CS145: Probability & Computing Lecture 2: Axioms of Probability, Conditioning and Bayes' Rule

Figure credits: Bertsekas & Tsitsiklis, **Introduction to Probability**, 2008 Pitman, **Probability**, 1999

Reasoning Under Uncertainty

- 1/1000 of tourists who visit tropical country X return with a dangerous virus Y.
- There is a test to check for the virus. The test has 5% false positive rate and no false negative error.
- You returned from country X, took the test, and it was positive. Should you take the painful treatment for the virus?

https://infotainmentnews.net

CS145: Lecture 2 Outline

Relative Frequencies and the Axioms of Probability

- Conditional Probabilities
- ➢ Bayes' Rule

The Discrete Uniform Law

Formalizes the idea of "uniform random" sampling.

- Let all outcomes be equally likely
- Then,

$$P(A) = \frac{\text{number of elements of } A}{\text{total number of sample points}} = \frac{|A|}{|\Omega|}$$

- Computing probabilities \equiv counting
- Defines fair coins, fair dice, well-shuffled decks

Probabilities as Relative Frequencies

If an event A happens m times in n trials, then m/n is the *relative frequency* of A in the n trials

Example: Relative frequency of heads in coin toss sequence

Experimental outcomes:

t, h, h, t, h, h, h, t, t, h,

Relative frequencies:

 $\frac{0}{1}, \frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \frac{5}{8}, \frac{5}{9}, \frac{6}{10},$

Probabilities as Relative Frequencies

If an event A happens *m* times in *n* trials, then *m/n* is the *relative frequency* of A in the *n* trials We define the probability of A as $P(A) = \lim_{n \to \infty} \frac{m(n)}{n}$

This definition is consistent (limit is defined and unique) due to the *Law of Large Numbers.*

Non-Uniform Relative Frequencies

If an event A happens *m* times in *n* trials, then *m/n* is the *relative frequency* of A in the *n* trials

Let m(n) be the number of occurrences of A in n trials. We define the probability of A as

 $P(A) = \lim_{n \to \infty} \frac{m(n)}{n}$

This definition extends to outcomes (simple events) with different probabilities.

This definition extends to compound events (events with more than one outcome).

Axioms of Probability Functions

In the uniform random case we had:

 $P(A) = \frac{\text{number of elements of } A}{\text{total number of sample points}} = \frac{|A|}{|\Omega|}$

In general discrete sample spaces: any function $P: 2^{\Omega} \rightarrow [0, 1]$ that satisfies:

Axioms:

- 1. Nonnegativity: $P(A) \ge 0$
- 2. Normalization: $P(\Omega) = 1$
- 3. Additivity: If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

For infinite sample spaces we need:

3. Additivity: For a countable infinite set C, and disjoint events $\{A_i \mid i \in C\}$, $Pr(\bigcup_{i \in C} A_i) = \sum_{i \in C} Pr(A_i)$.

Axioms of Probability Function

Axioms:

- 1. Nonnegativity: $P(A) \ge 0$
- 2. Normalization: $P(\Omega) = 1$
- 3. Additivity: If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

- > Valid probabilities any function mapping subsets of Ω to [0,1] that satisfies these *axioms*.
- The nonnegativity and additivity axioms are fundamental to probability and uncertainty
- Unit *normalization* is just a convention, another options is probability between 0% and 100%
- The additivity axiom guarantees that the probabilities of any finite (countable infinite) set of disjoint events are additive (induction)

Example:

We flip a fair coin until the first HEAD.

- i=number of flips till (included) the first head
- Sample space $\Omega = \{1, 2, 3, \dots\}$
- $P(\{i\}) = P(i) = 1/2^i$
- $P(\Omega) = \Pr(\bigcup_{i \ge 1} \{i\}) = \sum_{i \ge 1} P(i) = \sum_{i \ge 1} \frac{1}{2^i} = 1.$

Defining a Probabilistic Model

Elements of a Probabilistic Model

- The sample space Ω , which is the set of all possible outcomes of an experiment.
- The **probability law**, which assigns to a set A of possible outcomes (also called an **event**) a nonnegative number $\mathbf{P}(A)$ (called the **probability** of A) that encodes our knowledge or belief about the collective "likelihood" of the elements of A. The probability law must satisfy certain properties to be introduced shortly.

Properties of Probability Laws

Axioms:

- 1. Nonnegativity: $P(A) \ge 0$
- 2. Normalization: $P(\Omega) = 1$
- 3. Additivity: If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.

```
(a) If A \subset B, then \mathbf{P}(A) \leq \mathbf{P}(B).
```

(b)
$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A \cap B).$$

(c) $\mathbf{P}(A \cup B) \le \mathbf{P}(A) + \mathbf{P}(B)$.

