CS145: Probability & Computing Lecture 3: Conditioning, Independence, Bayes' Rule, Bayesian Classification Algorithm

Instructors: Eli Upfal and Alessio Mazzetto

Brown University Computer Science

Figure credits: Bertsekas & Tsitsiklis, **Introduction to Probability**, 2008 Pitman, **Probability**, 1999

CS145: Lecture 3 Outline

- Conditional Probability and Independence
- Bayes' Rule
- Bayesian Classification Algorithm

- P(A | B) = probability of A,given that B occurred
 - *B* is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

- $P(A \mid B)$ undefined if P(B) = 0
- Under discrete uniform law, where all outcomes equally likely:

$$\mathbf{P}(A \mid B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B} = \frac{|A \cap B|}{|B|}$$

Multiplication Rule

$\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A) \cdot \mathbf{P}(B \mid A) \cdot \mathbf{P}(C \mid A \cap B)$ $= P(A) \cdot \frac{P(A \cap B)}{P(A)} \cdot \frac{P(A \cap B \cap C)}{P(A \cap B)}$

Multiplication Rule

Assuming that all of the conditioning events have positive probability, we have

$$\mathbf{P}\big(\cap_{i=1}^{n} A_{i}\big) = \mathbf{P}(A_{1})\mathbf{P}(A_{2} | A_{1})\mathbf{P}(A_{3} | A_{1} \cap A_{2}) \cdots \mathbf{P}(A_{n} | \cap_{i=1}^{n-1} A_{i}).$$

Example: Two-Sided Cards

A hat contains three cards.

- One card is black on both sides.
- One card is white on both sides.
- One card is black on one side and white on the other.

The cards are mixed up in the hat. Then a single card is drawn and placed on a table. If the visible side of the card is black, what is the chance that the other side is white?

Label the faces of the cards:

 b_1 and b_2 for the black-black card; w_1 and w_2 for the white-white card; b_3 and w_3 for the black-white card.

 $\{black on top\} = \{b_1, b_2, b_3\}$ $\{white on bottom\} = \{b_3, w_1, w_2\}$

 $P(\text{white on bottom}|\text{black on top}) = \frac{\#(\text{white on bottom and black on top})}{\#(\text{black on top})} = \frac{1}{3}$

Observing the top face of the card provides information about the color of the bottom face.

Example: Roll of a 6-Sided Die

- The probability of "the outcome of a die roll is even" is $\frac{3}{6}$
- The probability of the event "the outcome is ≤ 4 " is $\frac{4}{6}$.

$$P(\text{die even} \mid \text{die } \le 4) = \frac{2}{4} = \frac{1}{2} = P(\text{die even})$$

Observing that the die roll was at most 4 does not provide information about whether it was even.

Independence

Two equivalent definitions of events independence:

- "Defn:" $P(B \mid A) = P(B)$
 - "occurrence of A
 provides no information
 about B's occurrence"

- Recall that $P(A \cap B) = P(A) \cdot P(B \mid A)$
- Defn: $P(A \cap B) = P(A) \cdot P(B)$
- Symmetric with respect to A and B
 - applies even if P(A) = 0
 - implies P(A | B) = P(A)

Set of events $\{A_1, \ldots, A_n\}$ are **Mutually Independent** if

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i).$$

Sources of Independence

- Event associated with "independent" physical processes are independent.
- But independent events do not have to be related to independent physical processes.
- Example:
 - The probability of "the outcome of a die roll is even" is $\frac{3}{6}$
 - The probability of the event "the outcome is ≤ 4 " is $\frac{4}{6}$.
 - The probability of "an even outcome \leq 4" is

$$\frac{2}{6} = \frac{12}{36} = \frac{3}{6} \cdot \frac{4}{6}$$

 \Rightarrow the two events are independent.

 The "intuition" here is that there are the same number of odd and even outcomes that are ≤ 4. Thus, the "information" that the outcome is ≤ 4 does not "help" in deciding if it is odd or even.

Events that are NOT Independent

- Assume events are non-degenerate: 0 < P(A) < 1, 0 < P(B) < 1
- Nested events are not independent: If $A \subset B$, $P(B \mid A) = 1 \neq P(B)$.
- Mutually exclusive events are not independent: If $A \cap B = \emptyset$, $P(A \cap B) = 0 \neq P(A)P(B)$.

Let A_i be the event that the final item has a defect on feature *i*. $P(A_1) = 0.8, P(A_2) = 0.7$

We assume that A_1 and A_2 are **independent events**.

Let A_i be the event that the final item has a defect on feature *i*. $P(A_1) = 0.3, P(A_2) = 0.2$

We assume that A_1 and A_2 are **independent events**.

