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Reasoning Under Uncertainty

Counterintuitive?

• 1/1000 of tourists who visit tropical country X return with a
dangerous virus Y .

• There is a test to check for the virus. The test has 5% false
positive rate and no false negative error.

• You returned from country X , took the test, and it was
positive. Should you take the painful treatment for the virus?

https://infotainmentnews.net



CS145: Lecture 2 Outline
ØRelative Frequencies and the Axioms of Probability
ØConditional Probabilities
ØBayes’ Rule
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FIGURE 2. Relative frequencies of heads in two long series of coin tosses. For a small number 
of trials, the relative frequencies fluctuate quite noticeably as the number oi trials varies. But these 
fluctuations tend to decrease as the number of trials increases. Initially, the two sequences of relative 
frequencies look quite different. But after a while, both relative frequencies settle down around 1/2. 
(The two series were obtained using a computer random number generator to simulate coin tosses.) 
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The Discrete Uniform Law

Discrete� uniform� law� Continuous� uniform� law�

•� Let�all�outcomes�be� equally� likely� •� Two�“random”�numbers� in� [0,1].�
y�

•� Then,� 1�
number�of� elements�of� A�

P(A) = �
total�number�of� sample�points�

� x�
•� Computing�probabilities� 1⇥� counting�

� Uniform� law:� Probability�=�Area�•� Defines� fair� coins,� fair�dice,�well-shu⇤ed�decks� •

–� P(X�+�Y� ⇤�1/2)�=�?�

–� P( (X,Y ) = (0.5,0.3)�)�

Probability� law:� Ex.�w/countably� infinite� sample� space�

•� Sample� space:� {1,2, . . .}
� � � � �n�– We are given P(n) = 2 ,�n�= 1,2, . . . �

–� Find�P(outcome� is�even)� Remember!�
p�

1/2
Turn� •� � in� recitation/tutorial� scheduling� form�now�

1/4� � � � � �
1/8�

1/16�…..� � � � � � �

1� 2� 3� 4�

Tutorials start next week

1� 1� 1 1

� � � � �

� �
P({2,4,6, . . .}) = P� (2)�+�P(4)�+� �=� +� +� +� �=�

•

· · ·
2
2�

2
4�

2
6� · · ·

3�

•� Countable�additivity�axiom� (needed� for� this� calculation):�
If�A1, A2, . . . �are�disjoint� events,� then:�

P(A1�⇧�A2�⇧�· · · ) = �P(A1) + �P(A2) + �· · · �

�

Formalizes the idea of “uniform random” sampling. 

⌦

sample
space

event
A

=
|A|
|⌦|



Probabilities as Relative Frequencies
If an event A happens m times in n trials, 

then m/n is the relative frequency of A in the n trials

1.2 

Example 1. 
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Interpretations 
James Bernoulli (1654 - 1705), one of the founders of probability theory, put it like 
this: 

Probability is the degree of certainty, which is to the certainty as a part 
is to a whole. 

This conveys the right intuitive idea. And it points correctly to the rules of proportion 
as the mathematical basis for a theory of probability. But it leaves open the question 
of just how probabilities should be interpreted in applications. 

This section considers two important interpretations of probability. First, the fre-
quency interpretation in which probabilities are understood as mathematically con-
venient approximations to long-run relative frequencies. Second, the subjective inter-
pretation in which a probability statement expresses the opinion of some individual 
regarding how certain an event is to occur. Which (if either) of these interpretations 
is "right" is something which philosophers, scientists, and statisticians have argued 
bitterly for centuries. And very intelligent people still disagree. So don't expect this 
to be resolved by the pre$ent discussion. 

Frequencies 
A relative frequency is a proportion measuring how often, or how frequently, some-
thing or other occurs in a sequence of observations. Think of some experiment or 
set of circumstances which can be repeated again and again, for example, tossing a 
coin, rolling a die, the birth of a child. Such a repeatable experiment may be called 
a trial. Let A be a possible result of such a trial: for example, the coin lands heads, 
the die shows a six, the child is a girl. If A happens m times in n trials, then min is 
the relative frequency of A in the n trials. 

