CS145: Probability & Computing

Lecture 1: Sets & Events,
Counting & Combinatorics
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The Birthday “Paradox”

Suppose there are m students in a class.
What is the probability that at least two students
in the class have the same birthday?

In a class of 70 students, this probability is about 99.87%
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» Sample spaces: Sets of possible outcomes
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Defining a Probabilistic Space/Model

Probability

 Law
flip a coin, T r
ro// a dle’ Experiment P(A)
take a medication, sample Space © |
(Set of Outcomes A B

test an engine, ...

Elements of a Probabilistic Model

e The sample space (2, which is the set of all possible outcomes of an
experiment.

e The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.




Background: Sets

A set is a collection of objects, which are elements of the set.

A set can be finite, S ={1,2,...,n}. Cardinality (size):

A set can be countably infinite:

S = {x|x=2k+1orx=—-2k+1, kinteger}
= {1,-1,3,-3,5,—5,... }.

A set can be uncountable, S = {x | x € [0,1]}.
A set can be empty S = 0.

) |S|=n



Sets: Elements & Relationships

x € 5 - the element x is a member of the set S

x ¢ S - the element x is not a member of the set S
Jx - there exists x...

YV - for all elements x ...

TCS-VxeT,xe$

T CcS-VYxeT,xeSAND dx € Ssuchthat x ¢ T.



Sets: Combination & Manipulation

e A base set €2, all sets are subsets of (2
e Basic operations: for S, T C (),

e SUT={x|xeSorxeT} » union
e SNT={x|[xeSandxe T} » Intersection
o S=5={x|x¢5} » complement

e De Morgan's laws:
e (SUT)*=5NT
e (SNT)*=SUT

Venn Diagram



Visualizing Sets: Venn Diagrams

e Basic operations: for S, T C (),
e SUT={x|xe€SorxeT}
e SNT={x|xeSand xec T}
e S=5°={x|x¢S5}
e De Morgan's laws:
° (SUT)C—SOT
® (SHT)C—SUT_
(UIEIS) :ﬂIEI‘?’.
(ﬂ,e/S) :UIEISi



Partitions of a Set

E B, ) : B, —B\é Q’
A set B is partitioned into n subsets if:

BiuUB,U---UBb, =08
B;NB; = for any i # j mutually disjoint




The Sample Space

() = asetof possible outcomes of some random
“Omega” (not deterministic) experiment

The list defining the sample space must be:

» Mutually exclusive: Each outcome of the experiment is
represented once in the sample space.

» Collectively exhaustive: All outcomes are elements of the
sample space.

» An art: Choosing the “right” granularity, to capture the
phenomenon of interest as simply as possible.
Modeling in science and engineering involves tradeoffs
between accuracy, simplicity, & tractability.



A Finite Sample Space

You roll a tetrahedral (4-sided) die 2 times.
Q= {(z,y) | v €{1,2,3,4},y € {1,2,3,4} ] ]
13
14

4

Y = Second 3
roll

1 2 3 4

X = First roll 4.4

» Formally, sample space is a set of 4°=76 discrete outcomes
» Can also model outcome via tree-based sequential description




Alternative Samples Spaces
You roll a tetrahedral (4-sided) die 2 times.

Q={(z,y) |z €{1,2,3,4},y € {1,2,3,4}}

Qeum ={z+y | xe€{l1,2,3,4},y € {1,2,3,4} Q 9

» Sample space () is a set of 4°=16 discrete outcomes

» Sample space () ={2,3,4,5,6,7,8} is a set of 7 discrete
outcomes

» The two sample spaces represent the same experiment
> Elements in {2, don’t have the same “probability”

sum
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The Discrete Uniform Law (Combinatorics)

Formalizes the idea of “uniformly random” sampling.

Let all outcomes be equally likely

Then,

number of elements of A
total number of sample points

P(A) =

Computing probabilities = counting

Defines fair coins, fair dice, well-shuffled decks



Uniform Law for a Finite Sample Space
You roll a tetrahedral (4-sided) die 2 times.

