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The Birthday “Paradox”

In a class of 70 students, this probability is about 99.87%

Suppose there are m students in a class.
What is the probability that at least two students

in the class have the same birthday?



CS145: Lecture 1 Outline
ØSample spaces: Sets of possible outcomes
ØProbability: Counting and the Discrete Uniform Law
ØExample: The birthday paradox
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of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Experiment

Sample Space 1
(Set of Outcomes)

Event A

Event B
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P(B)

Probability
Law

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible



Defining a Probabilistic Space/Model

6 Sample Space and Probability Chap. 1

of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Experiment

Sample Space 1
(Set of Outcomes)

Event A

Event B

A B Events

P(A)

P(B)

Probability
Law

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible

6 Sample Space and Probability Chap. 1

of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Experiment

Sample Space 1
(Set of Outcomes)

Event A

Event B

A B Events

P(A)

P(B)

Probability
Law

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
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flip a coin,
roll a die,
take a medication,
test an engine, … 



Background:  Sets

Some Basics

Sets:

• A set is a collection of objects, which are elements of the set.

• A set can be finite, S = {1, 2, . . . , n}.
• A set can be countably infinite:

S = {x | x = 2k + 1 or x = �2k + 1, k integer}
= {1,�1, 3,�3, 5,�5, . . . }.

• A set can be uncountable, S = {x | x 2 [0, 1]}.
• A set can be empty S = ;.

Cardinality (size): |S| = n



Sets: Elements & Relationships

Set Notations

• x 2 S - the element x is a member of the set S

• x /2 S - the element x is not a member of the set S

• 9x - there exists x ...

• 8 - for all elements x ...

• T ✓ S - 8x 2 T , x 2 S

• T ⇢ S - 8x 2 T , x 2 S AND 9x 2 S such that x 62 T .



Sets: Combination & Manipulation

Algebra of Sets

• A base set ⌦, all sets are subsets of ⌦

• Basic operations: for S ,T ✓ ⌦,

• S [ T = {x | x 2 S or x 2 T}
• S \ T = {x | x 2 S and x 2 T}
• S̄ = S

c
= {x | x 62 S}

• De Morgan’s laws:

• (S [ T )
c
= S̄ \ T̄

• (S \ T )
c
= S̄ [ T̄

•
�S

i2I Si

�c
=

T
i2I S̄i

•
�T

i2I Si

�c
=

S
i2I S̄i

Ø union
Ø intersection
Ø complement

⌦

S T

Venn Diagram 



Visualizing Sets: Venn Diagrams

Algebra of Sets
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Partitions of a Set

20 Chapter 1. Introduction 

The rules of probability involve logical relations between events. These are translated 
into corresponding relations between sets. For example, if C is the event which 
occurs if either A or B occurs (allowing the possibility that both A and B might 
occur), then the set of ways C can happen is tne union of the set of ways A can 
happen and the set of ways B can happen. In set notation, C = Au B. Table 1 gives 
a summary of such translations. 

Partitions 
Say that an event B is partitioned into n events B 1, ... , Bn if B = B1 U B2 u· .. U Bn, 
and the events B1,"" Bn are mutually exclusive. That is to say, every outcome in B 
belongs to one and only one of the subsets Bi . Think of B as split up into separate 
cases B1, ... , Bn. Figure 1 shows a subset B of the square is partitioned in three 
different ways. However B is partitioned into subsets, or broken up into pieces, the 
area in B is the sum of the areas of the pieces. This is the addition rule for area. 

FIGURE 1. Partitions of a set B. 

B 

The addition rule is satisfied by other measures of sets instead of area, for example, 
length, volume, and the number or proportion of elements for finite sets. 

The addition rule now appears as one of the three basic rules of proportion. No 
matter how probabilities are interpreted, it is generally agreed they must satisfy the 
same three rules: 

A set B is partitioned into n subsets if: 
B1 [B2 [ · · · [Bn = B
Bi \Bj = ; for any i 6= j mutually disjoint



The Sample Space
⌦ = a set of possible outcomes of some random

 (not deterministic) experiment“Omega”

The list defining the sample space must be:
Ø Mutually exclusive: Each outcome of the experiment is 

represented once in the sample space.
Ø Collectively exhaustive:  All outcomes are elements of the 

sample space.
Ø An art:  Choosing the “right” granularity, to capture the 

phenomenon of interest as simply as possible.
Modeling in science and engineering involves tradeoffs 
between accuracy, simplicity, & tractability.



