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Joint Probability Distributions
Joint Distribution and Conditional Probability

Definition

The joint distribution function of X and Y is

F (x , y) = Pr(X  x ,Y  y).

The variables X and Y have joint density function f if for all x , y ,

F (x , y) =

Z y

�1

Z x

�1
f (u, v) du dv .

f (x , y) =
@2

@x@y
F (x , y)

when the derivative exists.

LECTURE 9 Continuous r.v.’s and pdf’s

• Readings: Sections 3.4-3.5
f (x)X

S a m p l e  S p a c e

Outline

• PDF review a b x Event {a < X < b }

• Multiple random variables

– conditioning
b

– independence P(a ⇥ X ⇥ b) = f
a

• Examples

Z
X(x) dx

• P(x ⇥ X ⇥ x+ �) ⇤ fX(x) · �
Summary of concepts

• E[g(X)] =
Z ⌅

g(x)fX(x) dx
pX(x) fX(x) �⌅

F (x)
X

X

xpX(x) E[X]
x

Z
xfX(x) dx

var(X)

pX,Y (x, y) fX,Y (x, y)

pX|A(x) fX A(x)|
pX Y (x y| | ) fX (x|Y | y)

Joint PDF fX,Y (x, y) Bu�on’s needle
• Parallel lines at distance d

Needle of length ⌅ (assume ⌅ < d)
Find P(needle intersects one of the lines)

P((X,Y ) ⇧ S) =
Z Z

fX,Y (x, y) dx dy
•

S q
x

l

•
d

Interpretation:

( ⇥ ⇥ + ⇥ ⇥ + ) ⇤ ( )· 2P x X x �, y Y y � fX,Y x, y �
• X ⇧ [0, d/2]: distance of needle midpoint

to nearest line
• Expectations: • Model: X, � uniform, independent

( ) = 0 2 0[ ( )] =
Z ⌅ Z ⌅

( f x, ⇥ x d/ , ⇥ ⇤/2E g X, Y g x, y)fX,Y (x, y) dx dy X,� ⇥ ⇥ ⇥ ⇥
�⌅ �⌅

⌅
• From the joint to the marginal: • Intersect if X ⇥ sin�

2
fX(x) · � ⇤ P(x ⇥ X ⇥ x+ �) =

P
✓

⌅
X ⇥ sin�

◆
=

Z Z
fX(x)f�(⇥) dx d⇥

2 ⇥ ⌅x sin ⇥2

4 Z ⇤/2 Z (⌅/2) sin ⇥
= dx d⇥

⇤d 0 0

• X and Y are called independent if
4 ⇤/2 ⌅ 2⌅

=
Z

sin ⇥fX,Y (x, y) = X( ) d⇥ =f x fY (y), for all x, y ⇤d 0 2 ⇤d

�



Example: Joint Distribution

346 Chapter s. Continuous Joint Distributions 

5.2 Densities 
The concept of a joint probability density function f(x, y) for a pair of random 
variables X and Y is a natural extension of the idea of a one-dimensional probabil-
ity density function studied in Chapter 4. The function f(x, y) gives the density of 
probability per unit area for values of (X, Y) near the point (x, y). 

FIGURE 1. A joint density surface. Here a particular joint density function given by the formula 

f(x, y) = 5! x(y - x)(l - y) (0 < x < y < 1), is viewed as the height of a surface over 

the unit square 0 :=:; x :=:; 1,0 :=:; y :=:; l. As explained later in Example 3, two random variables X 
and Y with this joint density are the second and fourth smallest of five independent uniform (0,1) 
variables. But for now the source and special form of this density are not important. Just view it as 

a typical joint density surface. 

values of x 

Examples in the previous section show how any event determined by two random 
variables X and Y, like the event (X > 0.25 and Y > 0.5), corresponds to a region 
of the plane. Now instead of a uniform distribution defined by relative areas, the 
probability of region B is defined by the volume under the density surface over B. 
This volume is an integral 

P((X, Y) E B) = J J f(x, y)dx dy 
B 

This is the analog of the familiar area under the curve interpretation for probabilities 
obtained from densities on a line. Examples to follow show how such integrals can 
be computed by repeated integration, change of variables, or symmetry arguments. 
Uniform distribution over a region is now just the special case when f(x, y) is con-
stant over the region and zero elsewhere. As a general rule, formulae involving joint 
densities are analogous to corresponding formulae for discrete joint distributions 
described in Section 3.1. See pages 348 and 349 for a summary. Pitman’s Probability, 1999

fXY (x, y) = 5!x(y � x)(1� y)

0 < x < y < 1
Z 1

0

Z y

0
x(y � x)(1� y) dxdy =

1

5!
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FIGURE 2. Volume representing a probability. The probability P(X > 0.25 and y > 0.5), 
for random variables X and Y with the joint density of Figure 1. The set B in this case is 

{(x , y) : x > 0.25 and y > 0.5}. You can see the volume is about half the total volume un· 
der the surface. The exact value, found later in Example 3, is 27/64. 

Informally, if (X, Y) has joint density f(x, y), then there is the infinitesimal proba-
bility formula 

P(X E dx, Y E dy) = f(x, y)dx dy 

This means that the probability that the pair (X, Y) falls in an infinitesimal rectangle 
of width dx and height dy near the point (x, y) is the probability density at (x, y) 
multiplied by the area dx dy of the rectangle. 

I 
(Ye dy) 

P(Xedx 
=/(x,y)dxdy 
= volume of box 

dx -
height /(x,y) of 

rns;ty unace=_----

P (X > 0.25, Y > 0.5) =
Z 1

0.5

Z y

0.25
fXY (x, y) dxdy



2D Uniform Distributions2-Dimension Uniform Distribution

Density function:

f (x , y) =

⇢
1 x , y 2 [0, 1]2

0 otherwise.

Probability distribution:

F (x , y) = Pr(X  x ,Y  y) =

Z min[1,x]

0

Z min[1,y ]

0
1dxdy

F (x , y) =

8
>>>><

>>>>:

0 if x < 0 or y < 0

xy if x , y 2 [0, 1]2

x 0  x  1, y > 1

y 0  y  1, x > 1

1 x > 1, y > 1.



IndependenceIndependence

Definition

The random variables X and Y are independent if for all x , y ,

Pr((X  x) \ (Y  y)) = Pr(X  x) Pr(Y  y).

Two random variables are independent if and only if

F (x , y) = FX (x)FY (y).

f (x , y) = fX (x)fY (y).

If X and Y are independent then E [XY ] = E [X ]E [Y ].