 $W = \{ \text{no defect} \}$ $W = A_1^c \cap A_2^c = \Omega \setminus (A_1 \cup A_2)$ $P(W) = 1 - P(A_1 \cup A_2)$ $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$ $= P(A_1) + P(A_2) - P(A_1) \cdot P(A_2)$

Let A_i be the event that the final item has a defect on feature *i*. $P(A_1) = 0.3, P(A_2) = 0.2$

We assume that A_1 and A_2 are **independent events**.

 $W = \{ \text{no defect} \}$ $W = A_1^c \cap A_2^c = \Omega \setminus (A_1 \cup A_2)$ $P(W) = 1 - P(A_1 \cup A_2)$ $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$ $= P(A_1) + P(A_2) - P(A_1) \cdot P(A_2)$ $P(W) = 1 - P(A_1) - P(A_2) \cdot (1 - P(A_1))$ = $(1 - P(A_1)) \cdot (1 - P(A_2))$ = $P(A_1^c) \cdot P(A_2^c) = 0.56$

 (A_2)

Let A_i be the event that the final item has a defect on feature *i*. $P(A_1) = 0.3, P(A_2) = 0.2$

We assume that A_1 and A_2 are **independent events**.

$$W = \{\text{no defect}\}\$$

$$W = A_1^c \cap A_2^c = \Omega \setminus (A_1 \cup A_2)$$

$$P(W) = 1 - P(A_1 \cup A_2)$$

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

$$= P(A_1) + P(A_2) - P(A_1) \cdot P(A_2)$$

$$P(W) = 1 - P(A_1) - P(A_2) \cdot (1 - P(A_1))$$

= $(1 - P(A_1)) \cdot (1 - P(A_2))$
= $P(A_1^c) \cdot P(A_2^c) = 0.56$

Complements maintain independence

Let A_i be the event that the final item has a defect on feature *i*. $P(A_1) = 0.3, P(A_2) = 0.2$

We assume that A_1 and A_2 are **independent events**.

 $W = \{ \text{defect only on feature } A_2 \}$ $W = A_1^c \cap A_2$ $A_1 \text{ independent with } A_2 \Rightarrow A_1^c \text{ independent with } A_2$ $P(W) = P(A_1^c \cap A_2) = P(A_1^c) \cdot P(A_2) = (1 - P(A_1))P(A_2) = 0.7 \cdot 0.2 = 0.14$

Serial versus Parallel Systems

 C_1

 C_2

$$\{\text{system works}\} = W_1 \cap W_2$$

Assume component failures are independent events, and that $P(W_1) = 0.9$ and $P(W_2) = 0.8$

 $P(\text{system works}) = P(W_1 W_2) = P(W_1)P(W_2) = 0.9 \times 0.8 = 0.72$

 $\{\text{system works}\} = W_1 \cup W_2$

$$P(\text{system works}) = 1 - (0.1)(0.2) = 0.98$$

Conditioning may Affect Independence

- Conditional independence, given C, is defined as independence under probability law $\mathbf{P}(\cdot \mid C)$
- Assume A and B are independent

• If we are told that C occurred, are A and B independent?

 $P(A \cap B \mid C) = 0 \neq P(A \mid C)P(B \mid C)$

Definition of conditional independence: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

For this example:

$$P(A \cap B) = P(A)P(B)$$

Conditioning may Affect Independence

A - dice outcome is even B - dice outcome is <= 4 Definition of conditional independence: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

$$P(A \cap B) = P(A)P(B) = \frac{1}{2}\frac{4}{6} = \frac{2}{3}$$

C= dice outcome >1

$$P(A \cap B \mid C) = P(A \cap B \cap C) / P(C) = \frac{2/6}{5/6} = \frac{2}{5}$$

$$\neq P(A \mid C) P(B \mid C) = \frac{3}{5} \frac{3}{5} = \frac{9}{25}$$

Example: Conditioning & Independence

- Two unfair coins, A and B: P(H | coin A) = 0.9, P(H | coin B) = 0.1choose either coin with equal-probability
- Once we know it is coin A, are tosses independent?

Yes, by definition.

• If we do not know which coin it is, are tosses independent?

No, consider probability that second toss is heads given first.

H in the first toss increases the probability that we chose the first coin and therefore of H is the second toss

Example: Conditioning & Independence

- Two unfair coins, A and B: P(H | coin A) = 0.9, $P(H \leq coin B) = 0.1$ choose either coin with equal probability
- Once we know it is coin *A*, are tosses independent? Yes, by definition.
- If we do not know which coin it is, are tosses independent?

No, consider probability that second toss is head given the first.

