CS145: Probability & Computing

Lecture 11: Marginal and Conditional Probability
Densities
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Joint Probability Distributions

Definition

The joint distribution function of X and Y is
F(x,y)=Pr(X <x,Y <vy).

The variables X and Y have joint density function f if for all x, y,

F(x,y) = /yoo /; f(u, v du dv.
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when the derivative exists. Pz < X <246, y <Y < y+3) = fxy(z,y)-5°

f(x,y) = F(x,y)



Example: Joint Distribution
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fxy(z,y) =5y —x)(1 —y) P(X >0.25,Y > 0.5) =
O<z<y<l Loy

1,y 1 0.5 J0.25
r(y —x)(1 —y) dedy = —

Pitman’s Probability, 1999

fXY(xa y) dmdy



2D Uniform Distributions

Density function:

[ 1 x,ye]0,1]?
flx.y) = { 0 otherwise.

Probability distribution:

min[1,x] ,min[1,y]

(0 ifx<Oory<O0
xy if x,y €[0,1]?
x 0<x<1, y>1
y 0<y<1 x>1
1 x>1, y>1.

F(x,y) =«




Independence

Definition

The random variables X and Y are independent if for all x, vy,

Pr(X < x)N(Y <y)) =Pr(X < x)Pr(Y <vy).

Two random variables are independent if and only if

F(x,y) = Fx(x)Fy(y).

f(x,y) = fx(x)fy(y).

If X and Y are independent then E[XY]| = E[X]|E[Y].



Buffon’s Needle

e Parallel lines at distance d

Needle of length ¢ (assume £ < d)
e Find P(needle intersects one of the lines)

pa
}/1 © = smallest angel between the needle
d and a parallel line, 0 < O < /2

e X €[0,d/2]: distance of needle midpoint
to nearest line 99 | ouic Lociere. Comte d
e Model: X, © uniform, independent fx,@(ai,e) = fx(x)fo(0) = 5= Buffon (1707-1787, by Francois-Huber

4 Drouais
fX,@(ﬂC,H):—d 0<x<d/2,0<0<7/2
T

0 0
e Intersect if X < _sin® P<X§2S|n@> :/
4


https://en.wikipedia.org/wiki/Fran%C3%A7ois-Hubert_Drouais
https://en.wikipedia.org/wiki/Fran%C3%A7ois-Hubert_Drouais

CS145; Lecture 11 Outline

» Joint Distribution
» Marginal and Conditional Probability Densities
» Conditional Expectations



Reminder: Discrete Marginals

X =1
X =2
px(T)
pY(y)

» The joint probability mass function of two variables:
pxy(z,y) = P(X =z and Y =y)

» The range of each variable defines a partition of the sample space,
so the marqginal distributions can be computed from the joint distribution:

px(z) =P(X =2) =), pxv(z,y)
py(y) =P =y) = prxy(flf,y)



Reminder: Discrete Conditionals

Y =1 pxy (%, Y) Y =8
Y1 PY|X(ZJ 1)
A =2 pY|X(y | 2)
px|y(z | 1) px|y (x| 8)
» By the definition of conditional probability:
P(X=zand Y =
P(X =z |V =y)= 2 Y)
P(Y =y)
» The conditional probability mass function is then:
. pxy(z,y) . pxy(z,y)

pX|Y(x ’ y) — P(X — & ‘ Y = y) B py(y) N Z /pXY(xlay)



Joint Probability Density Functions

fxy(z, ’_ Sle(y — 2)(1 — y) g
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s fxv(z,y) =1 if (z,y) € S.
fxy(x,y) = 0 otherwise.
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» The joint probability density function (PDF) of two variables is defined so:
Yy XT
Plx1 < X <z9,y1 <Y <o) = y12 fxf fxy(z,y) dedy
Pe<X<z+4y<Y <y+d) =~ fxy(x,y)d*

» To define a proper distribution, the PDF must be normalized:

fj;o fj;OfXY(QZ’,y) drdy = 1




Y

Marginal Probability Density Functions

Uniform on set S:

] ) ; fxy(z,y) = i if (x,y) € S.
u | fxv(z,y) = 0 otherwise.

