes, by definition.

No, consider probability that
second toss is head given the first.
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H1 - H in the first toss, H2 - H in the second toss.

P (H2 | H1) =
P (H1\H2)

P (H1) =
0.5(0.9)2+0.5(0.1)2

0.5·0.9+0.5·0.1 = 0.82

HH

HT

HH
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Total Probability Theorem

Models based on conditional Multiplication rule

probabilities

P(A B C) = P(A) P(B A) P(C A B)
• Event A: Airplane is flying above

⌅ ⌅ · | · | ⌅

Event B: Something registers on radar
screen

A

U

B P(C | A

U

   B)
P(B | A)=0.99 A

U

B

U

C

P(B | A)
cP(B  | A)=0.01

P(A)=0.05
A

cP(B  | A)
cA

U

B

U

CP(A)

A

U

cBcP(A )=0.95
cA

U

cB

U

CcP(B | A )=0.10

c cP(B  | A )=0.90 cP(A )

cA

P(A ⌅B) =

P(B) =

P(A | B) =

Total probability theorem Bayes’ rule

• Divide and conquer • “Prior” probabilities P(Ai)
– initial “beliefs”

• Partition of sample space into A1, A2, A3
• We know P(B | Ai) for each i

• Have P(B | Ai), for every i
• Wish to compute P(Ai | B)

A
– revise “beliefs”, given that B occurred

1

B

A
1

B

A A2 3

• One way of computing AP( AB): 2 3

P(B) = P(A1)P(B | A1)

+ P(A2)P(B | A2)
P(+ ( ) ( | ) Ai ⌅B)P A3 P B A3 P(Ai | B) =

P(B)

P(Ai)P(B
=

| Ai)

P(B)

P(A )P(B A )
= � i | i

j P(Aj)P(B | Aj)

      

Multiplication rule

P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B)

2
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P (A | B) =
P (A \B)

P (B)

P (A \B) = P (B)P (A | B)

B = (B \A1) [ (B \A2) [ (B \A3)

P (B) = P (B \A1) + P (B \A2) + P (B \A3)

P (B) = P (A1)P (B | A1) + P (A2)P (B | A2) + P (A3)P (B | A3)
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Example: Witness reliability
A witness testifies that they saw a robber escaping with a yellow taxi

How reliable is this information? 

• Taxi are either red or yellow
• A witness is accurate 80% of the times (independent of the color)



Example: Witness reliability
A witness testifies that they saw a robber escaping with a yellow taxi

How reliable is this information? 

• Taxi are either red or yellow
• A witness is accurate 80% of the times (independent of the color)
• 70% of taxi are red and 30% of taxi are yellow

T = {taxi of the robber is yellow}, W = {witness says yellow}

P (T |W ) = P (W |T )
P (T )

P (W )
=

P (W |T ) · P (T )

P (W |T )P (T ) + P (W |T c)P (T c)

=
0.8 · 0.3

0.8 · 0.3 + 0.7 · 0.2
! 0.63



Example: Face Detection1.2. Supervised learning 7

(a) (b)

Figure 1.6 Example of face detection. (a) Input image (Murphy family, photo taken 5 August 2010 by
Bernard Diedrich of Sherwood Studios). (b) Output of classifier, which detected 5 faces at di�erent poses.
This was produced using the online demo at http://demo.pittpatt.com/. The classifier was trained
on 1000s of manually labeled images of faces and non-faces, and then was applied to a dense set of
overlapping patches in the test image. Only the patches whose probability of containing a face was
su�ciently high were returned. Used with kind permission of Pittpatt.com

verify this in Exercise 1.1.) This flexibility is both a blessing (since the methods are general
purpose) and a curse (since the methods ignore an obviously useful source of information). We
will discuss methods for exploiting structure in the input features later in the book.

Face detection and recognition

A harder problem is to find objects within an image; this is called object detection or object
localization. An important special case of this is face detection. One approach to this problem
is to divide the image into many small overlapping patches at di�erent locations, scales and
orientations, and to classify each such patch based on whether it contains face-like texture or
not. This is called a sliding window detector. The system then returns those locations where
the probability of face is su�ciently high. See Figure 1.6 for an example. Such face detection
systems are built-in to most modern digital cameras; the locations of the detected faces are
used to determine the center of the auto-focus. Another application is automatically blurring
out faces in Google’s StreetView system.
Having found the faces, one can then proceed to perform face recognition, which means

estimating the identity of the person (see Figure 1.10(a)). In this case, the number of class labels
might be very large. Also, the features one should use are likely to be di�erent than in the face
detection problem: for recognition, subtle di�erences between faces such as hairstyle may be
important for determining identity, but for detection, it is important to be invariant to such
details, and to just focus on the di�erences between faces and non-faces. For more information
about visual object detection, see e.g., (Szeliski 2010).