Buffon’s Needle
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• Multiple random variables

– conditioning
b

– independence P(a ⇥ X ⇥ b) = f
a

• Examples

Z
X(x) dx

• P(x ⇥ X ⇥ x+ �) ⇤ fX(x) · �
Summary of concepts

• E[g(X)] =
Z ⌅

g(x)fX(x) dx
pX(x) fX(x) �⌅

F (x)
X

X

xpX(x) E[X]
x

Z
xfX(x) dx

var(X)

pX,Y (x, y) fX,Y (x, y)

pX|A(x) fX A(x)|
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Joint PDF fX,Y (x, y) Bu�on’s needle
• Parallel lines at distance d

Needle of length ⌅ (assume ⌅ < d)
Find P(needle intersects one of the lines)

P((X,Y ) ⇧ S) =
Z Z

fX,Y (x, y) dx dy
•

S q
x

l

•
d

Interpretation:

( ⇥ ⇥ + ⇥ ⇥ + ) ⇤ ( )· 2P x X x �, y Y y � fX,Y x, y �
• X ⇧ [0, d/2]: distance of needle midpoint

to nearest line
• Expectations: • Model: X, � uniform, independent

( ) = 0 2 0[ ( )] =
Z ⌅ Z ⌅

( f x, ⇥ x d/ , ⇥ ⇤/2E g X, Y g x, y)fX,Y (x, y) dx dy X,� ⇥ ⇥ ⇥ ⇥
�⌅ �⌅

⌅
• From the joint to the marginal: • Intersect if X ⇥ sin�

2
fX(x) · � ⇤ P(x ⇥ X ⇥ x+ �) =

P
✓

⌅
X ⇥ sin�

◆
=

Z Z
fX(x)f�(⇥) dx d⇥

2 ⇥ ⌅x sin ⇥2

4 Z ⇤/2 Z (⌅/2) sin ⇥
= dx d⇥

⇤d 0 0

• X and Y are called independent if
4 ⇤/2 ⌅ 2⌅

=
Z

sin ⇥fX,Y (x, y) = X( ) d⇥ =f x fY (y), for all x, y ⇤d 0 2 ⇤d

�
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4

⇡d

Georges-Louis Leclerc, Comte de 
Buffon (1707-1787, by François-Hubert 
Drouais

<latexit sha1_base64="Qm3JmHa0KuljWqKOdukIk8+BYg4="></latexit>

⇥ = smallest angel between the needle
and a parallel line, 0  ⇥  ⇡/2

<latexit sha1_base64="U0R6N6STllyi9Lspi5EtGGCdhf8="></latexit>

fX,⇥(x, ✓) = fX(x)f⇥(✓) =
2
d

2
⇡

https://en.wikipedia.org/wiki/Fran%C3%A7ois-Hubert_Drouais
https://en.wikipedia.org/wiki/Fran%C3%A7ois-Hubert_Drouais
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Reminder: Discrete Marginals

Ø The joint probability mass function of two variables:

X = 1

X = 2

Y = 1 Y = 8

Ø The range of each variable defines a partition of the sample space,
so the marginal distributions can be computed from the joint distribution:

pXY (x, y) = P (X = x and Y = y)

pX(x) = P (X = x) =
P

y pXY (x, y)
pY (y) = P (Y = y) =

P
x pXY (x, y)

pXY (x, y)

pX(x)
pY (y)



Reminder: Discrete Conditionals
X = 1

X = 2

Y = 1 Y = 8

Ø By the definition of conditional probability:

pXY (x, y)
pY |X(y | 1)

pY |X(y | 2)

pX|Y (x | 1) pX|Y (x | 8)
…

P (X = x | Y = y) =
P (X = x and Y = y)

P (Y = y)
Ø The conditional probability mass function is then:

pX|Y (x | y) = P (X = x | Y = y) =
pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)



Joint Probability Density Functions

346 Chapter s. Continuous Joint Distributions 

5.2 Densities 
The concept of a joint probability density function f(x, y) for a pair of random 
variables X and Y is a natural extension of the idea of a one-dimensional probabil-
ity density function studied in Chapter 4. The function f(x, y) gives the density of 
probability per unit area for values of (X, Y) near the point (x, y). 

FIGURE 1. A joint density surface. Here a particular joint density function given by the formula 

f(x, y) = 5! x(y - x)(l - y) (0 < x < y < 1), is viewed as the height of a surface over 

the unit square 0 :=:; x :=:; 1,0 :=:; y :=:; l. As explained later in Example 3, two random variables X 
and Y with this joint density are the second and fourth smallest of five independent uniform (0,1) 
variables. But for now the source and special form of this density are not important. Just view it as 

a typical joint density surface. 

values of x 

Examples in the previous section show how any event determined by two random 
variables X and Y, like the event (X > 0.25 and Y > 0.5), corresponds to a region 
of the plane. Now instead of a uniform distribution defined by relative areas, the 
probability of region B is defined by the volume under the density surface over B. 
This volume is an integral 

P((X, Y) E B) = J J f(x, y)dx dy 
B 

This is the analog of the familiar area under the curve interpretation for probabilities 
obtained from densities on a line. Examples to follow show how such integrals can 
be computed by repeated integration, change of variables, or symmetry arguments. 
Uniform distribution over a region is now just the special case when f(x, y) is con-
stant over the region and zero elsewhere. As a general rule, formulae involving joint 
densities are analogous to corresponding formulae for discrete joint distributions 
described in Section 3.1. See pages 348 and 349 for a summary. 

28 General Random Variables Chap. 3

we must have
c = 1.

This is an example of a uniform PDF on the unit square. More generally,
let us fix some subset S of the two-dimensional plane. The corresponding uniform
joint PDF on S is defined to be

fX,Y (x, y) =

{ 1
area of S

if (x, y) ∈ S,

0 otherwise.

For any set A ⊂ S, the probability that the experimental value of (X, Y ) lies in A
is

P
(
(X, Y ) ∈ A

)
=

∫ ∫

(x,y)∈A

fX,Y (x, y) dx dy =
1

area of S

∫ ∫

(x,y)∈A∩S

dx dy =
area of A ∩ S

area of S
.

Example 3.14. We are told that the joint PDF of the random variables X and Y
is a constant c on the set S shown in Fig. 3.16 and is zero outside. Find the value
of c and the marginal PDFs of X and Y .