A Finite Sample Space
You roll a tetrahedral (4-sided) die 2 times.

Sample� space:� Discrete� example� Sample� space:� Continuous� example�

•� Two� rolls�of�a� tetrahedral�die� ��=�{(x, y)�|� 0�⇤�x, y�⇤�1}�
–� Sample� space� vs.� sequential�description�

y�
1,1

1� 1,2�
1,3 1�
1,4�

4 2�

Y 3  = Second 
roll 32 �

1� x�
1 

1 2 3 4 4�
X = First roll 4,4�

Probability� axioms� Probability� law:� Example�with�finite� sample� space�

•� Event:� a� subset�of� the� sample� space� 4 
•� Probability� is�assigned� to� events�

Y 3 = Second 
roll 

2 
Axioms:�

1
1.� Nonnegativity:� P(A)�⌅�0�

1 2 3 4
2.� Normalization:� P(�) = 1 �

X = First roll 
3.� Additivity:� If�A ⌃�B�=�Ø,� then�P(A ⇧�B) = �P(A) + �P(B)�

•� Let� every�possible�outcome�have�probability�1/16�

–� P((X,Y )�� � is� (1,1)�or� (1,2))�=�• P({s1, s2, . . . , sk}) = P({s1}) + �· · ·+�P({sk})�
–

=� P( X = 1 ) =P(s ) +
� { �

1 �· · ·+�P(sk)� }

–� P(X�+�Y� is�odd)�=�•� Axiom�3�needs� strengthening�
•� Do�weird� sets�have�probabilities?� –� P(min(X,Y )�=�2)�=�

�

⌦ =
�
(x, y) | x 2 {1, 2, 3, 4}, y 2 {1, 2, 3, 4}

 

Ø Formally, sample space is a set of 42=16 discrete outcomes
Ø Can also model outcome via tree-based sequential description



Alternative Samples Spaces 
You roll a tetrahedral (4-sided) die 2 times.

⌦ =
�
(x, y) | x 2 {1, 2, 3, 4}, y 2 {1, 2, 3, 4}

 

Ø Sample space     is a set of 42=16 discrete outcomes
Ø Sample space           = {2,3,4,5,6,7,8} is a set of 7 discrete 
outcomes
Ø  The two sample spaces represent the same experiment
Ø Elements in            don’t have the same “probability”

⌦sum = {x+ y | x 2 {1, 2, 3, 4}, y 2 {1, 2, 3, 4}

⌦

⌦sum

⌦sum
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ØSample spaces: Sets of possible outcomes
ØProbability: Counting and the Discrete Uniform Law
ØExample: The birthday paradox



The Discrete Uniform Law (Combinatorics)
Discrete� uniform� law� Continuous� uniform� law�

•� Let�all�outcomes�be� equally� likely� •� Two�“random”�numbers� in� [0,1].�
y�

•� Then,� 1�
number�of� elements�of� A�

P(A) = �
total�number�of� sample�points�

� x�
•� Computing�probabilities� 1⇥� counting�

� Uniform� law:� Probability�=�Area�•� Defines� fair� coins,� fair�dice,�well-shu⇤ed�decks� •

–� P(X�+�Y� ⇤�1/2)�=�?�

–� P( (X,Y ) = (0.5,0.3)�)�

Probability� law:� Ex.�w/countably� infinite� sample� space�

•� Sample� space:� {1,2, . . .}
� � � � �n�– We are given P(n) = 2 ,�n�= 1,2, . . . �

–� Find�P(outcome� is�even)� Remember!�
p�

1/2
Turn� •� � in� recitation/tutorial� scheduling� form�now�

1/4� � � � � �
1/8�

1/16�…..� � � � � � �

1� 2� 3� 4�

Tutorials start next week

1� 1� 1 1

� � � � �

� �
P({2,4,6, . . .}) = P� (2)�+�P(4)�+� �=� +� +� +� �=�

•

· · ·
2
2�

2
4�

2
6� · · ·

3�

•� Countable�additivity�axiom� (needed� for� this� calculation):�
If�A1, A2, . . . �are�disjoint� events,� then:�

P(A1�⇧�A2�⇧�· · · ) = �P(A1) + �P(A2) + �· · · �

�

Formalizes the idea of “uniformly random” sampling. 



Uniform Law for a Finite Sample Space
You roll a tetrahedral (4-sided) die 2 times.