,“ Y = Second 3
roll
2

1 2 3 4

e Let every possible outcome have probability 1/16 X = First roll

— P((X,Y)is (1,1) or (1,2)) =
- PXx =1} =

— P(X+Y is odd) =

— P(min(X,Y) =2) =



Consider a process that consists of r stages. Suppose that:
(a) There are ny possible results for the first stage.

(b) For every possible result of the first stage, there are na possible results
(c) More generally, for all possible results of the first i — 1 stages, there

Then, the total number of possible results of the r-stage process is

The Basic Counting Principle

at the second stage.

are n; possible results at the ith stage.

Ny N2 Nyp.

Simple examples:

Number of license plates
with 3 letters and 4 digits =

. if repetition is prohibited =

Leaves

n1 n2 n3 n4
Choices Choices Choices Choices

Stage 1 Stage 2 Stage 3 Stage 4

The set of choices at each stage
can depend on previous choices,
as long as the number of choices at
each stage is constant.



Permutations and Subsets

e Permutations: Number of ways

of ordering n elements is:
mn
. ° . . . L eS
n(n—l)(n—2)---1:Hz n! o

e Number of subsets of {1,...,n}

2.92...9 =29 n N " N

» times Choices Choices Choices Choices

Stage 1 Stage 2 Stage 3 Stage 4



Combinations

° <Z> number of k-element subsets

“n choose k”
of a given n-element set

e Two ways of constructing an ordered
sequence of k distinct items:

Leaves
— Choose the k items one at a time:
[
n(n—1)---(n—k4+1) = ™ __ choices
(n —k)!
— Choose k items, then order them
(k! possible orders)
n1 n2 n3 n4
e Hence: Choices Choices Choices Choices
(n) = S Stage2 S Stage 4
k P = (n— k)| tage 1 Stage tage 3 Stage

n_ nl The total number of subsets:
<k>_k!(n—k)! n

nn
Zkzz

k=0



Pascal’s Triangle
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Pascal’s Triangle

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1 Painting of Pascal made by
Frangois Il Quesnel in 1691

1 8 28 56 70 56 28 8 1
1 9 36 84 | 126 | 126 84 36 9 1

1 10 45 | 120 | 210 | 252 | 210 | 120 45 10 1

1 11 55 165 | 330 | 462 | 462 | 330 | 165 55 11 1

1 12 66 | 220 | 495 | 792 | 924 | 792 | 495 | 220 66 12 1

1 13 78 286 | 715 | 1287| 1716| 1716| 1287| 715 286| 78 13 1

14 91 | 364 | 1001| 2002 3003 | 3432| 3003| 2002| 1001| 364 91 14 1

15 | 105 | 455 | 1365| 3003| 5005| 6435| 6435| 5005| 3003| 1365| 455 | 105 15 1

120 | 560 | 1820| 4368 | 8008|11440/12870{11440| 8008 | 4368 1820| 560 | 120 16 1

http://www.mathwarehouse.com/



Binomial Probabilities

If | toss a coin n times, what is the probability that | see k heads?

e 7 independent coin tosses

— P(H)=p :%

e P(HTTHHH) =

e P(sequence) = p# heads(q _ ,)# tails

=25
P(k heads)= Y P(seq.) "
k—head seq. ;—‘g 0:2 n = 20
S 0.15
= (# of k—head segs.) - p*(1 —p)»F & 011 n = 50
ny L n—~k
= (ra-p Ml
<k) . L |1_,||'| ,||l-. :
0 10 20 30 40



CS145:; Lecture 1 Outline

» Sample spaces: Sets of possible outcomes
» Probability: Counting and the Discrete Uniform Law
» Example: The birthday paradox




The Birthday “Paradox”

Suppose there are m students in a class.
What is the probability that at least two students
in the class have the same birthday?