H1 - H in the first toss, H2 - H in the second toss.

$$P(H2 \mid H1) = \frac{P(H1 \cap H2)}{P(H1)} = \frac{0.5(0.9)^2 + 0.5(0.1)^2}{0.5 \cdot 0.9 + 0.5 \cdot 0.1} = 0.82$$

CS145: Lecture 3 Outline

- Conditional Probability and Independence
 Bayes' Rule
- Bayesian Classification Algorithm

J Bayes.

Total Probability Theorem

- Divide and conquer
- Partition of sample space into A_1, A_2, A_3
- Have $\mathbf{P}(B \mid A_i)$, for every i

• One way of computing P(B):

 $P(B) = P(A_1)P(B | A_1)$ + P(A_2)P(B | A_2) + P(A_3)P(B | A_3)

- "Prior" probabilities $P(A_i)$
 - initial "beliefs"
- We know $\mathbf{P}(B \mid A_i)$ for each i
- Wish to compute $\mathbf{P}(A_i \mid B)$
- revise "beliefs", given that B occurred

Example: Witness reliability

A witness testifies that they saw a robber escaping with a yellow taxi

How reliable is this information?

- Taxi are either red or yellow
- A witness is accurate 80% of the times (independent of the color)

Example: Witness reliability

A witness testifies that they saw a robber escaping with a yellow taxi

How reliable is this information?

- Taxi are either red or yellow
- A witness is accurate 80% of the times (independent of the color)
- 70% of taxi are red and 30% of taxi are yellow

 $T = \{$ taxi of the robber is yellow $\}, W = \{$ witness says yellow $\}$

$$P(T|W) = P(W|T)\frac{P(T)}{P(W)} = \frac{P(W|T) \cdot P(T)}{P(W|T)P(T) + P(W|T^c)P(T^c)}$$
$$= \frac{0.8 \cdot 0.3}{0.8 \cdot 0.3 + 0.7 \cdot 0.2} \simeq 0.63$$

Example: Face Detection

CS145: Lecture 3 Outline

- Conditional Probability and Independence
 Bayes' Rule
- Bayesian Classification Algorithm

Boxes and Balls

- > Three boxes, box *i* contains *i* white balls and one black ball
- I pick one of the boxes at random, then randomly draw one of its balls
- If I show you that the ball I drew was white, what box would you guess it came from?
- > With what probability is your guess correct?

$$P(\text{Box } i | \text{white}) = \frac{P(\text{Box } i \text{ and white})}{P(\text{white})}$$
 $(i = 1, 2, 3)$

 $P(\text{Box } i \text{ and white}) = P(\text{Box } i)P(\text{white}|\text{Box } i) = \frac{1}{3} \times \frac{i}{i+1} \ (i = 1, 2, 3)$

$$P(\text{white}) = \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{2}{3} + \frac{1}{3} \times \frac{3}{4} = \frac{23}{36}$$

i	1	2	3
P(Box i white)	6/23	8/23	9/23

Classification Problems

- > Which of the 10 digits did a person write by hand?
- ➢ Is an email spam or not spam (ham)?
- Is this image taken in an indoor our outdoor environment?
- > Is a pedestrian visible from a self-driving car's camera?
- > What language is a webpage or document written in?
- > How many stars would a user rate a movie that they've never seen?

Models Based on Conditional Probabilities $\mathbf{P}(A \cap \mathbf{Bayes}(A))$ Event A: An airplane is flying above Event B: A "blip" appears on radar \succ If I observe a blip B, predict A if and only if P(B | A) = 0.99 $\Rightarrow P(A^c)$ B) $P(B^{c} | A) = 0.01$ (or, $P(A \mid B) > 0.5)$ P(A)=0.05 If Lobserve no blip B^c , predict A if and only if $P(A^{c})=0.95$ $P(A \mid B^c) > P(A^c \mid B^c)$ $P(B | A^{c})=0.10$ > 0.5)(or,~ $P(B^{c} | A^{c}) = 0.90$ $\frac{P(B^c \mid A)}{P(B^c)}$ Blip: $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$ No Blip: $P(A \mid$

A Simplified Classification Rule

- ➢ If I observe B, I will predict A is true if and only if: $P(A \mid B) > P(A^c \mid B)$
- > By Bayes' rule, this is equivalent to checking:
 - $\frac{P(B \mid A)P(A)}{P(B)} > \frac{P(B \mid A^c)P(A^c)}{P(B)}$
- > Because P(B) > 0, I can ignore the denominator, and check: $P(B \mid A)P(A) > P(B \mid A^c)P(A^c)$
- ➢ Because the *logarithm* is monotonic: $\log P(B \mid A) + \log P(A) > \log P(B \mid A^c) + \log P(A^c)$ *More numerically robust when probabilities small.*

Testing: How good is my classifier?