The area of the set S is equal to 4 and, therefore, fX,Y (x, y) = c = 1/4, for
(x, y) ∈ S. To find the marginal PDF fX(x) for some particular x, we integrate
(with respect to y) the joint PDF over the vertical line corresponding to that x.
The resulting PDF is shown in the figure. We can compute fY similarly.

x 

fX(x)

fY(y)

y

S

x 

1/4

3/4

y

1/4

1/2

1 3

4

2

2

1

3

Figure 3.16: The joint PDF in Example 3.14 and the resulting marginal
PDFs.

fXY (x, y) =
1
4 if (x, y) 2 S.

fXY (x, y) = 5!x(y � x)(1� y)

fXY (x, y) = 0 otherwise.

Ø The joint probability density function (PDF) of two variables is defined so:
P (x1  X  x2, y1  Y  y2) =

R y2

y1

R x2

x1
fXY (x, y) dxdy

Ø To define a proper distribution, the PDF must be normalized:R +1
�1

R +1
�1 fXY (x, y) dxdy = 1

P (x  X  x+ �, y  Y  y + �) ⇡ fXY (x, y)�2

Uniform on set S:



Marginal Probability Density Functions

fXY (x, y) =
1
4 if (x, y) 2 S.

fXY (x, y) = 0 otherwise.

Ø The marginal probability density functions (PDF) of X and Y equal:

Ø The marginals are defined to compute consistent probabilities:

Uniform on set S:
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This is an example of a uniform PDF on the unit square. More generally,
let us fix some subset S of the two-dimensional plane. The corresponding uniform
joint PDF on S is defined to be

fX,Y (x, y) =

{ 1
area of S

if (x, y) ∈ S,

0 otherwise.

For any set A ⊂ S, the probability that the experimental value of (X, Y ) lies in A
is

P
(
(X, Y ) ∈ A

)
=

∫ ∫

(x,y)∈A

fX,Y (x, y) dx dy =
1

area of S

∫ ∫

(x,y)∈A∩S

dx dy =
area of A ∩ S

area of S
.

Example 3.14. We are told that the joint PDF of the random variables X and Y
is a constant c on the set S shown in Fig. 3.16 and is zero outside. Find the value
of c and the marginal PDFs of X and Y .

The area of the set S is equal to 4 and, therefore, fX,Y (x, y) = c = 1/4, for
(x, y) ∈ S. To find the marginal PDF fX(x) for some particular x, we integrate
(with respect to y) the joint PDF over the vertical line corresponding to that x.
The resulting PDF is shown in the figure. We can compute fY similarly.

x 

fX(x)
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y

S

x 

1/4

3/4

y

1/4

1/2

1 3

4

2

2

1

3

Figure 3.16: The joint PDF in Example 3.14 and the resulting marginal
PDFs. fX(x) =

R +1
�1 fXY (x, y) dy fY (y) =

R +1
�1 fXY (x, y) dx

P (y1  Y  y2) =
R y2

y1
fY (y) dy =

R y2

y1

R +1
�1 fXY (x, y) dxdy



Marginal Distributions
Marginal Distribution

Definition

Given a joint distribution function FX ,Y (x , y) the marginal
distribution function of X is

FX (x) = Pr(X  x) =

Z x

�1

Z 1

�1
fX ,Y (x , y)dydx

and the corresponding marginal density functions is

fX (x) =

Z 1

�1
fX ,Y (x , y)dy

Example

fX ,Y (x , y) =

⇢
1 x , y 2 [0, 1]2

0 otherwise.

Fx(x) =

8
<

:

0 x < 0R x
0

R 1
0 1dydx = x 0  x  1

1 x � 1

fX (x) =

⇢
1 x 2 [0, 1]
0 otherwise.

Example

fX ,Y (x , y) =

⇢
1 x , y 2 [0, 1]2

0 otherwise.

Fx(x) =

8
<

:

0 x < 0R x
0

R 1
0 1dydx = x 0  x  1

1 x � 1

fX (x) =

⇢
1 x 2 [0, 1]
0 otherwise.

Example: Uniform Distributions



Conditional Probability Density Functions

fXY (x, y) =
1
4 if (x, y) 2 S.

fXY (x, y) = 0 otherwise.

Ø The conditional probability density function (PDF) of X given Y:

Uniform on set S:

fY (y) =
R +1
�1 fXY (x, y) dx
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Expectation

If X and Y are jointly continuous random variables, and g is some function, then
Z = g(X, Y ) is also a random variable. We will see in Section 3.6 methods for
computing the PDF of Z, if it has one. For now, let us note that the expected
value rule is still applicable and

E
[
g(X, Y )

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy.

As an important special case, for any scalars a, b, we have

E[aX + bY ] = aE[X] + bE[Y ].

Conditioning One Random Variable on Another

Let X and Y be continuous random variables with joint PDF fX,Y . For any
fixed y with fY (y) > 0, the conditional PDF of X given that Y = y, is defined
by

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

This definition is analogous to the formula pX|Y = pX,Y /pY for the discrete case.
When thinking about the conditional PDF, it is best to view y as a fixed

number and consider fX|Y (x | y) as a function of the single variable x. As a
function of x, the conditional PDF fX|Y (x | y) has the same shape as the joint
PDF fX,Y (x, y), because the normalizing factor fY (y) does not depend on x; see
Fig. 3.18. Note that the normalization ensures that

∫ ∞

−∞
fX|Y (x | y) dx = 1,

so for any fixed y, fX|Y (x | y) is a legitimate PDF.

x 

fX|Y(x|1.5)

y

S

1 3

4

2

2

1

3
x 

x 

x 1 32

fX|Y(x|2.5)

fX|Y(x|3.5)

1

1

1/2

Figure 3.18: Visualization of the conditional PDF fX|Y (x | y). Let X, Y have a
joint PDF which is uniform on the set S. For each fixed y, we consider the joint
PDF along the slice Y = y and normalize it so that it integrates to 1.

fX|Y (x | y) = fXY (x, y)

fY (y)
fXY (x, y) = fY (y)fX|Y (x | y)

P (x  X  x+ � | y  Y  y + �) ⇡ fX|Y (x | y)�

Ø The marginal PDF of Y:



Conditioning on Continuous ObservationsConditional probability

F (X |Y = y) =

Z X

�1
fX |Y=y (X ) = Pr(X  x | Y = y)

= lim
dy!0

Pr(X  x | y  Y  y + dy)

= lim
dy!0

Pr(X  x AND y  Y  y + dy)

Pr(y  Y  y + dy)

= lim
dy!0

1
dy

R y+dy
y

R x
�1 fX ,Y (x , y)dxdy

1
dy

R y+dy
y fY (y)dy

=

R x
�1 fX ,Y (x , y)dx

fY (y)
=

Z x

�1

fX ,Y (x , y)

fY (y)
dx

Thus,

fX |Y=y (x) =
fX ,Y (x , y)

fY (y)