Sample� space:� Discrete� example� Sample� space:� Continuous� example�

•� Two� rolls�of�a� tetrahedral�die� ��=�{(x, y)�|� 0�⇤�x, y�⇤�1}�
–� Sample� space� vs.� sequential�description�

y�
1,1

1� 1,2�
1,3 1�
1,4�

4 2�

Y 3  = Second 
roll 32 �

1� x�
1 

1 2 3 4 4�
X = First roll 4,4�

Probability� axioms� Probability� law:� Example�with�finite� sample� space�

•� Event:� a� subset�of� the� sample� space� 4 
•� Probability� is�assigned� to� events�

Y 3 = Second 
roll 

2 
Axioms:�

1
1.� Nonnegativity:� P(A)�⌅�0�

1 2 3 4
2.� Normalization:� P(�) = 1 �

X = First roll 
3.� Additivity:� If�A ⌃�B�=�Ø,� then�P(A ⇧�B) = �P(A) + �P(B)�

•� Let� every�possible�outcome�have�probability�1/16�

–� P((X,Y )�� � is� (1,1)�or� (1,2))�=�• P({s1, s2, . . . , sk}) = P({s1}) + �· · ·+�P({sk})�
–

=� P( X = 1 ) =P(s ) +
� { �

1 �· · ·+�P(sk)� }

–� P(X�+�Y� is�odd)�=�•� Axiom�3�needs� strengthening�
•� Do�weird� sets�have�probabilities?� –� P(min(X,Y )�=�2)�=�

�

Sample� space:� Discrete� example� Sample� space:� Continuous� example�

•� Two� rolls�of�a� tetrahedral�die� ��=�{(x, y)�|� 0�⇤�x, y�⇤�1}�
–� Sample� space� vs.� sequential�description�

y�
1,1

1� 1,2�
1,3 1�
1,4�

4 2�

Y 3  = Second 
roll 32 �

1� x�
1 

1 2 3 4 4�
X = First roll 4,4�

Probability� axioms� Probability� law:� Example�with�finite� sample� space�

•� Event:� a� subset�of� the� sample� space� 4 
•� Probability� is�assigned� to� events�

Y 3 = Second 
roll 

2 
Axioms:�

1
1.� Nonnegativity:� P(A)�⌅�0�

1 2 3 4
2.� Normalization:� P(�) = 1 �

X = First roll 
3.� Additivity:� If�A ⌃�B�=�Ø,� then�P(A ⇧�B) = �P(A) + �P(B)�

•� Let� every�possible�outcome�have�probability�1/16�

–� P((X,Y )�� � is� (1,1)�or� (1,2))�=�• P({s1, s2, . . . , sk}) = P({s1}) + �· · ·+�P({sk})�
–

=� P( X = 1 ) =P(s ) +
� { �

1 �· · ·+�P(sk)� }

–� P(X�+�Y� is�odd)�=�•� Axiom�3�needs� strengthening�
•� Do�weird� sets�have�probabilities?� –� P(min(X,Y )�=�2)�=�

�



The Basic Counting Principle
Sec. 1.6 Counting∗ 43

The Counting Principle

Consider a process that consists of r stages. Suppose that:

(a) There are n1 possible results for the first stage.

(b) For every possible result of the first stage, there are n2 possible results
at the second stage.

(c) More generally, for all possible results of the first i − 1 stages, there
are ni possible results at the ith stage.

Then, the total number of possible results of the r-stage process is

n1 · n2 · · ·nr.

Example 1.24. The number of telephone numbers. A telephone number
is a 7-digit sequence, but the first digit has to be different from 0 or 1. How many
distinct telephone numbers are there? We can visualize the choice of a sequence
as a sequential process, where we select one digit at a time. We have a total of 7
stages, and a choice of one out of 10 elements at each stage, except for the first
stage where we only have 8 choices. Therefore, the answer is

8 · 10 · 10 · · · 10︸ ︷︷ ︸
6 times

= 8 · 106.

Example 1.25. The number of subsets of an n-element set. Consider an
n-element set {s1, s2, . . . , sn}. How many subsets does it have (including itself and
the empty set)? We can visualize the choice of a subset as a sequential process
where we examine one element at a time and decide whether to include it in the set
or not. We have a total of n stages, and a binary choice at each stage. Therefore
the number of subsets is

2 · 2 · · · 2︸ ︷︷ ︸
n times

= 2n.