Coin tossing. 
Suppose a coin is tossed ten times, and the observed sequence of outcomes is 

t, h, h, t, h, h, h, t, t, h, 

where each t indicates a tail and each h a head. The successive relative frequencies 
of heads in one toss, two tosses, and so on up to ten tosses are then 

0122345556 
1'2'3'4'5'6'7'8'9' 10' 

as graphed in Figure 1. Figure 2 shows what usually happens if you plot a similar 
graph of relative frequencies for a much longer series of trials. 

A general rule, illustrated in Figure 2, is that relative frequencies based on larger 
numbers of observations are less liable to fluctuation than those based on smaller 

Example:  Relative frequency of heads in coin toss sequence
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Experimental outcomes:

Relative frequencies:

1 2 Chapter 1. Introduction 
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FIGURE 1. Relative frequencies in a series of 10 coin tosses. 
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numbers. It is observed that almost regardless of the precise nature of the experimen-
tal trials in question, or what feature A of the trials is recorded, the relative frequency 
of A based on n trials tends to stabilize as n gets larger and larger, provided that the 
conditions of the trial are kept as constant as possible. This phenomenon is called 
the statistical regularity of relative frequencies, or the empirical law of averages. 

In coin tossing, heads and tails usually come up about equally often over a long 
series of tosses. So the long-run relative frequency of heads is usually close to 1/2. 
This is an empirical fact, closely linked to our intuitive idea that heads and tails are 
equally likely to come up on any particular toss. Logically, there is nothing to prevent 
the relative frequency of heads in a long series of tosses from being closer to, say, 
1/4, or 2/3, than to 1/2. The relative frequency could even be 1 if the coin landed 
heads every time, or 0 if it landed tails every time. But while possible, it hardly ever 
happens that the relative frequency of heads in a long series of tosses differs greatly 
from 1/2. Intuitively, such a large fluctuation is extremely unlikely for a fair coin. 
And this is precisely what is predicted by the theory of repeated trials, taken up in 
Chapter 2. 

In the frequency interpretation, the probability of an event A is the expected or esti-
mated relative frequency of A in a large number of trials. In symbols, the proportion 
of times A occurs in n trials, call it Pn(A), is expected to be roughly equal to the 
theoretical probability P(A) if n is large: 

Pn(A) P(A) for large n 

Under ideal circumstances, the larger the number of trials n, the more likely it is 
that this approximation will achieve any desired degree of accuracy. This idea is 



Probabilities as Relative Frequencies
If an event A happens m times in n trials, 

then m/n is the relative frequency of A in the n trials
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FIGURE 2. Relative frequencies of heads in two long series of coin tosses. For a small number 
of trials, the relative frequencies fluctuate quite noticeably as the number oi trials varies. But these 
fluctuations tend to decrease as the number of trials increases. Initially, the two sequences of relative 
frequencies look quite different. But after a while, both relative frequencies settle down around 1/2. 
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This definition is consistent (limit is defined and unique) due to the Law of 
Large Numbers.

<latexit sha1_base64="bzBuTFX+qxdX5qqo2LgvEUurAng="></latexit>

We define the probability of A as P (A) = limn!1
m(n)
n



Non-Uniform Relative Frequencies

http://thedailyviz.com/2012/05/12/how-common-is-your-birthday/

If an event A happens m times in 
n trials, then m/n is the relative 

frequency of A in the n trials

This definition extends to outcomes
(simple events) with different probabilities.

This definition extends to compound events 
(events with more than one outcome).

<latexit sha1_base64="VAPM6IHxaMOrktrEG7H8YTuftyE="></latexit>

Let m(n) be the number of occurrences of A in
n trials. We define the probability of A as

P (A) = limn!1
m(n)
n



Axioms of Probability FunctionsDiscrete� uniform� law� Continuous� uniform� law�

•� Let�all�outcomes�be� equally� likely� •� Two�“random”�numbers� in� [0,1].�
y�

•� Then,� 1�
number�of� elements�of� A�

P(A) = �
total�number�of� sample�points�

� x�
•� Computing�probabilities� 1⇥� counting�

� Uniform� law:� Probability�=�Area�•� Defines� fair� coins,� fair�dice,�well-shu⇤ed�decks� •