Conditional probability

F (X |Y = y) =

Z X

�1
fX |Y=y (X ) = Pr(X  x | Y = y)

= lim
dy!0

Pr(X  x | y  Y  y + dy)

= lim
dy!0

Pr(X  x AND y  Y  y + dy)

Pr(y  Y  y + dy)

= lim
dy!0

1
dy

R y+dy
y

R x
�1 fX ,Y (x , y)dxdy

1
dy

R y+dy
y fY (y)dy

=

R x
�1 fX ,Y (x , y)dx

fY (y)
=

Z x

�1

fX ,Y (x , y)

fY (y)
dx

Thus,

fX |Y=y (x) =
fX ,Y (x , y)

fY (y)



Joint, Marginal, & Conditional Distributions

Pitman’s Probability, 1999
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FIGURE 1. Joint, marginal, and conditional densities. 

area of slice = 
height of marginal 

den ity at x slice through 
den ity urface 

for fixed x 

Renormalizing lices 
for fIXed x giv 
conditional d n ities 
for Y given X = x. 

slice through 
density surface 

for fixed y 

area of lice = 
h ight of marginal 

density at y 

R normalizing lic 
for fix d y give 
conditional densitie 
for X given Y = y. 

fXY (x, y)

fY |X(y | x) fX|Y (x | y) = fXY (x, y)

fY (y)

fX(x)

fY (y) =

Z +1

�1
fXY (x, y) dx



Continuous Inference from Discrete Data
<latexit sha1_base64="ZZAq+8gIq2Pt75N9X3LjQGoHXAs="></latexit>

y= concentration of virus
X = {0, 1} - tested negative/positive
Test’s specifications give P (X | Y ).

P (Y  y | X = x) =
R
Y y f(y)P (X=x | Y=y)dy

P (X=x)

f(y | X = x) = f(y)P (X=x | Y=y)
P (X=x)



Variants of Bayes Rule
LECTURE 10 The Bayes variations

Continuous Bayes rule; pX,Y (x, y) pX(x)pY y x)
(x y) = =

|X(
p

|
Derived distributions X|Y |

pY (y) pY (y)

• Readings: pY (y) = pX(x)pY X(y | x)
x

|
Section 3.6; start Section 4.1

X

Example:

Review • X = 1,0: airplane present/not present

• Y = 1,0: something did/did not register

p ( on adaX(x) f r rX x)

pX,Y (x, y) fX,Y (x, y)
pX,Y (x, y) fX,Y (x, y) Continuous counterpart

pX (x y) = f (x y) =|Y |
pY (y) X|Y |

fY (y)
X Z ⇤ f (x, y) fX(x)f

p (x) = p (x, y) f (x) = f (x, y) dy | X,Y Y |X(y )
X X,Y X X, f (x =

y �⇤ X|Y
| x

Y y) =
fY (y) fY (y)

fY (y) = fX(x)fY X(y x) dx
x

| |

FX(x) = P( )

Z

X ⇥ x
Example: X: some signal; “prior” fX(x)

E[X], var(X) Y : noisy version of X

fY X(y | x): model of the noise|

Discrete X, Continuous Y What is a derived distribution

• It is a PMF or PDF of a function of onepX(x)f (y x)
p Y (x | Y
X y) =

|X |
or more random variables with known| fY (y) probability law. E.g.:

) =
y 

fY (y
X

pX(x)fY |X(y | x) f (y,x)=1X,Y
x

1
Example:

• X: a discrete signal; “prior” pX(x)
• Y : noisy version of X
• fY X(y | x): continuous noise model|

1 x 

Continuous X, Discrete Y
– Obtaining the PDF for

fX(x)pY
f x X, Y ) =X Y/X|Y ( y) =

|X(y | x)
| g(

pY (y)
Z involves deriving a distribution.

pY (y) = fX(x)pY X(y | x) dx Note: g(X,Y ) is a random variable
x

|

Example:
When not to find them

• X: a continuous signal; “prior” fX(x)
(e.g., intensity of light beam); • Don’t need PDF for g(X,Y ) if only want

• Y : discrete r.v. a�ected by X to compute expected value:
(e.g., photon count)

E[g(X,Y )] = g(x, y)f (x, y) dx dy• s t X,
X(y | x): model of the di cre e r. .

Z Z
YpY v|

1

Infer discrete X from discrete Y:

LECTURE 10 The Bayes variations

Continuous Bayes rule; pX,Y (x, y) pX(x)pY y x)
(x y) = =

|X(
p

|
Derived distributions X|Y |

pY (y) pY (y)

• Readings: pY (y) = pX(x)pY X(y | x)
x

|
Section 3.6; start Section 4.1

X

Example:

Review • X = 1,0: airplane present/not present

• Y = 1,0: something did/did not register

p ( on adaX(x) f r rX x)

pX,Y (x, y) fX,Y (x, y)
pX,Y (x, y) fX,Y (x, y) Continuous counterpart

pX (x y) = f (x y) =|Y |
pY (y) X|Y |

fY (y)
X Z ⇤ f (x, y) fX(x)f

p (x) = p (x, y) f (x) = f (x, y) dy | X,Y Y |X(y )
X X,Y X X, f (x =

y �⇤ X|Y
| x

Y y) =
fY (y) fY (y)

fY (y) = fX(x)fY X(y x) dx
x

| |

FX(x) = P( )

Z

X ⇥ x
Example: X: some signal; “prior” fX(x)

E[X], var(X) Y : noisy version of X

fY X(y | x): model of the noise|

Discrete X, Continuous Y What is a derived distribution

• It is a PMF or PDF of a function of onepX(x)f (y x)
p Y (x | Y
X y) =

|X |
or more random variables with known| fY (y) probability law. E.g.:

) =
y 

fY (y
X

pX(x)fY |X(y | x) f (y,x)=1X,Y
x

1
Example:

• X: a discrete signal; “prior” pX(x)
• Y : noisy version of X
• fY X(y | x): continuous noise model|

1 x 

Continuous X, Discrete Y
– Obtaining the PDF for

fX(x)pY
f x X, Y ) =X Y/X|Y ( y) =

|X(y | x)
| g(

pY (y)
Z involves deriving a distribution.

pY (y) = fX(x)pY X(y | x) dx Note: g(X,Y ) is a random variable
x

|

Example:
When not to find them

• X: a continuous signal; “prior” fX(x)
(e.g., intensity of light beam); • Don’t need PDF for g(X,Y ) if only want

• Y : discrete r.v. a�ected by X to compute expected value:
(e.g., photon count)

E[g(X,Y )] = g(x, y)f (x, y) dx dy• s t X,
X(y | x): model of the di cre e r. .