3/4

fx(X)

—' 1/4

» The marginal probability density functions (PDF) of X and Y equal:

fx(@) = [T fxyv(@y)dy  fy(y f Cfxy(z,y) d

» The marglnals are defined to compute consistent probabilities:

Ply1 <Y <) = yyf fy(y) dy = yyf fj;ofXY(xay) dzdy



Marginal Distributions

Definition
Given a joint distribution function Fx y(x,y) the marginal
distribution function of X is

Fx(x) =Pr(X <x) = / / fx.v (X, y)dydx
and the corresponding marginal density functions is

fx(X) = /OO fX7y(x,y)dy

— 0

Example: Uniform Distributions

1 x,yel0,1]? _J 1 x€][0,1]
fX,Y(X>Y):{ 0 otherwise. fX(X) 0 otherwise.



Conditional Probability Density Functions

y
A

Uniform on set S:

4 1,—| fx1y(x13.5)
fXY(x7y) — i if (xay) € 5. ° s 1/2,—fXI|Y(X|2-5) ‘X
fxy(x,y) = 0 otherwise. 2 T Patte) -

1 1 2 3 X
12 3 .
> The marginal PDF of Y: fY f fXY (:1: y) dx
» The conditional probability denS/ty function (PDF) of X given Y-

fxpy(@|y) = foi((Z’)y) fxv(z,y) = frw) fxpy (x| y)

Plea<X<z+0|y<Y <y+d)= fxy(z|y)d




Conditioning on Continuous Observations

X
FXIY=9) = [ fvo (00 = PriX < x| ¥ =)

= lim Pr(iX<x|y<Y<y+dy)
dy—0

. Pr(X <xAND y <Y <y+dy)
= |im
dy—0 Pr(y <Y <y+dy)
d
. 5 f” 7 By (X, y)dxdy
dy—0 y+dy
y— & ;7 fr(y)dy

B fxoofx,v(xa)/)dx_/x fx,v (%, y)
B fy (y) e fr(y)

dx

fx y(x,
fX\ Y:y(X) = X,f://((y))/)




Joint, Marginal, & Conditional Distributions

area of slice =
height of marginal
density at z

slice through
density surface
for fixed z

area of slice =
height of marginal

slice through density at y

density surface
for fixed y

— OO

Renormalizing slices
for fixed y gives
conditional densities
for X given Y= y.

Renormalizing slices
for fixed z gives
conditional densities
for Y given X = z.




Continuous Inference from Discrete Data

y= concentration of virus
X ={0,1} - tested negative/positive
Test’s specifications give P(X | Y).

Jy <, F@)P(X=x | Y=y)dy
PY <y| X =2)="—px=0
P(X=x | Y=
fly| X =x) = f(y) J(D(X x|) y)




Variants of Bayes Rule

Infer discrete X from discrete Y-
pxy (@) _ px(@)pyx(y | =)
py (y) py (y)

rxy(z|y) =

py (y) = px(@)py|x(y | )

Example:

e X =1,0: airplane present/not present

e Y =1,0: something did/did not register
on radar

Infer continuous X from continuous Y-
fxy@,y)  fx@)fyxlz)

Pl =" T W
fr@) = [ Fx@fyix(| ) de

Example: X: some signal; “prior” fx(x)
Y: noisy version of X
fyx(y | ©): model of the noise

Infer discrete X from continuous Y-

(o) = px (@) fy|x(y | )
T T R W)

fr(w) = px (@) fy)x(y | =)

Example:

e X: a discrete signal; “prior" px(x)
e Y noisy version of X

e fyx(y|=z): continuous noise model

Infer continuous X from discrete Y:

Ix@py|x(y | )
py ()

Ixy(@ly) =

@) = [ fx@pyix(v | o) de

Example:

e X: a continuous signal; “prior” fx(z)
(e.g., intensity of light beam);

e Y discrete r.v. affected by X
(e.g., photon count)

° py|X(y | £): model of the discrete r.v.