–� P(X�+�Y� ⇤�1/2)�=�?�

–� P( (X,Y ) = (0.5,0.3)�)�

Probability� law:� Ex.�w/countably� infinite� sample� space�

•� Sample� space:� {1,2, . . .}
� � � � �n�– We are given P(n) = 2 ,�n�= 1,2, . . . �

–� Find�P(outcome� is�even)� Remember!�
p�

1/2
Turn� •� � in� recitation/tutorial� scheduling� form�now�

1/4� � � � � �
1/8�

1/16�…..� � � � � � �

1� 2� 3� 4�

Tutorials start next week

1� 1� 1 1

� � � � �

� �
P({2,4,6, . . .}) = P� (2)�+�P(4)�+� �=� +� +� +� �=�

•

· · ·
2
2�

2
4�

2
6� · · ·

3�

•� Countable�additivity�axiom� (needed� for� this� calculation):�
If�A1, A2, . . . �are�disjoint� events,� then:�

P(A1�⇧�A2�⇧�· · · ) = �P(A1) + �P(A2) + �· · · �

�

⌦

sample
spaceevent

A

=
|A|
|⌦|

Sample� space:� Discrete� example� Sample� space:� Continuous� example�

•� Two� rolls�of�a� tetrahedral�die� ��=�{(x, y)�|� 0�⇤�x, y�⇤�1}�
–� Sample� space� vs.� sequential�description�

y�
1,1

1� 1,2�
1,3 1�
1,4�

4 2�

Y 3  = Second 
roll 32 �

1� x�
1 

1 2 3 4 4�
X = First roll 4,4�

Probability� axioms� Probability� law:� Example�with�finite� sample� space�

•� Event:� a� subset�of� the� sample� space� 4 
•� Probability� is�assigned� to� events�

Y 3 = Second 
roll 

2 
Axioms:�

1
1.� Nonnegativity:� P(A)�⌅�0�

1 2 3 4
2.� Normalization:� P(�) = 1 �

X = First roll 
3.� Additivity:� If�A ⌃�B�=�Ø,� then�P(A ⇧�B) = �P(A) + �P(B)�

•� Let� every�possible�outcome�have�probability�1/16�

–� P((X,Y )�� � is� (1,1)�or� (1,2))�=�• P({s1, s2, . . . , sk}) = P({s1}) + �· · ·+�P({sk})�
–

=� P( X = 1 ) =P(s ) +
� { �

1 �· · ·+�P(sk)� }

–� P(X�+�Y� is�odd)�=�•� Axiom�3�needs� strengthening�
•� Do�weird� sets�have�probabilities?� –� P(min(X,Y )�=�2)�=�

�

event
B

In the uniform random case we had:

In general discrete sample spaces: any 
function                       that satisfies:P : 2⌦ ! [0, 1]

<latexit sha1_base64="JY1qNiGJHtnFvvf28difv/HbL70="></latexit>

For infinite sample spaces we need:
3. Additivity: For a countable infinite set C, and disjoint events {Ai | i 2 C},
Pr([i2CAi) =

P
i2C Pr(Ai).



Axioms of Probability Function

Sample� space:� Discrete� example� Sample� space:� Continuous� example�
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Probability� axioms� Probability� law:� Example�with�finite� sample� space�

•� Event:� a� subset�of� the� sample� space� 4 
•� Probability� is�assigned� to� events�

Y 3 = Second 
roll 

2 
Axioms:�

1
1.� Nonnegativity:� P(A)�⌅�0�

1 2 3 4
2.� Normalization:� P(�) = 1 �

X = First roll 
3.� Additivity:� If�A ⌃�B�=�Ø,� then�P(A ⇧�B) = �P(A) + �P(B)�

•� Let� every�possible�outcome�have�probability�1/16�

–� P((X,Y )�� � is� (1,1)�or� (1,2))�=�• P({s1, s2, . . . , sk}) = P({s1}) + �· · ·+�P({sk})�
–

=� P( X = 1 ) =P(s ) +
� { �

1 �· · ·+�P(sk)� }

–� P(X�+�Y� is�odd)�=�•� Axiom�3�needs� strengthening�
•� Do�weird� sets�have�probabilities?� –� P(min(X,Y )�=�2)�=�

�

Ø Valid probabilities - any function mapping subsets of       to [0,1] that 
satisfies these axioms.