Z Z
YpY v|

1

Infer continuous X from continuous Y:

LECTURE 10 The Bayes variations

Continuous Bayes rule; pX,Y (x, y) pX(x)pY y x)
(x y) = =

|X(
p

|
Derived distributions X|Y |

pY (y) pY (y)

• Readings: pY (y) = pX(x)pY X(y | x)
x

|
Section 3.6; start Section 4.1

X

Example:

Review • X = 1,0: airplane present/not present

• Y = 1,0: something did/did not register

p ( on adaX(x) f r rX x)

pX,Y (x, y) fX,Y (x, y)
pX,Y (x, y) fX,Y (x, y) Continuous counterpart

pX (x y) = f (x y) =|Y |
pY (y) X|Y |

fY (y)
X Z ⇤ f (x, y) fX(x)f

p (x) = p (x, y) f (x) = f (x, y) dy | X,Y Y |X(y )
X X,Y X X, f (x =

y �⇤ X|Y
| x

Y y) =
fY (y) fY (y)

fY (y) = fX(x)fY X(y x) dx
x

| |

FX(x) = P( )

Z

X ⇥ x
Example: X: some signal; “prior” fX(x)

E[X], var(X) Y : noisy version of X

fY X(y | x): model of the noise|

Discrete X, Continuous Y What is a derived distribution

• It is a PMF or PDF of a function of onepX(x)f (y x)
p Y (x | Y
X y) =

|X |
or more random variables with known| fY (y) probability law. E.g.:

) =
y 

fY (y
X

pX(x)fY |X(y | x) f (y,x)=1X,Y
x

1
Example:

• X: a discrete signal; “prior” pX(x)
• Y : noisy version of X
• fY X(y | x): continuous noise model|

1 x 

Continuous X, Discrete Y
– Obtaining the PDF for

fX(x)pY
f x X, Y ) =X Y/X|Y ( y) =

|X(y | x)
| g(

pY (y)
Z involves deriving a distribution.

pY (y) = fX(x)pY X(y | x) dx Note: g(X,Y ) is a random variable
x

|

Example:
When not to find them

• X: a continuous signal; “prior” fX(x)
(e.g., intensity of light beam); • Don’t need PDF for g(X,Y ) if only want

• Y : discrete r.v. a�ected by X to compute expected value:
(e.g., photon count)

E[g(X,Y )] = g(x, y)f (x, y) dx dy• s t X,
X(y | x): model of the di cre e r. .

Z Z
YpY v|

1

Infer discrete X from continuous Y:

LECTURE 10 The Bayes variations

Continuous Bayes rule; pX,Y (x, y) pX(x)pY y x)
(x y) = =

|X(
p

|
Derived distributions X|Y |

pY (y) pY (y)

• Readings: pY (y) = pX(x)pY X(y | x)
x

|
Section 3.6; start Section 4.1

X

Example:

Review • X = 1,0: airplane present/not present

• Y = 1,0: something did/did not register

p ( on adaX(x) f r rX x)

pX,Y (x, y) fX,Y (x, y)
pX,Y (x, y) fX,Y (x, y) Continuous counterpart

pX (x y) = f (x y) =|Y |
pY (y) X|Y |

fY (y)
X Z ⇤ f (x, y) fX(x)f

p (x) = p (x, y) f (x) = f (x, y) dy | X,Y Y |X(y )
X X,Y X X, f (x =

y �⇤ X|Y
| x

Y y) =
fY (y) fY (y)

fY (y) = fX(x)fY X(y x) dx
x

| |

FX(x) = P( )

Z

X ⇥ x
Example: X: some signal; “prior” fX(x)

E[X], var(X) Y : noisy version of X

fY X(y | x): model of the noise|

Discrete X, Continuous Y What is a derived distribution

• It is a PMF or PDF of a function of onepX(x)f (y x)
p Y (x | Y
X y) =

|X |
or more random variables with known| fY (y) probability law. E.g.:

) =
y 

fY (y
X

pX(x)fY |X(y | x) f (y,x)=1X,Y
x

1
Example:

• X: a discrete signal; “prior” pX(x)
• Y : noisy version of X
• fY X(y | x): continuous noise model|

1 x 

Continuous X, Discrete Y
– Obtaining the PDF for

fX(x)pY
f x X, Y ) =X Y/X|Y ( y) =

|X(y | x)
| g(

pY (y)
Z involves deriving a distribution.

pY (y) = fX(x)pY X(y | x) dx Note: g(X,Y ) is a random variable
x

|

Example:
When not to find them

• X: a continuous signal; “prior” fX(x)
(e.g., intensity of light beam); • Don’t need PDF for g(X,Y ) if only want

• Y : discrete r.v. a�ected by X to compute expected value:
(e.g., photon count)

E[g(X,Y )] = g(x, y)f (x, y) dx dy• s t X,
X(y | x): model of the di cre e r. .

Z Z
YpY v|

1

Infer continuous X from discrete Y:



Example: Hard Drive Lifetimes
Exponential 
Distributions:

Ø Suppose 90% of hard drives in some laptop computer 
model have exponentially distributed lifetime param  

fY |X(y | 0) = ✓0e
�✓0y pX(0) = 0.9

✓0

Ø However, 10% of hard drives have a manufacturing 
defect that gives them a shorter lifetime

pX(1) = 0.1fY |X(y | 1) = ✓1e
�✓1y

Ø Recall mean of exponential distribution:

✓1 > ✓0

E[Y | X = 0] =
1

✓0
>

1

✓1
= E[Y | X = 1]