148 Viola and Jones

5. Results

This section describes the final face detection system.
The discussion includes details on the structure and
training of the cascaded detector as well as results on
a large real-world testing set.

5.1. Training Dataset

The face training set consisted of 4916 hand labeled
faces scaled and aligned to a base resolution of 24 by
24 pixels. The faces were extracted from images down-
loaded during a random crawl of the World Wide Web.
Some typical face examples are shown in Fig. 8. The
training faces are only roughly aligned. This was done
by having a person place a bounding box around each
face just above the eyebrows and about half-way be-
tween the mouth and the chin. This bounding box was
then enlarged by 50% and then cropped and scaled to
24 by 24 pixels. No further alignment was done (i.e.
the eyes are not aligned). Notice that these examples
contain more of the head than the examples used by

Figure 8. Example of frontal upright face images used for training.

Rowley et al. (1998) or Sung and Poggio (1998). Ini-
tial experiments also used 16 by 16 pixel training im-
ages in which the faces were more tightly cropped,
but got slightly worse results. Presumably the 24 by
24 examples include extra visual information such as
the contours of the chin and cheeks and the hair line
which help to improve accuracy. Because of the nature
of the features used, the larger sized sub-windows do
not slow performance. In fact, the additional informa-
tion contained in the larger sub-windows can be used
to reject non-faces earlier in the detection cascade.

5.2. Structure of the Detector Cascade

The final detector is a 38 layer cascade of classifiers
which included a total of 6060 features.

The first classifier in the cascade is constructed us-
ing two features and rejects about 50% of non-faces
while correctly detecting close to 100% of faces. The
next classifier has ten features and rejects 80% of non-
faces while detecting almost 100% of faces. The next
two layers are 25-feature classifiers followed by three
50-feature classifiers followed by classifiers with a
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Boxes and Balls

1.5 

Example 1. 

Problem. 

Solution. 

Section 1.5. Bayes' Rule 47 

Bayes' Rule 
The rules of conditional probability, described in the last section, combine to give a 
general formula for updating probabilities called Bayes' rule. Before stating the rule 
in general, here is an example to illustrate the basic setup. 

Which box? 
Suppose there are three similar boxes. Box i contains i white balls and one black 
ball, i = 1,2,3, as shown in the following diagram. 

loelloil 
Box 1 Box 2 

1001 
Box 3 

Suppose I mix up the boxes and then pick one at random. Then I pick a ball at 
random from the box and show you the ball. I offer you a prize if you can guess 
correctly what box it came from. 

Which box would you guess if the ball drawn is white and what is your chance of 
guessing right? 

An intuitively reasonable guess is Box 3, because the most likely explanation of how 
a white ball was drawn is that it came from a box with a large proportion of whites. 
To confirm this, here is a calculation of 

P( '1 h') P(Box i and white) 
Box t w He = ( ) P white 

(i = 1,2,3) 

These are the chances that you would be right if you guessed Box i, given that the 
ball drawn is white. The following diagram shows the probabilistic assumptions: 

Pick Box Pick Ball 

bJ 1 2 

1/3 1/2 

1 3 loil 2/3 

1/3 

1/3 3/4 

o. 1/4 

Ø Three boxes, box i contains i white balls and one black ball
Ø I pick one of the boxes at random,

then randomly draw one of its balls
Ø If I show you that the ball I drew was white,

what box would you guess it came from?
Ø With what probability is your guess correct?
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Solution. 

Section 1.5. Bayes' Rule 47 

Bayes' Rule 
The rules of conditional probability, described in the last section, combine to give a 
general formula for updating probabilities called Bayes' rule. Before stating the rule 
in general, here is an example to illustrate the basic setup. 