(d) $\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(A^c \cap B) + \mathbf{P}(A^c \cap B^c \cap C).$

 $(e)P(A^c) = 1 - P(A)$

CS145: Lecture 2 Outline

- Relative Frequencies and the Axioms of Probability
 Conditional Probabilities
- ➢ Bayes' Rule

Example: The King's Sibling

The king comes from a family of two children. Assume there is an equal probability of each birth being a boy or girl. What is the probability that the king has a sister (his sibling is a girl)?

Event A: At least one child is a boy Event B: Both children are boys Event C: The king has a sister

$$P(A) = \frac{3}{4}$$
 $P(B) = \frac{1}{4}$

P(C|A) = 1 - P(B|A) = ?

Figure credits: http://gaussiangeek.blogspot.com/2015/06/the-kings-sibling-how-well-do-you.html

Conditional Probability

- P(A | B) = probability of A,given that B occurred
 - *B* is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

 $P(A \mid B)$ undefined if P(B) = 0

Example: The King's Sibling

The king comes from a family of two children. Assume there is an equal probability of each birth being a boy or girl. What is the probability that the king has a sister (his sibling is a girl)?

Event A: At least one child is a boy Event B: Both children are boys $P(A) = \frac{3}{4} \qquad P(B) = \frac{1}{4}$ $P(A \cap B) = \frac{1}{4}$

$$P(B \mid A) = \frac{T(A + D)}{P(A)} = \frac{1/4}{3/4} = \frac{1}{3}$$

Figure credits: http://gaussiangeek.blogspot.com/2015/06/the-kings-sibling-how-well-do-you.html

Example: The King's Sibling

The king comes from a family of two children. Assume there is an equal probability of each birth being a boy or girl. What is the probability that the king has a sister (his sibling is a girl)?

With probability 2/3 the king has a sister!

Figure credits: http://gaussiangeek.blogspot.com/2015/06/the-kings-sibling-how-well-do-you.html

Conditional Probability

- P(A | B) = probability of A,given that B occurred
 - *B* is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

 $P(A \mid B)$ undefined if P(B) = 0

• Under discrete uniform law, where all outcomes equally likely:

$$\mathbf{P}(A \mid B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B} = \frac{|A \cap B|}{|B|}$$

Conditional Probability

- P(A | B) = probability of A,given that B occurred
 - *B* is our new universe
- **Definition:** Assuming $P(B) \neq 0$,

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

Conditioning on B defines a new probability model, with sample space B, and probability function $P(A \mid B)$ for All $A \subseteq B$.

Multiplication Rule

 $\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A) \cdot \mathbf{P}(B \mid A) \cdot \mathbf{P}(C \mid A \cap B)$ $= P(A) \cdot \frac{P(A \cap B)}{P(A)} \cdot \frac{P(A \cap B \cap C)}{P(A \cap B)}$

Multiplication Rule

Assuming that all of the conditioning events have positive probability, we have

$$\mathbf{P}\big(\bigcap_{i=1}^{n}A_i\big) = \mathbf{P}(A_1)\mathbf{P}(A_2 \mid A_1)\mathbf{P}(A_3 \mid A_1 \cap A_2)\cdots \mathbf{P}\big(A_n \mid \bigcap_{i=1}^{n-1}A_i\big).$$

CS145: Lecture 2 Outline

- Relative Frequencies and the Axioms of Probability
- Conditional Probabilities
- ➢ Bayes' Rule

Total Probability Theorem

- Divide and conquer
- Partition of sample space into A_1, A_2, A_3
- Have $\mathbf{P}(B \mid A_i)$, for every i

• One way of computing $\mathbf{P}(B)$:

 $P(B) = P(A_1)P(B | A_1)$ + P(A_2)P(B | A_2) + P(A_3)P(B | A_3)

- "Prior" probabilities $P(A_i)$
- initial "beliefs"
- We know $\mathbf{P}(B \mid A_i)$ for each i
- Wish to compute $P(A_i | B)$
- revise "beliefs", given that B occurred

Reasoning Under Uncertainty

- 1/1000 of tourists who visit tropical country X return with a dangerous virus Y.
- There is a test to check for the virus. The test has 5% false positive rate and no false negative error.
- You returned from country X, took the test, and it was positive. Should you take the painful treatment for the virus?

A - has the virus, B - positive in the test.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(A)P(B \mid A) + P(\bar{A})P(B \mid \bar{A})}$$
$$= \frac{1/1000}{1/1000 + (999/1000)(5/100)} = \frac{20}{1019} \approx 2\%$$

Explanation: Out of 1000 tourist, 1 will have the virus and another 50 will be false positive in the test.