FY (y) = 1� e��y
<latexit sha1_base64="v2uf8V1cV0YRRjL+B9Z7QQGmtkI=">AAACAnicbVDLSsNAFJ34rPUVdSVuBluhLlqSutCNUBTEZQX7kDaGyWTaDp1MwsxECKG48VfcuFDErV/hzr9x2mahrQcGDufcw517vIhRqSzr21hYXFpeWc2t5dc3Nre2zZ3dpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS84eXYbz0QIWnIb1USESdAfU57FCOlJdfcL165d6Xk+Nwuk/u03GU66iOYjIquWbAq1gRwntgZKYAMddf86vohjgPCFWZIyo5tRcpJkVAUMzLKd2NJIoSHqE86mnIUEOmkkxNG8EgrPuyFQj+u4ET9nUhRIGUSeHoyQGogZ72x+J/XiVXvzEkpj2JFOJ4u6sUMqhCO+4A+FQQrlmiCsKD6rxAPkEBY6dbyugR79uR50qxW7JNK9aZaqF1kdeTAATgEJWCDU1AD16AOGgCDR/AMXsGb8WS8GO/Gx3R0wcgye+APjM8feGWVkA==</latexit>

fY (y) = �e��y
<latexit sha1_base64="e6xPCauWloFgtz9GU5hC9d+PyMA=">AAACCHicbVC7TsMwFHXKq5RXgJEBixapDFRJGWBBqmBhLBJ9oDZEjuu0Vh0nsh2kKOrIwq+wMIAQK5/Axt/gtkGCliNZOjrnHl3f40WMSmVZX0ZuYXFpeSW/Wlhb39jcMrd3mjKMBSYNHLJQtD0kCaOcNBRVjLQjQVDgMdLyhpdjv3VPhKQhv1FJRJwA9Tn1KUZKS665X/Ld23JydN5lOtRDkNylxz88GZVcs2hVrAngPLEzUgQZ6q752e2FOA4IV5ghKTu2FSknRUJRzMio0I0liRAeoj7paMpRQKSTTg4ZwUOt9KAfCv24ghP1dyJFgZRJ4OnJAKmBnPXG4n9eJ1b+mZNSHsWKcDxd5McMqhCOW4E9KghWLNEEYUH1XyEeIIGw0t0VdAn27MnzpFmt2CeV6nW1WLvI6siDPXAAysAGp6AGrkAdNAAGD+AJvIBX49F4Nt6M9+lozsgyu+APjI9vkcaYaw==</latexit>

<latexit sha1_base64="wWjskpclhgQQLJ6jAvi/SKDELXU="></latexit>

E[X] =
R1
0 x✓e�✓xdx = [�xe�✓x � 1

✓ e
�✓x]1x=0 = 1

✓



Example: Hard Drive Lifetimes
Exponential 
Distributions:

Ø Suppose 90% of hard drives in some laptop computer 
model have exponentially distributed lifetime param  

fY |X(y | 0) = ✓0e
�✓0y pX(0) = 0.9

✓0

Ø However, 10% of hard drives have a manufacturing 
defect that gives them a shorter lifetime

pX(1) = 0.1fY |X(y | 1) = ✓1e
�✓1y

Ø If your hard drive has operated for t seconds and has 
not yet failed, what is the probability it is defective?

✓1 > ✓0

P (X = 1 | Y > t) =
P (Y > t | X = 1)P (X = 1)

P (Y > t)

=
0.1e�✓1t

0.1e�✓1t + 0.9e�✓0t

FY (y) = 1� e��y
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Example: Hard Drive Lifetimes

FY (y) = 1� e�✓y

Exponential 
Distributions:

fY (y) = ✓e�✓y

Ø Suppose 90% of hard drives in some laptop computer 
model have exponentially distributed lifetime param  

fY |X(y | 0) = ✓0e
�✓0y pX(0) = 0.9

✓0

Ø However, 10% of hard drives have a manufacturing 
defect that gives them a shorter lifetime

pX(1) = 0.1fY |X(y | 1) = ✓1e
�✓1y

Ø If your hard drive fails after exactly t seconds of 
operation, what is the probability it is defective?

✓1 > ✓0

P (X = 1 | Y = t) =
fY |X(y | 1)pX(1)

fY (y)

=
0.1✓1e�✓1t

0.1✓1e�✓1t + 0.9✓0e�✓0t



CS145: Lecture 11 Outline
Ø Joint Distribution
ØMarginal and Conditional Probability Densities
ØConditional Expectations



Joint Probability Distributions

Ø Consider two random variables X, Y.  
Suppose range of X is size N, range of Y is size M.

Ø The joint probability mass function or joint distribution of two variables:

pXY (x, y) � 0,
X

x

X

y

pXY (x, y) = 1.

X = 1

X = 2

Y = 1 Y = 8

In this example, N=2 and M=8,
and the joint PMF is a 2x8 matrix.

Ø The joint distribution is uniquely specified by NM-1 numbers  

pXY (x, y) = P (X = x and Y = y)



Conditional Probability Distributions
X = 1

X = 2

Y = 1 Y = 8

Ø By the definition of conditional probability:

pXY (x, y)
pY |X(y | 1)

pY |X(y | 2)

pX|Y (x | 1) pX|Y (x | 8)
…

P (X = x | Y = y) =
P (X = x and Y = y)

P (Y = y)
Ø The conditional probability mass function is then:

pX|Y (x | y) = P (X = x | Y = y) =
pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)



Conditional Expectation
X = 1

X = 2

Y = 1 Y = 8

Ø Given that I observe Y=y, the conditional expectation of X equals

pXY (x, y)
pY |X(y | 1)

pY |X(y | 2)

pX|Y (x | 1) pX|Y (x | 8)
…

pX|Y (x | y) = P (X = x | Y = y) =
pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)

E[X | Y = y] =
X

x2X
xpX|Y (x | y)

Ø If X and Y are not independent, observing Y=y may change the mean of X



Conditional Expectation: Example

Ø Given that I observe Y=y, the conditional expectation of X equals
E[X | Y = y] =

X

x2X
xpX|Y (x | y)

Ø If X and Y are not independent, observing Y=y may change the mean of X

Conditional PMF and expectation Geometric PMF

• X: number of independent coin tosses• pX|A(x) = P(X = x | A)
until first head

• E[X | A] =
⌅

xp (x) ( ) = (1� )k�1
X p

x
|A pX k p, k = 1,2, . . .

⇤ ⇤
p  (x ) E[X] = (1 kkp ( 1

X
⌅

X k) = p
k

⌅
k �

=1
� p)

k=1

• Memoryless property: Given that X > 2,
1/4

the r.v. X � 2 has same geometric PMF

p   
p (k) p (k)
X X |X>2

2p(1-p)
p  

1 2 3 4 x  

... ...
• Let A = {X ⇥ 2} k1 3 k

p (k)X-  2|X>2
pX|A(x) =

p   

E[X | A] =
...