Example: Hard Drive Lifetimes

» Suppose 90% of hard drives in some laptop computer Exponential
Distributions:

model have exponentially distributed lifetime param 6
—0 _
fyix(y | 0) = bpe™ 7Y px(0) = 0.9

» However, 10% of hard drives have a manufacturing
defect that gives them a shorter lifetime 61 > 6,

fyix(y | 1) =61 Y px(1) =0.1
» Recall mean of exponential distribution: LT | -
1 1 . s
EY | X=0=_>->_—-=E[Y|X=1 N\
0o 0 o4 ~
EIX] = [ 20007y — [—pe—ft _ lo—6zco _ 1 o .|
X] = [, xbe r = [—xe se %0 = 3 o (y) = Ae— M



Example: Hard Drive Lifetimes

» Suppose 90% of hard drives in some laptop computer Exponential
Distributions:

model have exponentially distributed lifetime param 6
—0 _
fyix(y | 0) = bpe™ 7Y px(0) = 0.9

» However, 10% of hard drives have a manufacturing
defect that gives them a shorter lifetime 61 > 6,

—0 _
fyix(y | 1) =6 px(1) =0.1
» If your hard drive has operated for t seconds and has - | N
not yet failed, what is the probability it is defective? 12 L
PY>t|X=1)PX=1 ot
P(X:]_’Y>t): ( ‘P(Y>1)'/—)( ) 0‘6\
0.1e— 01t iy \\

T 0.le- 01t + (0.9¢— Yot fy(y) = Ae ™



Example: Hard Drive Lifetimes

» Suppose 90% of hard drives in some laptop computer EXPQ”GH_ﬁa/
model have exponentially distributed lifetime param 6 Distributions:

fY|X(y 1 0) = Hoe oY px(0) =0.9

» However, 10% of hard drives have a manufacturing
defect that gives them a shorter lifetime 61 > 6,

fyix(y | 1) =01e” Y px(1) =0.1

» If your hard drive fails after exactly t seconds of
operation, what is the probability it is defective?

PX =1y =) = Lrix@ 1 Dex(D)

fy(v)
0.164 e 01t

B 0-1916_01t + 0.99()63_807j
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Joint Probability Distributions

X = In this example, N=2 and M=38,
X — and the joint PMF is a 2x8 matrix.

Y =1 Y =8
» Consider two random variables X, Y.

Suppose range of X is size N, range of Y is size M.
» The joint probability mass function or joint distribution of two variables:

PXY(JJ,CU) = P(X —x and Y = y)
pXY(Can) > 07 S:SijY(ﬂ%y) = 1.
x Yy

» The joint distribution is uniquely specified by NM-T numbers




Conditional Probability Distributions

Y1 PY|X(ZJ 1)
A= pY|X(y | 2)
px|y(z | 1) px|y (x| 8)
» By the definition of conditional probability:
P(X =xand Y = y)
P X=z|Y=y) =
P(Y =y)
» The conditional probability mass function is then:
. pxy(z,y) . pxy(z,y)

pX|Y(x ’ y) — P(X — & ‘ Y = y) B py(y) N Z /pXY(x/7y)



Conditional Expectation

Y =1 pxvy(z,y) Y =8
Y 1 pyix(y | 1)
A =2 pY|X(y | 2)
pX|Y(33 | 1) pX\Y(x | 8)
B pxy(z,y) o pxy(z,y)

pxiy(@|y) =P(X =2 |Y =y)= py(y) > pxv(@,y)

» Given that | observe Y=y, the conditional expectation of X equals

EIX|Y =y =) zpxiy(z|y)

reX
» If Xand Y are not independent, observing Y=y may change the mean of X



Conditional Expectation: Example

px (x) | Given Y = {X > 2} is observed,
pxy (x| y) =
1/4
| | L E[X | Y] =3
1 2 3 4 X
E[X] =25

» Given that | observe Y=y, the conditional expectation of X equals

EIX|Y =y]=) apxy(z|y)

reX
» If Xand Y are not independent, observing Y=y may change the mean of X



Total Expectation Theorem

Y=1 Y=3 Shaded where X=1,Y =1
X =0 Unshaded where X=0.
pXY(xvy)
X =1
pXY(iU,y) pXY(x7y)
PXx Y(x | Z/) — —
' () L. pxv(@y) v =3

» Applying the definitions of joint, marginal, and conditional distributions:

— pry(a:,y) = prw(ﬂ? | y)py (v)

yey yey
Z py (W) EX Y =y]
yey

Mean is a weighted average of (possibly simpler) conditional means.