It should be noted that the Counting Principle remains valid even if each
first-stage result leads to a different set of potential second-stage results, etc. The
only requirement is that the number of possible second-stage results is constant,
regardless of the first-stage result. This observation is used in the sequel.

In what follows, we will focus primarily on two types of counting arguments
that involve the selection of k objects out of a collection of n objects. If the order
of selection matters, the selection is called a permutation, and otherwise, it is
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and involves counting of the number of elements of A. An example of this
type is the calculation of the probability of k heads in n coin tosses (the
binomial probabilities). We saw there that the probability of each distinct
sequence involving k heads is easily obtained, but the calculation of the
number of all such sequences is somewhat intricate, as will be seen shortly.

While counting is in principle straightforward, it is frequently challenging;
the art of counting constitutes a large portion of a field known as combinatorics.
In this section, we present the basic principle of counting and apply it to a number
of situations that are often encountered in probabilistic models.

The Counting Principle

The counting principle is based on a divide-and-conquer approach, whereby the
counting is broken down into stages through the use of a tree. For example,
consider an experiment that consists of two consecutive stages. The possible
results of the first stage are a1, a2, . . . , am; the possible results of the second
stage are b1, b2, . . . , bn. Then, the possible results of the two-stage experiment
are all possible ordered pairs (ai, bj), i = 1, . . . , m, j = 1, . . . , n. Note that the
number of such ordered pairs is equal to mn. This observation can be generalized
as follows (see also Fig. 1.16).

Leaves

. . . . . . 

. . . . . . 

. . . . . . 

. . . . 

Stage 1 Stage 2 Stage 3 Stage 4

n1
Choices

n2
Choices

n3
Choices

n4
Choices

Figure 1.16: Illustration of the basic counting principle. The counting is carried
out in r stages (r = 4 in the figure). The first stage has n1 possible results. For
every possible result of the first i − 1 stages, there are ni possible results at the
ith stage. The number of leaves is n1n2 · · ·nr. This is the desired count.

LECTURE 4 Discrete uniform law

• Readings: Section 1.6 • Let all sample points be equally likely

• Then,

Lecture outline number of elements of A A
P(A) = =

| |
total number of sample points �

• Principles of counting
| |

• Just count. . .• Many examples

– permutations

– k-permutations

– combinations

– partitions

• Binomial probabilities

Basic counting principle Example

• r stages • Probability that six rolls of a six-sided die
• ni choices at stage i all give di⇥erent numbers?

– Number of outcomes that
make the event happen:

– Number of elements
in the sample space:

• Number of choices is: n1n2 · · ·nr
– Answer:

• Number of license plates
with 3 letters and 4 digits =

• . . . if repetition is prohibited =

• Permutations: Number of ways
of ordering n elements is:

• Number of subsets of {1, . . . , n} =

1

Simple examples:

The set of choices at each stage 
can depend on previous choices, 

as long as the number of choices at 
each stage is constant.



Permutations and Subsets
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n(n� 1)(n� 2) · · · 1 =
nY

i=1

i = n!

42 Sample Space and Probability Chap. 1

and involves counting of the number of elements of A. An example of this
type is the calculation of the probability of k heads in n coin tosses (the
binomial probabilities). We saw there that the probability of each distinct
sequence involving k heads is easily obtained, but the calculation of the
number of all such sequences is somewhat intricate, as will be seen shortly.

While counting is in principle straightforward, it is frequently challenging;
the art of counting constitutes a large portion of a field known as combinatorics.
In this section, we present the basic principle of counting and apply it to a number
of situations that are often encountered in probabilistic models.
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The Counting Principle

Consider a process that consists of r stages. Suppose that:

(a) There are n1 possible results for the first stage.

(b) For every possible result of the first stage, there are n2 possible results
at the second stage.

(c) More generally, for all possible results of the first i − 1 stages, there
are ni possible results at the ith stage.

Then, the total number of possible results of the r-stage process is

n1 · n2 · · ·nr.

Example 1.24. The number of telephone numbers. A telephone number
is a 7-digit sequence, but the first digit has to be different from 0 or 1. How many
distinct telephone numbers are there? We can visualize the choice of a sequence
as a sequential process, where we select one digit at a time. We have a total of 7
stages, and a choice of one out of 10 elements at each stage, except for the first
stage where we only have 8 choices. Therefore, the answer is

8 · 10 · 10 · · · 10︸ ︷︷ ︸
6 times

= 8 · 106.