1 k

Total Expectation theorem Joint PMFs

• Partition of sample space • pX,Y (x, y) = P(X = x and Y = y)
into disjoint events A1, A2, . . . , An

y

A
1 4 1/20 2/20 2/20

B

3 2/20 4/20 1/20 2/20

2 1/20 3/20 1/20

A A 1
2 3 1/20

x
1 2 3 4

P(B) = P(A1)P(B | A1)+· · ·+P(An)P(B | An) • pX,Y (x, y) =
pX(x) = P(A1)pX A (x)+· · ·+P(An)pX A (x)

n

⌅

x

⌅

y| 1 |

E[X] = P(A1)E[X | A1]+· · ·+P(An)E[X | An] • pX(x) =
⌅

pX,Y (x, y)
y

• Geometric example: pX,Y (x, y)
pX Y (x y) = P(X = x Y = y) =

A1 : {X = 1}, A2 : {X > 1
•

} | | |
pY (y)

E[X] = P(X = 1)E[X | X = 1] •
⌅

pX Y (x | y) =|
+P(X > 1)E[X | X > 1] x

• Solve to get E[X] = 1/p

2

Given Y = {X � 2} is observed,

E[X] = 2.5

E[X | Y ] = 3

pX|Y (x | y) =
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2

Y = 1

pXY (x, y)

pX|Y (x | y) = pXY (x, y)

pY (y)
=

pXY (x, y)P
x0 pXY (x0, y)

Ø Applying the definitions of joint, marginal, and conditional distributions:
pX(x) =

X

y2Y
pXY (x, y) =

X

y2Y
pX|Y (x | y)pY (y)

E[X] =
X

y2Y
pY (y)E[X | Y = y]

Mean is a weighted average of (possibly simpler) conditional means.

Y = 1

Y = 2 Y = 3

Y = 3

X = 0

X = 1

Shaded where X=1,
Unshaded where X=0.



Conditional Means are Random Variables
Ø The quantity E[X | Y] is a random variable g(Y) that takes on

the value g(y)=E[X | Y=y] when Y=y is observed
Ø This random variable E[X | Y] has an expected value, which equals

E[X] =
X

y2Y
pY (y)E[X | Y = y]

Mean is a weighted average of (possibly simpler) conditional means.

E[X | Y = y] =
X

x

xpX|Y (x | y)

E[E[X|Y ]] =
X

y

pY (y)E[X | Y = y] =
X

y

X

x

xpY (y)pX|Y (x | y) = E[X]

Ø This is called the Law of Iterated Expectations
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Example: Class Scores Across Sections
X = average homework score of students divided into 2 sections:

LECTURE 12 Conditional expectations

• Readings: Section 4.3; • Given the value y of a r.v. Y :

parts of Section 4.5 E[X | Y = y] = xp
no

⌅
X|Y (x y)

(mean and variance only; transforms) x
|

(integral in continuous case)

Lecture outline • Stick example: stick of length �

break at uniformly chosen point Y
• Conditional expectation break again at uniformly chosen point X

– Law of iterated expectations y
• E[X | Y = y] = (number)

2
– Law of total variance

• Sum of a random number Y
of independent r.v.’s E[X | Y ] = (r.v.)

2

– mean, variance

• Law of iterated expectations:

E[E[X | Y ]] =
⌅

E[X | Y = y]pY (y)= E[X]
y

• In stick example:
E[X] = E[E[X | Y ]] = E[Y/2] = �/4

var(X | Y ) and its expectation Section means and variances

Two sections:
• var(X | Y = ) = E

⇧
( 2y X � E[X | Y = y]) | Y = y

⌃

y = 1 (10 students); y = 2 (20 students)
• var(X | Y ): a r.v.

1
with

10

⌅10 1 30
value var(X | Y = y) when Y = y y = 1 : xi = 90 y = 2 : xi = 60

20i=1 i=11
• Law of total variance:

⌅

var(X) = E[var(X | Y )] + var(E[X | Y ])
1 30 +

E[X] = =
30 i

⌅ 90 10 60
x

· 20
i

·
= 70

30=1

Proof: E[X | Y = 1] = 90, E[X | Y = 2] = 60

(a) Recall: var(X) = E[ 2X ]� (E[X])2
90, w.p. 1/3

E[X Y ] =
2 2

|

�
⇤

⇥60, w.p. 2/3
(b) var(X | Y ) = E[X | Y ]� (E[X | Y ])

[ [ | ]] = 1 · 90 + 2E E X Y · 60 = 70 = E[X]3 3

(c) E[var(X | Y )] = E[ 2X ]�E[ (E[X | Y ])2 ]

(d) var(E[X | Y ]) = E[X | Y ])2
1 2

E[ ( ]�(E[X])2 var(E[X | Y ]) = (90� 70)2 + (60� 70)2
3 3
600

= = 200Sum of right-hand sides of (c), (d): 3
[ 2]� ])2E X (E[X = var(X)

1
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Continuous Iterated Expectations
Ø The Law of Iterated Expectations also applies to continuous variables:

E[X] = E[E[X | Y ]] =

Z +1

�1
E[X | Y = y]fY (y) dy

E[X | Y = y] =

Z +1

�1
xfX|Y (x | y) dx

Ø Proof is as before, but 
replacing PMFs with PDFs, 
and sums with integrals
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we must have
c = 1.

This is an example of a uniform PDF on the unit square. More generally,
let us fix some subset S of the two-dimensional plane. The corresponding uniform
joint PDF on S is defined to be

fX,Y (x, y) =

{ 1
area of S

if (x, y) ∈ S,

0 otherwise.

For any set A ⊂ S, the probability that the experimental value of (X, Y ) lies in A
is

P
(
(X, Y ) ∈ A

)
=

∫ ∫

(x,y)∈A

fX,Y (x, y) dx dy =
1

area of S

∫ ∫

(x,y)∈A∩S

dx dy =
area of A ∩ S

area of S
.

Example 3.14. We are told that the joint PDF of the random variables X and Y
is a constant c on the set S shown in Fig. 3.16 and is zero outside. Find the value
of c and the marginal PDFs of X and Y .

The area of the set S is equal to 4 and, therefore, fX,Y (x, y) = c = 1/4, for
(x, y) ∈ S. To find the marginal PDF fX(x) for some particular x, we integrate
(with respect to y) the joint PDF over the vertical line corresponding to that x.
The resulting PDF is shown in the figure. We can compute fY similarly.

x 

fX(x)

fY(y)

y

S

x 

1/4

3/4

y

1/4

1/2

1 3

4

2

2

1

3

Figure 3.16: The joint PDF in Example 3.14 and the resulting marginal
PDFs.
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Expectation

If X and Y are jointly continuous random variables, and g is some function, then
Z = g(X, Y ) is also a random variable. We will see in Section 3.6 methods for
computing the PDF of Z, if it has one. For now, let us note that the expected
value rule is still applicable and

E
[
g(X, Y )

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy.