Ø The nonnegativity and additivity axioms are fundamental to probability 
and uncertainty

Ø Unit normalization is just a convention, another options is probability 
between 0% and 100%

Ø The additivity axiom guarantees that the probabilities of any finite 
(countable infinite) set of disjoint events are additive (induction)

⌦

event
A

event
B

⌦



Example:

We flip a fair coin until the first HEAD.
<latexit sha1_base64="ztrZAucb/RuxlPrb6E9g3ALAupw="></latexit>

• i=number of flips till (included) the first head

• Sample space ⌦ = {1, 2, 3, . . . }

• P ({i}) = P (i) = 1/2i

• P (⌦) = Pr([i�1{i}) =
P

i�1 P (i) =
P

i�1
1
2i = 1.



Defining a Probabilistic Model

6 Sample Space and Probability Chap. 1

of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Experiment

Sample Space 1
(Set of Outcomes)

Event A

Event B

A B Events

P(A)

P(B)

Probability
Law

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible
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Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible

flip a coin,
roll a die,
take a medication,
test a machine, … 



Properties of Probability Laws

Sec. 1.2 Probabilistic Models 13

Example 1.4. A wheel of fortune is continuously calibrated from 0 to 1, so the
possible outcomes of an experiment consisting of a single spin are the numbers in
the interval Ω = [0, 1]. Assuming a fair wheel, it is appropriate to consider all
outcomes equally likely, but what is the probability of the event consisting of a
single element? It cannot be positive, because then, using the additivity axiom, it
would follow that events with a sufficiently large number of elements would have
probability larger than 1. Therefore, the probability of any event that consists of a
single element must be 0.

In this example, it makes sense to assign probability b− a to any subinterval
[a, b] of [0, 1], and to calculate the probability of a more complicated set by eval-

uating its “length.”† This assignment satisfies the three probability axioms and
qualifies as a legitimate probability law.

Example 1.5. Romeo and Juliet have a date at a given time, and each will arrive
at the meeting place with a delay between 0 and 1 hour, with all pairs of delays
being equally likely. The first to arrive will wait for 15 minutes and will leave if the
other has not yet arrived. What is the probability that they will meet?

Let us use as sample space the square Ω = [0, 1] × [0, 1], whose elements are
the possible pairs of delays for the two of them. Our interpretation of “equally
likely” pairs of delays is to let the probability of a subset of Ω be equal to its area.
This probability law satisfies the three probability axioms. The event that Romeo
and Juliet will meet is the shaded region in Fig. 1.5, and its probability is calculated
to be 7/16.

Properties of Probability Laws

Probability laws have a number of properties, which can be deduced from the
axioms. Some of them are summarized below.

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.

(a) If A ⊂ B, then P(A) ≤ P(B).

(b) P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

(c) P(A ∪ B) ≤ P(A) + P(B).

(d) P(A ∪ B ∪ C) = P(A) + P(Ac ∩ B) + P(Ac ∩ Bc ∩ C).

† The “length” of a subset S of [0, 1] is the integral
∫

S
dt, which is defined, for

“nice” sets S, in the usual calculus sense. For unusual sets, this integral may not be
well defined mathematically, but such issues belong to a more advanced treatment of
the subject.
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A A B

A B

C

B

(a) (b)

(c)

A B

U UA Bc

C

UA Bc Uc UA Bc

Figure 1.6: Visualization and verification of various properties of probability
laws using Venn diagrams. If A ⊂ B, then B is the union of the two disjoint
events A and Ac ∩ B; see diagram (a). Therefore, by the additivity axiom, we
have

P(B) = P(A) + P(Ac ∩ B) ≥ P(A),

where the inequality follows from the nonnegativity axiom, and verifies prop-
erty (a).

From diagram (b), we can express the events A ∪ B and B as unions of
disjoint events:

A ∪ B = A ∪ (Ac ∩ B), B = (A ∩ B) ∪ (Ac ∩ B).

The additivity axiom yields

P(A ∪ B) = P(A) + P(Ac ∩ B), P(B) = P(A ∩ B) + P(Ac ∩ B).