Which box? 
Suppose there are three similar boxes. Box i contains i white balls and one black 
ball, i = 1,2,3, as shown in the following diagram. 

loelloil 
Box 1 Box 2 

1001 
Box 3 

Suppose I mix up the boxes and then pick one at random. Then I pick a ball at 
random from the box and show you the ball. I offer you a prize if you can guess 
correctly what box it came from. 

Which box would you guess if the ball drawn is white and what is your chance of 
guessing right? 

An intuitively reasonable guess is Box 3, because the most likely explanation of how 
a white ball was drawn is that it came from a box with a large proportion of whites. 
To confirm this, here is a calculation of 

P( '1 h') P(Box i and white) 
Box t w He = ( ) P white 

(i = 1,2,3) 

These are the chances that you would be right if you guessed Box i, given that the 
ball drawn is white. The following diagram shows the probabilistic assumptions: 

Pick Box Pick Ball 

bJ 1 2 

1/3 1/2 

1 3 loil 2/3 

1/3 

1/3 3/4 

o. 1/4 

48 Chapter 1. Introduction 

From the diagram, the numerator in (*) is 

1 i 
P(Box i and white) = P(Box i)P(whiteIBox i) = 3" x i + 1 (i = 1,2,3) 

By the addition rule, the denominator in (*) is the sum of these terms over i = 1, 2, 3: 

1 1 1 2 1 3 23 
P(white) = 3" x 2" + 3" x 3" + 3" x 4 = 36 and 

1 i 12 ,; 3 x HI • P(Box ilwhite) = 23 = - X --
36 23 i + 1 

(i=1,2,3) 

Substituting for i/(i + 1) for i = 1,2,3 gives the following numerical results: 

i 1 2 3 

P(Box ilwhite) 6/23 8/23 9/23 

This confirms the intuitive idea that Box 3 is the most likely explanation of a white 
ball. Given a white ball, the chance that you would be right if you guessed this box 
would be 9/23 39.13%. 

Suppose, more generally, that events B l , ... , Bn represent n mutually exclusive 
possible results of the first stage of some procedure. Which one of these results has 
occurred is assumed unknown. Rather, the result A of some second stage has been 
observed, whose chances depend on which of the Bi'S has occurred. In the previous 
example A was the event that a white ball was drawn and Bi the event that it came 
from a box with i white balls. The general problem is to calculate the probabilities 
of the events Bi given occurrence of A (called posterior probabilities), in terms of 

co the unconditional probabilities P(Bi ) (called prior probabilities); 

(ii) the conditional probabilities P(AIBi) (called likelihoods). 

Here is the general calculation: 

(multiplication rule) 

where, by the rule of average conditional probabilities, the denominator is 

P(A) = P(AIBdP(Bd + ... + P(AIBn)P(Bn) 

which is the sum over i = 1 to n of the expression P(AIBi)P(Bi ) in the numerator. 
The result of this calculation is called Bayes' rule. 
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Classification Problems

Athitsos et al., CVPR 2004 & PAMI 2008 

Ø Which of the 10 digits did a person write by hand?
Ø Is an email spam or not spam (ham)?
Ø Is this image taken in an indoor our outdoor environment?
Ø Is a pedestrian visible from a self-driving car’s camera?
Ø What language is a webpage or document written in?
Ø How many stars would a user rate a movie that they’ve never seen?



Models Based on Conditional ProbabilitiesModels based on conditional Multiplication rule

probabilities
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Total probability theorem Bayes’ rule

• Divide and conquer • “Prior” probabilities P(Ai)
– initial “beliefs”

• Partition of sample space into A1, A2, A3
• We know P(B | Ai) for each i

• Have P(B | Ai), for every i
• Wish to compute P(Ai | B)
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Multiplication rule
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Event A:  An airplane is flying above
Event B:  A “blip” appears on radar

P (A | B) =
P (B | A)P (A)

P (B)
P (A | Bc) =

P (Bc | A)P (A)

P (Bc)
Blip: No Blip:

Bayesian Classifier
Ø If I observe a blip B, 

predict A if and only if
P (A | B) > P (Ac | B)

Ø If I observe no blip Bc, 
predict A if and only if
P (A | Bc) > P (Ac | Bc)

(or, P (A | B) > 0.5)

(or, P (A | Bc) > 0.5)



A Simplified Classification Rule
Ø If I observe B, I will predict A is true if and only if:

P (A | B) > P (Ac | B)

P (B | A)P (A)

P (B)
>

P (B | Ac)P (Ac)

P (B)

Ø By Bayes’ rule, this is equivalent to checking:

Ø Because P(B) > 0, I can ignore the denominator, and check:
P (B | A)P (A) > P (B | Ac)P (Ac)

Ø Because the logarithm is monotonic:
logP (B | A) + logP (A) > logP (B | Ac) + logP (Ac)

More numerically robust when probabilities small.