As an important special case, for any scalars a, b, we have

E[aX + bY ] = aE[X] + bE[Y ].

Conditioning One Random Variable on Another

Let X and Y be continuous random variables with joint PDF fX,Y . For any
fixed y with fY (y) > 0, the conditional PDF of X given that Y = y, is defined
by

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

This definition is analogous to the formula pX|Y = pX,Y /pY for the discrete case.
When thinking about the conditional PDF, it is best to view y as a fixed

number and consider fX|Y (x | y) as a function of the single variable x. As a
function of x, the conditional PDF fX|Y (x | y) has the same shape as the joint
PDF fX,Y (x, y), because the normalizing factor fY (y) does not depend on x; see
Fig. 3.18. Note that the normalization ensures that

∫ ∞

−∞
fX|Y (x | y) dx = 1,

so for any fixed y, fX|Y (x | y) is a legitimate PDF.

x 

fX|Y(x|1.5)

y

S

1 3

4

2

2

1

3
x 

x 

x 1 32

fX|Y(x|2.5)

fX|Y(x|3.5)

1

1

1/2

Figure 3.18: Visualization of the conditional PDF fX|Y (x | y). Let X, Y have a
joint PDF which is uniform on the set S. For each fixed y, we consider the joint
PDF along the slice Y = y and normalize it so that it integrates to 1.
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Figure 3.16: The joint PDF in Example 3.14 and the resulting marginal
PDFs.

E[X] = 3
4 · 1.5 + 1

4 · 2.5 = 1.75



Example: Stick-Breaking
Example: Stick Breaking - Expectation

• Break a stick of length ` twice: break at X , uniform in [0, `];
break again at Y , uniform in [0,X ].

• What is E [Y ]?

• fX (x) = 1/`

• fY |X (y | x) = 1/x for 0  y  x , and 0 oterwise.

E [Y | X = x ] =

Z x

0
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Conditioning

• Recall

P(x ⇥ X ⇥ x+ �) ⇤ fX(x) · �

• By analogy, would like:

P(x ⇥ X ⇥ x+ � | Y ⇤ y) ⇤ fX (|Y x | y) · �

• This leads us to the definition:

fX,Y (x, y)
fX Y (x | y) = if fY (y) > 0| fY (y)

• For given y, conditional PDF is a
(normalized) “section” of the joint PDF

• If independent, fX,Y = fXfY , we obtain

fX Y (x|y) = fX(x)|

Area of slice = Height of marginal
density at x

Slice through
density surface

for fixed x

Renormalizing slices for
fixed x gives conditional

densities for Y given X = x

Joint, Marginal and Conditional Densities

,PDJH�E\�0,7�2SHQ&RXUVH:DUH��DGDSWHG�IURP
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Stick-breaking example

• Break a stick of length ⌅ twice:
break at X: uniform in [0,1];
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Sums of Random Numbers of Variables

Section means and variances (ctd.) Example

1 ⌅10 2 1 ⌅30 2 var(X) = E[var(X | Y )] + var(E[X ])� Y(xi 90) = 10 (xi�60) = 20 |
10 20i=1 i=11

f (x)X

2/3

var(X | Y = 1) = 10 var(X | Y = 2) = 20
1/3

� 1 2 x

⇤
Y=1 Y=2  

10, w.p. 1/3
var(X | Y ) = ⇥20, w.p. 2/3

E[X | Y = 1] = E[X | Y = 2] =
[var(X | = 20 = 50Y )] 1 10 + 2E 3 · 3 · 3

var(X | Y = 1) = var(X | Y = 2) =

var(X) = E[var(X | Y )] + var(E[X | Y ])
E[X] =

50
= + 200

3
= (average variability within sections) var(E[X | Y ]) =

+(variability between sections)

Sum of a random number of Variance of sum of a random number
independent r.v.’s of independent r.v.’s

• N : number of stores visited • var(Y ) = E[var(Y | N)] + var(E[Y
(N is a nonnegative integer r.v.)

| N ])

E[Y N ] = N E[X]
• Xi: money spent in store i

• |
var(E[Y | N ]) = (E[X])2 var(N)

– Xi assumed i.i.d.
var(Y N = n) = n var(X)

– independent of N
• |

var(Y | N) = N var(X)

• Let Y = X1 + · · · + X E[var(Y | N)] = E[N ] var(X)N

E[Y | N = n] = E[X1 + X2 + · · · + Xn | N = n]

= E[X1 + X2 + · · · + Xn]

= E[X ] + E[X ] + · · · + E[X ] var(Y ) = E[var(Y | N)] + var(E[Y1 2 | N ])n

= nE[X] = [ ] var( ) + ( 2E N X E[X]) var(N)

• E[Y | N ] = N E[X]

E[Y ] = E[E[Y | N ]]

= E[N E[X]]

= E[N ]E[X]

2

How much money Y do we spend shopping at a random number of stores N?
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1/3

� 1 2 x

⇤
Y=1 Y=2  

10, w.p. 1/3
var(X | Y ) = ⇥20, w.p. 2/3

E[X | Y = 1] = E[X | Y = 2] =
[var(X | = 20 = 50Y )] 1 10 + 2E 3 · 3 · 3

var(X | Y = 1) = var(X | Y = 2) =

var(X) = E[var(X | Y )] + var(E[X | Y ])
E[X] =

50
= + 200

3
= (average variability within sections) var(E[X | Y ]) =

+(variability between sections)

Sum of a random number of Variance of sum of a random number
independent r.v.’s of independent r.v.’s

• N : number of stores visited • var(Y ) = E[var(Y | N)] + var(E[Y
(N is a nonnegative integer r.v.)

| N ])

E[Y N ] = N E[X]
• Xi: money spent in store i

• |
var(E[Y | N ]) = (E[X])2 var(N)

– Xi assumed i.i.d.
var(Y N = n) = n var(X)

– independent of N
• |

var(Y | N) = N var(X)

• Let Y = X1 + · · · + X E[var(Y | N)] = E[N ] var(X)N

E[Y | N = n] = E[X1 + X2 + · · · + Xn | N = n]

= E[X1 + X2 + · · · + Xn]

= E[X ] + E[X ] + · · · + E[X ] var(Y ) = E[var(Y | N)] + var(E[Y1 2 | N ])n

= nE[X] = [ ] var( ) + ( 2E N X E[X]) var(N)

• E[Y | N ] = N E[X]

E[Y ] = E[E[Y | N ]]

= E[N E[X]]

= E[N ]E[X]

2

pN (n)

n