Example 1.25. The number of subsets of an n-element set. Consider an
n-element set {s1, s2, . . . , sn}. How many subsets does it have (including itself and
the empty set)? We can visualize the choice of a subset as a sequential process
where we examine one element at a time and decide whether to include it in the set
or not. We have a total of n stages, and a binary choice at each stage. Therefore
the number of subsets is

2 · 2 · · · 2︸ ︷︷ ︸
n times

= 2n.

It should be noted that the Counting Principle remains valid even if each
first-stage result leads to a different set of potential second-stage results, etc. The
only requirement is that the number of possible second-stage results is constant,
regardless of the first-stage result. This observation is used in the sequel.

In what follows, we will focus primarily on two types of counting arguments
that involve the selection of k objects out of a collection of n objects. If the order
of selection matters, the selection is called a permutation, and otherwise, it is



Combinations
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and involves counting of the number of elements of A. An example of this
type is the calculation of the probability of k heads in n coin tosses (the
binomial probabilities). We saw there that the probability of each distinct
sequence involving k heads is easily obtained, but the calculation of the
number of all such sequences is somewhat intricate, as will be seen shortly.

While counting is in principle straightforward, it is frequently challenging;
the art of counting constitutes a large portion of a field known as combinatorics.
In this section, we present the basic principle of counting and apply it to a number
of situations that are often encountered in probabilistic models.

The Counting Principle

The counting principle is based on a divide-and-conquer approach, whereby the
counting is broken down into stages through the use of a tree. For example,
consider an experiment that consists of two consecutive stages. The possible
results of the first stage are a1, a2, . . . , am; the possible results of the second
stage are b1, b2, . . . , bn. Then, the possible results of the two-stage experiment
are all possible ordered pairs (ai, bj), i = 1, . . . , m, j = 1, . . . , n. Note that the
number of such ordered pairs is equal to mn. This observation can be generalized
as follows (see also Fig. 1.16).

Leaves

. . . . . . 

. . . . . . 

. . . . . . 

. . . . 

Stage 1 Stage 2 Stage 3 Stage 4

n1
Choices

n2
Choices

n3
Choices

n4
Choices

Figure 1.16: Illustration of the basic counting principle. The counting is carried
out in r stages (r = 4 in the figure). The first stage has n1 possible results. For
every possible result of the first i − 1 stages, there are ni possible results at the
ith stage. The number of leaves is n1n2 · · ·nr. This is the desired count.
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⇣n⌘
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k • n independent coin tosses

of a given n-element set – P(H) = p

• Two ways of constructing an ordered
sequence of k distinct items:

P(HTTHHH) =
– Choose the k items one at a time:

•

n!
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Coin tossing problem Partitions

• event B: 3 out of 10 tosses were “heads”. • 52-card deck, dealt to 4 players

– Given that B occurred, • Find P(each gets an ace)
what is the (conditional) probability

• Outcome: a partition of the 52 cardsthat the first 2 tosses were heads?

– number of outcomes:
• All outcomes in set B are equally likely:

52!
probability 3

p (1� p)7
13! 13! 13! 13!

– Conditional probability law is uniform • Count number of ways of distributing the
four aces: 4 3 2

• Number of outcomes in B:
· ·

• Count number of ways of dealing the

• Out of the outcomes in B, remaining 48 cards

how many start with HH? 48!

12! 12! 12! 12!

• Answer:

48!
4 · 3 · 2

12! 12! 12! 12!
52!

13! 13! 13! 13!
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Pascal’s Triangle

http://www.mathwarehouse.com/

Painting of Pascal made by 
François II Quesnel in 1691
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CS145: Lecture 1 Outline
ØSample spaces: Sets of possible outcomes
ØProbability: Counting and the Discrete Uniform Law
ØExample: The birthday paradox



The Birthday “Paradox”

In a class of 70 students, this probability is about 99.87%

Suppose there are m students in a class.
What is the probability that at least two students

in the class have the same birthday?

Assumptions:
Ø Birthdays are equally likely to occur on any of N=365 days
Ø No dependence between birthdays of different students
Not completely true, but fairly accurate approximations.