Subtracting the second equality from the first and rearranging terms, we obtain
P(A∪B) = P(A)+P(B)−P(A∩B), verifying property (b). Using also the fact
P(A ∩ B) ≥ 0 (the nonnegativity axiom), we obtain P(A ∪ B) ≤ P(A) + P(B),
verifying property (c)
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Example: The King’s Sibling
The king comes from a family of two children.

Assume there is an equal probability of each birth being a boy or girl.
What is the probability that the king has a sister (his sibling is a girl)?

Figure credits:  http://gaussiangeek.blogspot.com/2015/06/the-kings-sibling-how-well-do-you.html

Event A:  At least one child is a boy
Event B:  Both children are boys
Event C: The king has a sister

P (A) =
3

4
P (B) =

1

4

P(C|A) = 1 - P(B|A) = ?



Conditional Probability

LECTURE 2 Review of probability models

• Readings: Sections 1.3-1.4 • Sample space �

– Mutually exclusive
Collectively exhaustive

Lecture outline
– Right granularity

• Review • Event: Subset of the sample space

• Conditional probability
Allocation of probabilities to events

• Three important tools:
•

1. P(A) � 0

– Multiplication rule 2. P(�) = 1

3. If– Total probability theorem A ⌅B = Ø,
then P(A ⇤B) = P(A) + P(B)

– Bayes’ rule
3’. If A1, A2, . . . are disjoint events, then:

P(A1 ⇤A2 ⇤ · · · ) = P(A1) + P(A2) + · · ·

• Problem solving:

– Specify sample space

– Define probability law

– Identify event of interest

– Calculate...

Conditional probability Die roll example

4A

3
Y = Second 

B
        roll

2

1

• P(A | B) = probability of A,
that B occurred 1 2 3

given 4

is our new universe X– B  = First roll

• Definition: Assuming P(B) = 0, • Let B be the event: min(X, Y ) = 2

P(A
P(A B) =

⌅B)
| • Let M = max(X, Y )

P(B)

P(A | B) undefined if P(B) = 0 • P(M = 1 | B) =

• P(M = 2 | B) =

⇥

1

⌦

A B
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2/3 the king 
has a sister!
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To verify the additivity axiom, we write for any two disjoint events A1 and
A2,

P(A1 ∪ A2 |B) =
P

(
(A1 ∪ A2) ∩ B

)

P(B)

=
P((A1 ∩ B) ∪ (A2 ∩ B))

P(B)

=
P(A1 ∩ B) + P(A2 ∩ B)

P(B)

=
P(A1 ∩ B)

P(B)
+

P(A2 ∩ B)
P(B)

= P(A1 |B) + P(A2 |B),
where for the second equality, we used the fact that A1 ∩ B and A2 ∩ B are
disjoint sets, and for the third equality we used the additivity axiom for the
(unconditional) probability law. The argument for a countable collection of
disjoint sets is similar.

Since conditional probabilities constitute a legitimate probability law, all
general properties of probability laws remain valid. For example, a fact such as
P(A ∪ C) ≤ P(A) + P(C) translates to the new fact

P(A ∪ C |B) ≤ P(A |B) + P(C |B).

Let us summarize the conclusions reached so far.

Properties of Conditional Probability

• The conditional probability of an event A, given an event B with
P(B) > 0, is defined by

P(A |B) =
P(A ∩ B)

P(B)
,

and specifies a new (conditional) probability law on the same sample
space Ω. In particular, all known properties of probability laws remain
valid for conditional probability laws.

• Conditional probabilities can also be viewed as a probability law on a
new universe B, because all of the conditional probability is concen-
trated on B.

• In the case where the possible outcomes are finitely many and equally
likely, we have

P(A |B) =
number of elements of A ∩ B

number of elements of B
.

• Under discrete uniform law, where all outcomes equally likely:

=
|A \B|
|B|
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Conditioning on B defines a new probability model, 
with sample space B, and probability function P(A | B) for
All A	⊑ B.