Testing:  How good is my classifier?
Ø Suppose I have a dataset of M labeled test examples:
(Ai, Bi), i = 1, . . . ,M Ai 2 {0, 1}

Ø For each test example, the classifier makes a prediction
about Ai given the information from Bi:

logP (Bi | Ai = 1) + logP (Ai = 1) > logP (Bi | Ai = 0) + logP (Ai = 0)
Predict Âi = 1 if

Otherwise, predict Âi = 0.

Ø The test accuracy of our classifier is then

accuracy =
1

M

MX

i=1

I(Âi = Ai) error-rate =
1

M

MX

i=1

I(Âi 6= Ai)



Training:  What are the probabilities?
Data

Training Data (size N) Test Data (size M)

logP (B | A) + logP (A) > logP (B | Ac) + logP (Ac)

A B

N = N11 +N10 +N01 +N00

N11

N10 N01

N00

A simple way to estimate probabilities 
is to count frequencies of training events:

P (A) =
P (Ac) =

P (B | Ac) =
P (B | A) = N11/(N11+N10)

(N00+N01)/N

N01/(N00+N10)

(N10+N11)/N



The “Naïve” Bayesian Classifier
• We often classify based on a set of observations.
• Example: classify the subject of a document based on a set of keywords
• We have a set of subjects S={s1, s2,…,sm} and a set of keyworks W={w1, 

w2,…,wn}
• A document d is represented by a Boolean vector b(d)=(b1, b2,…,bn) 

where bi=1 if word wi is in the document d.
• To apply the Bayesian classification method we need for every subject s 

and Boolean vector b an estimate of P(b | s) - we need to estimate  2n|S| 
probabilities – not practical.

• Instead – we assume that occurrences of keywords in a document are 
“independent” events, P(b | s) = ∏!𝑃 (bi | s). In that case we need to 
estimate only n|S| probabilities. 

• While the assumption in naïve, it works very well in practice.



Review on Bayes Rule 
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Example: Spam Detection

SPAM

SPAM SPAM

SPAM SPAM

Classifier

SPAM SPAM SPAM

SPAM SPAM



Example: Spam Detection
Ø We want to build a spam detection system

Ø We have access to a huge dataset of emails that are labeled as 
‘spam’ or ‘not spam’

Ø We identify a set of keywords                                 that are 
discriminative (e.g., most likely to appear if email is spam)

Ø We describe an email through a Boolean vector 
                           where              if and only if the keyword 
          appears in the document

W = {w1, . . . , wn}

B = (b1, . . . , bn) bi = 1

wi



Example: Spam Detection
S = {email is spam}, B = (b1, . . . , bn)

Bayesian Classifier: classify spam iff Pr(S|B) > Pr(Sc|B)

Bayes Rule
Pr(S|B) > Pr(Sc|B) ⇐⇒ Pr(B|S) Pr(S) > Pr(B|Sc) Pr(Sc)
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Example: Spam Detection
S = {email is spam}, B = (b1, . . . , bn)

Bayesian Classifier: classify spam iff   Pr(S|B) > Pr(Sc|B)

Bayes Rule
Pr(S|B) > Pr(Sc|B) ⇐⇒ Pr(B|S) Pr(S) > Pr(B|Sc) Pr(Sc)

Easy to estimate from dataset 

Naive Assumption: given the true classification, the words
appear independently (conditional independence)

Pr(B|S) =
n∏

i=1

Pr(bi|S)Hard to estimate, 2^n 
possible keywords 

combination

We only need to estimate n 
probabilities (event that a 

keyword appears if the email is 
spam)



Example: Spam Detection
Probability 
appearing

w_1 w_2 … … … w_n

Spam 0.7 0.4 0.2
Not Spam 0.1 0.7 0.6

B = (1, 0, . . . , 1)

Pr(B|S) =
n∏

i=1

Pr(bi|S) = 0.7 · 0.6 · . . . · 0.2
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