The Birthday “Paradox”
Ø N possible birthdays, m students in the class.
Ø We can compute this probability by counting elements of 

the sample space of all Nm possible birthday patterns:

Ø The number of birthday patterns with all pairs distinct:

⌦ = {(b1, . . . , bm) | bi 2 {1, . . . , N}}

Dm = {(b1, . . . , bm) | bi 6= bj for all i 6= j}

|Dm| = N(N � 1)(N � 2) · · · (N �m+ 1) =
N !

(N �m)!



The Birthday “Paradox”

P (Dm) =
N !

(N �m)!Nm
=

m�1Y

i=0

✓
N � i

N

◆
|"#|
|Ω|  

Dm = {(b1, . . . , bm) | bi 6= bj for all i 6= j}

⌦ = {(b1, . . . , bm) | bi 2 {1, . . . , N}}Sample Space:

Set of items in the sample space with all distinct birthdays:

In the uniform probability model:

=



The Birthday “Paradox”
Ø Sort students in arbitrary order (say, alphabetical by name) 
Ø Define two events for student j in the list of m students:
Rj ! birthday j is a repeat of some previous student

Dj ! all of the first j birthdays are distinct

62 Chapter 1. Introduction 

Example 5. 
Problem. 

Solution. 

the first card is the Jack of Hearts, the next is the King of Spades, and so on, would 
be 

1 1 111 
-x-x-x-x-
52 51 50 49 48 

the same for all possible sequences (called permutations) of 5 of the 52 cards. This 
serves as the basic assumption for calculating probabilities of other types of card 
hands, by a counting method explained in Chapter 2. 

The birthday problem. 
Suppose there are n students in a class. What is the probability that at least two 
students in the class have the same birthday? 

The first step is to think how you would determine whether or not this event has 
occurred for a particular class of students. Here is a natural method. First order 
the students in some arbitrary way, say alphabetically, then go through the list of 
students' birthdays in that order, and check whether or not each birthday is one that 
has appeared previously. If you find a repeat birthday in this process, stop. There 
are at least two students in the class with the same birthday. But if you get right 
through the list of n students, with no repeats, then no two students in the class 
have the same birthday. 

Let Rj be the event that the checking process stops with a repeat birthday at the jth 
student on the list, and let D j be the event that the first j birthdays are different. 
The event Bn that there are at least two students in the class with the same birthday 
is the event R2 U R3 U ... U Rn that the checking process stops with a repeat at some 
stage j :S n as you go through the list. The events R2 , ... , Rn are represented in the 
following diagram. They are mutually exclusive, so 

But it is simpler to calculate the probability of Bn from its complement, which is 
Dn, the event that all n birthdays are different: 

R2 R3 

1 2 3 n-l 
365 365 365 365 

364 363 362 365-(n-l) 
365 D2 365 D3 365 Dn- 1 L-_----"3""65"--_+- Dn 

The conditional probabilities in the diagram are based on the following assumption: 

Ø Tree diagram of event probabilities for N=365 days:



The Birthday “Paradox”
Ø The probability that the first m birthdays are distinct is then:
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The Birthday “Paradox”
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The Birthday “Paradox”
Ø The probability that m birthdays on N days are distinct:
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FIGURE 3. Probabilities in the birthday problem. See the discussion after Example 5. 
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Countable and Uncountable Infinite
Advanced topic not covered in homeworks or exams! 

• A finite set is countable
• The set of natural numbers N = {1, 2, 3, ...} is 

countable
• A set S is countable if there is injective 

mapping from S to N
• The set of all integers is countable
    1, -1, 2, -2, 3, -3,…..
• The set of all rationales is countable



The Rational numbers in [0,1] is Countable

Source: www.homeschoolmath.net/teaching/rational-numbers-countable.php

Advanced topic not covered in homeworks or exams! 

• Each  rational number !" in 
[0,1] has a place in the table

• There is an order in the 
table that associates each 
rational number with a 
natural number.



The Real Numbers in [0,1] are Uncountable
Advanced topic not covered in homeworks or exams! 

• Assume that the real numbers in [0,1] were 
countable.

• Write each real number in [0,1] in binary 
fraction

• If countable can be ordered in a list
• Construct a real number s such that its i-th 

bit is the complement the i-th bit of the i-th 
number in the list. 

• The number s doesn't appear in the list. 
For i>0 the number s is different from the i-
th number in its i-th bit.

Cantor's diagonal argument

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument



Discrete vs. Continuous Spaces

• Countable sample space  → discrete 
probability model 

• Uncountable sample space  → continuous 
probability model