Models Based on Conditional ProbabilitiesModels based on conditional Multiplication rule

probabilities

P(A B C) = P(A) P(B A) P(C A B)
• Event A: Airplane is flying above

⌅ ⌅ · | · | ⌅

Event B: Something registers on radar
screen

A

U

B P(C | A

U

   B)
P(B | A)=0.99 A

U

B
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P(B | A)
cP(B  | A)=0.01

P(A)=0.05
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cP(B  | A)
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CP(A)
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cBcP(A )=0.95
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cB
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CcP(B | A )=0.10

c cP(B  | A )=0.90 cP(A )

cA

P(A ⌅B) =

P(B) =

P(A | B) =

Total probability theorem Bayes’ rule

• Divide and conquer • “Prior” probabilities P(Ai)
– initial “beliefs”

• Partition of sample space into A1, A2, A3
• We know P(B | Ai) for each i

• Have P(B | Ai), for every i
• Wish to compute P(Ai | B)

A
– revise “beliefs”, given that B occurred

1

B

A
1

B

A A2 3

• One way of computing AP( AB): 2 3

P(B) = P(A1)P(B | A1)

+ P(A2)P(B | A2)
P(+ ( ) ( | ) Ai ⌅B)P A3 P B A3 P(Ai | B) =
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P(Ai)P(B
=

| Ai)

P(B)

P(A )P(B A )
= � i | i

j P(Aj)P(B | Aj)

      

Multiplication rule

P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B)
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3’. If A1, A2, . . . are disjoint events, then:
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P(A) = 0.05

P(Ac) = 0.95

P(B | A) = 0.99

P(Bc| A) = 0.01

P(B | A
c ) = 0.10

P(Bc| Ac )= 0.90

False Alarm

Missed
Detection

Aircraft Present

Aircraft not Present

Figure 1.8: Sequential description of the sample space for the radar detection
problem in Example 1.9.

In mathematical terms, we are dealing with an event A which occurs if and
only if each one of several events A1, . . . , An has occurred, i.e., A = A1 ∩ A2 ∩
· · · ∩ An. The occurrence of A is viewed as an occurrence of A1, followed by
the occurrence of A2, then of A3, etc, and it is visualized as a path on the tree
with n branches, corresponding to the events A1, . . . , An. The probability of A
is given by the following rule (see also Fig. 1.9).

Multiplication Rule

Assuming that all of the conditioning events have positive probability, we
have

P
(
∩n

i=1 Ai

)
= P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P

(
An | ∩n−1

i=1 Ai

)
.

The multiplication rule can be verified by writing

P
(
∩n

i=1 Ai

)
= P(A1)

P(A1 ∩ A2)
P(A1)

P(A1 ∩ A2 ∩ A3)
P(A1 ∩ A2)

· · ·
P

(
∩n

i=1 Ai

)

P
(
∩n−1

i=1 Ai

) ,

and by using the definition of conditional probability to rewrite the right-hand
side above as

P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P
(
An | ∩n−1

i=1 Ai

)
.

= P (A) · P (A \B)

P (A)
· P (A \B \ C)

P (A \B)
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Total probability theorem Bayes’ rule

• Divide and conquer • “Prior” probabilities P(Ai)
– initial “beliefs”

• Partition of sample space into A1, A2, A3
• We know P(B | Ai) for each i

• Have P(B | Ai), for every i
• Wish to compute P(Ai | B)
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Total Probability Theorem

Models based on conditional Multiplication rule
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P (A | B) =
P (A \B)

P (B)

P (A \B) = P (B)P (A | B)

B = (B \A1) [ (B \A2) [ (B \A3)

P (B) = P (B \A1) + P (B \A2) + P (B \A3)

P (B) = P (A1)P (B | A1) + P (A2)P (B | A2) + P (A3)P (B | A3)
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Reasoning Under Uncertainty

Counterintuitive?

• 1/1000 of tourists who visit tropical country X return with a
dangerous virus Y .

• There is a test to check for the virus. The test has 5% false
positive rate and no false negative error.

• You returned from country X , took the test, and it was
positive. Should you take the painful treatment for the virus?
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• A - has the virus. B - positive in the test.

Pr(A | B) =
1

1000
1

1000 + 999
1000

5
100

=
20

1019
⇡ 2%

Explanation: Out of 1000 tourist, 1 will have the virus and
another 50 will be false positive in the test.
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A - has the virus, B - positive in the test.

P (A | B) =
P (A \B)

P (B)
=

P (A \B)

P (A)P (B | A) + P (Ā)P (B | Ā)

=
1/1000

1/1000 + (999/1000)(5/100)
=
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