In a class of 70 students, this probability is about 99.87%

Assumptions:

» Birthdays are equally likely to occur on any of N=365 days
» No dependence between birthdays of different students
Not completely true, but fairly accurate approximations.



The Birthday “Paradox”

» N possible birthdays, m students in the class.
» We can compute this probability by counting elements of
the sample space of all N™ possible birthday patterns:

Q={(b1,...,bm) | b; €{1,...,N}}
» The number of birthday patterns with all pairs distinct:
Dm — {(bl,,bm) | bz #b] for allz#j}

N

Dyl = NN = (N =2)+ (N =m 1) = s



The Birthday “Paradox”

Sample Space: () = {(by,...,b,,) | b; €4{1,...,N}}
Set of items in the sample space with all distinct birthdays:

Dm:{(bl,...,bm)|bi#bj for allz#]}

In the uniform probability model:

%= (Dim) = (N _]:;!)!Nm _iﬁj (NJ\;Z)




The Birthday “Paradox”

» Sort students in arbitrary order (say, alphabetical by name)
» Define two events for student in the list of m students:

R; — birthday j is a repeat of some previous student
D; — all of the first j birthdays are distinct

» Tree diagram of event probabilities for N=365 days:

362
365
> D4




The Birthday “Paradox”

» The probability that the first m birthdays are distinct is then:

P(Dm)Z(l—%) (15)(17%1):”@(1];)

R; — birthday j is a repeat of some previous student
D; — all of the first j birthdays are distinct
» Tree diagram of event probabilities for N=365 days:

362
365
> D4




The Birthday “Paradox”

» The probability that the m birthdays are distinct:




The Birthday “Paradox”

» The probability that m birthdays on N days are distinct:

P(Dm)z(l—%> <112V)<1m}v1>:ﬁ1(1§>

1— P(D,,)"

09 1
0.8 1
0.7 1
0.6 1
0.5 1
04 1
03 A
02 7

wwwwwwwww

1 — P(Dy3) = 0.506

m (fixing N = 365)
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The Birthday “Paradox”

» The probability that m birthdays on N days are distinct:
1 2 m—-1\ o i
pom=(1- 1) (- 2) - (-5 =TT (- 5)

0.03

0.02

0.0 L1

10 20 30 40 50 60 70 m

Probability that first repeated birthday is found with student j



Countable and Uncountable Infinite

Advanced topic not covered in homeworks or exams!

A finite set is countable
The set of natural numbers N = {1, 2, 3, ...} is
countable

A set S is countable if there is injective X
mapping from S to N

The set of all integers is countable
1,-1,2,-2, 3, -3,.....

The set of all rationales is countable

Y
D
'B
C
A




The Rational numbers in [0,1] is Countable

Advanced topic not covered in homeworks or exams!

1 . i L & o J t

« Each rational number% in
[0,1] has a place in the table '

« There is an order in the
table that associates each
rational number with a :
natural number.

Source: www.homeschoolmath.net/teaching/rational-numbers-countable.php



The Real Numbers in [0,1] are Uncountable

Advanced topic not covered in homeworks or exams!

st =00000000000...
sop =11111111111...

* Assume that the real numbers in [0,1] were s3 =01010101010...
countable s, =10101010101...

. . L ss =11010110101 ...
Write each real number in [0,1] in binary s —00110110110...

fraction o s7=10001000100...
« If countable can be ordered in a list ss =00110011001...

« Construct a real number s such that its i-th s =11001100110...
bit is the complement the i-th bit of the i-th s50=11011100101...
number in the list. s11=11010100100...

* The number s doesn't appear in the list. S
For i>0 the number s is different from the i-
th number in its i-th bit. s =10111010011...

https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument

Cantor's diagonal argument




Discrete vs. Continuous Spaces

« Countable sample space — discrete
probability model

* Uncountable sample space — continuous
probability model