Suppose I have a dataset of *M* labeled test examples: $(A_i, B_i), i = 1, ..., M$ $A_i \in \{0, 1\}$

➢ For each test example, the classifier makes a prediction about A_i given the information from B_i:
Predict Â_i = 1 if log P(B_i | A_i = 1) + log P(A_i = 1) > log P(B_i | A_i = 0) + log P(A_i = 0)
Otherwise, predict Â_i = 0.

> The test accuracy of our classifier is then

accuracy =
$$\frac{1}{M} \sum_{i=1}^{M} \mathbb{I}(\hat{A}_i = A_i)$$
 error-rate = $\frac{1}{M} \sum_{i=1}^{M} \mathbb{I}(\hat{A}_i \neq A_i)$

Training: What are the probabilities?

Training Data (size N)

Test Data (size M)

 $\log P(B \mid A) + \log P(A) > \log P(B \mid A^c) + \log P(A^c)$

A simple way to estimate probabilities is to *count frequencies of training events*:

$$P(A) = (N_{10} + N_{11})/N$$

$$P(A^{c}) = (N_{00} + N_{01})/N$$

$$D + A$$

$$P(B \mid A) = N_{11}/(N_{11}+N_{10})$$

$$P(B \mid A^{c}) = N_{01}/(N_{00}+N_{10})$$

The "Naïve" Bayesian Classifier

- We often classify based on a set of observations.
- Example: classify the subject of a document based on a set of keywords
- We have a set of subjects S={s₁, s₂,...,s_m} and a set of keyworks W={w₁, w₂,...,w_n}
- A document d is represented by a Boolean vector b(d)=(b₁, b₂,...,b_n) where b_i=1 if word w_i is in the document d.
- To apply the Bayesian classification method we need for every subject s and Boolean vector b an estimate of P(b | s) - we need to estimate 2ⁿ|S| probabilities – not practical.
- Instead we assume that occurrences of keywords in a document are "independent" events, P(b | s) = ∏_i P (b_i | s). In that case we need to estimate only n|S| probabilities.
- While the assumption in naïve, it works very well in practice.

Review on Bayes Rule

Review on Baves Rule

- "Prior" probabilities $P(A_i)$
 - initial "beliefs"
- We know $\mathbf{P}(B \mid A_i)$ for each i
- Wish to compute $P(A_i | B)$

 A_1

 A_2

– revise "beliefs", given that B occurred

- > We want to build a spam detection system
- We have access to a huge dataset of emails that are labeled as 'spam' or 'not spam'
- > We identify a set of keywords $W = \{w_1, \ldots, w_n\}$ that are discriminative (e.g., most likely to appear if email is spam)
- We describe an email through a Boolean vector $B = (b_1, \ldots, b_n)$ where $b_i = 1$ if and only if the keyword w_i appears in the document

- $S = \{\text{email is spam}\}, B = (b_1, \dots, b_n)$
- <u>Bayesian Classifier:</u> classify spam iff $Pr(S|B) > Pr(S^c|B)$

Bayes Rule

 $\Pr(S|B) > \Pr(S^c|B) \iff \Pr(B|S)\Pr(S) > \Pr(B|S^c)\Pr(S^c)$

 $S = \{\text{email is spam}\}, B = (b_1, \dots, b_n)$

<u>Bayesian Classifier</u>: classify spam iff $Pr(S|B) > Pr(S^c|B)$

Bayes Rule

$$\Pr(S|B) > \Pr(S^c|B) \iff \Pr(B|S) \Pr(S) > \Pr(B|S^c) \Pr(S^c)$$

Easy to estimate from dataset

 $S = \{\text{email is spam}\}, B = (b_1, \dots, b_n)$

<u>Bayesian Classifier</u>: classify spam iff $\Pr(S|B) > \Pr(S^c|B)$

Bayes Rule

$$\Pr(S|B) > \Pr(S^c|B) \iff \Pr(B|S) \Pr(S) > \Pr(B|S^c) \Pr(S^c)$$

Easy to estimate from dataset

spam)

<u>Naive Assumption:</u> given the true classification, the words appear independently (conditional independence)

Hard to estimate, 2^n possible keywords combination
$$\Pr(B|S) = \prod_{i=1}^{n} \Pr(b_i|S)$$
 We only need to estimate n probabilities (event that a keyword appears if the email is spam)

Probability appearing	w_1	w_2	•••	•••	•••	w_n
Spam	0.7	0.4				0.2
Not Spam	0.1	0.7				0.6

$$B = (1, 0, \dots, 1)$$
$$\Pr(B|S) = \prod_{i=1}^{n} \Pr(b_i|S) =$$