Conditional Means are Random Variables

> The quantity E[X | Y] is a random variable g(Y) that takes on
the value g(y)=E[X | Y=y] when Y=y is observed
» This random variable E[X | Y] has an expected value, which equals

EX|Y]] Zpy EX|Y =y|= ZZJJPY )ox|y (x| y) = E|X]
Y x
» This is called the Law of lterated Expectations

ZPY EX Y =y

yey

EX|Y=yl=) zpxyy(z|y)

Mean is a weighted average of (possibly simpler) conditional means.



Example: Class Scores Across Sections

X = average homework score of students divided into 2 sections:
y = 1 (10 students); y = 2 (20 students)

y=1: — x; = 90 y=2: — x; = 60
1 39 90-104+60-20

EX]=—) z = =70
30 & 30

E[X|Y =1]=090, E[X]|Y =2]=60

E[X Y] = 90, w.p.1/3
60, w.p.2/3

E[E[X |Y]]=1 90+ % 60=70=E[X]



Continuous lterated Expectations

» The Law of lterated Expectations also applies to continuous variables:

BIX |V =y = [
E[X]:E[E[X\Y]]:/

» Proof is as before, but

replacing PMFs with PDFs,

and sums with integrals
3/4

Fx(X)

1/4

o
-

X
EX]=2.15+1-25=175

— OO

— OO0
Yi

1/4

)

—+ o0

—+ 00

93fX|Y($ | y) dx

EX Y =ylfy(y) dy

12

1 fy1y(x13.5
,—l XY )

s Fx Y(X12.5)
—

/

X
X

><V

1 2 3

X



Example: Stick-Breaking

o Break a stick of length ¢ twice: break at X, uniform in [0, /]; Y4 ;SXei/)ofp'ossib/e
. . . ,Y) pairs.
break again at Y, uniform in [0, X]. o Fyx(y1 %) /
o fx(x)=1/¢

¢ fY|X(Y\X)=1/XforO§y§X

2 Xy ¢ X

X X X
E[Y\X:X]Z/ yfyx(y\XZX)dy:/ Ly = 2
0 o X 2

12
ELY) = ELELY [ X} = [ S,



Example: Stick-Breaking

o Break a stick of length ¢ twice: break at X, uniform in [0, /]

break again at Y, uniform in [0, X].

o fix(x)=1/¢

¢ fY|X(Y\X)=1/XforO§y§X

fx(x)

11
() = frxly | ) = { 5

fy (y) :/OO

— 00

E[Y]:/Og

X

0<y<x

otherwise.

‘11 1 ¢

fX’Y(X,y)dX = /y ;ZdX = z In )—/
/ T u® | 14
—In—du— —In— ‘ = —
TR M

14

Set of possible
(X,Y) pairs.

fr(y) for £ =1




Sums of Random Numbers of Variables

How much money Y do we spend shopping at a random number of stores N?
e N: number of stores visited

1.0 ' ' ‘ '

(N is a nonnegative integer r.v.) PN (n) ° p=02

0.8 @ e p=0.5 -

. . o p=0.8

e X,. money spent in store 1 0.6 | 1
.“\

— X, assumed i.i.d. R

0.2 oL\

8000
oof  e—#-3-3-8-8-4

— independent of NV

e LetY =X; 4+ -+ Xy

E[Y|N=n] = E[X; 4+ Xo4+ -4+ Xn|N = n] E[Y] = E[E[Y | N]]
= E[Xi1+Xo+ -+ Xul = E[NE[X]]
= E[Xi]+E[Xo] + - + E[Xy] = E[N]E[X]
= nE[X]

e E[Y|N]= NE[X]



