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Computational Imaging for VLBI Image Reconstruction
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Abstract

Very long baseline interferometry (VLBI) is a technique
for imaging celestial radio emissions by simultaneously ob-
serving a source from telescopes distributed across Earth.
The challenges in reconstructing images from fine angular
resolution VLBI data are immense. The data is extremely
sparse and noisy, thus requiring statistical image models
such as those designed in the computer vision community.
In this paper we present a novel Bayesian approach for
VLBI image reconstruction. While other methods often re-
quire careful mning and paramerer selection for different
types of data, our method (CHIRFP) produces good results
under different settings such as low SNR or extended emis-
sion. The success of our method is demonstrated on realis-
tic synthetic experiments as well as publicly available real
dara. We present this problem in a way that is accessible 1o
members of the community, and provide a dataset website
(vibiimaging.csail.mit.edu) that facilitates con-
trolled comparisons across algorithms.

1. Introduction

High resolution celestial imaging is essential for
progress in astronomy and physics. For example, imag-
ing the plasma surrounding a black hole’s event horizon at
high resolution could help answer many important ques-
tions; most notably, it may substantiate the existence of
black holes [10] as well as verify and test the effects of
general relativity [27]. Recently, there has been an inter-
national effort to create an Event Horizon Telescope (EHT)
capable of imaging a black hole’s event horizon for the first
time [12, 13]. The angular resolution necessary for this
observation is at least an order of magnitude smaller than
has been previously used to image radio sources [74]. As
measurements from the EHT become available, robust al-
gorithms able to reconstruct images in this fine angular res-
olution regime will be necessary.

Although billions of dollars are spent on astronomical
imaging systems to acquire the best images, current recon-
struction techniques suffer from unsophisticated priors and
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(a) Telescope Locations

(b) Spatial Frequency Coverage

Figure 1. Freguency Coverage: (A) A sample of the telescope locations
inthe EHT. By observing a source over the course of a day, we obtain mea-
surements corresponding to elliptical tracks in the source image’s spatial
frequency plane (B). These frequencies, {u, v), are the projected baseline
lengths orthogonal to a telescope pair's light of sight. Points of the same
color correspond to measurements from the same telescope pair.

a lack of inverse modeling [ 6], resulting in sub-optimal im-
ages. Image processing, restoration, sophisticated inference
algorithms, and the study of non-standard cameras are all
active areas of computer vision. The computer vision com-
munity’s extensive work in these areas are invaluable to the
success of these reconstruction methods and can help push
the limits of celestial imaging. [16, 17, 27, 43]

Imaging distant celestial sources with high resolving
power (i.e. fine angular resolution) requires single-dish
telescopes with prohibitively large diameters due to the in-
verse relationship between angular resolution and telescope
diameter [41]. For example, it is predicted that emission
surrounding the black hole at the center of the Milky Way
subtends =~ 2.5 x 10~10 radians [15]. Imaging this emis-
sion with a 10~'° radian resolution at a 1.3 mm wavelength
would require a telescope with a 13000 km diameter. Al-
though a single telescope this large is unrealizable, by si-
multaneously collecting data from an array of telescopes
located around the Earth, it is possible to emulate samples
from a single telescope with a diameter equal to the maxi-
mum distance between telescopes in the array. Using mul-
tiple telescopes in this manner is referred to as very long
baseline interferometry (VLBI) [1]. Refer to Figure 1a.
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How does it work?
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Time Delay: . _
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Figure 2. Simplified Interferometry Diagram: Light is emitted from a
distant source and arrives at the telescopes as a plane wave in the direction
§. An additional distance of B - s is necessary for the light to travel to
the farther telescope, introducing a time delay between the received sig-
nals that varies depending on the source’s location in the sky. The time-
averaged correlation of these signals is a sinusoidal function related to the
location of the source. This insight is generalized to extended emissions
in the van Cittert-Zernike Thm. and used to relate the time-averaged cor-
relation to a Fourier component of the emission image in the direction S.



Problems:

* Very noisy datal
* Significant phase shifts

Computer vision to the rescue!
- Image modeling in Fourier domain -> represent phase

- Data-driven priors using Gaussian mixture models on
patches of signal -> represent expected statistics!

- Expected Patch Log Likelihood — Zoran and Weiss ICCV
2011 -> generic prior method for image reconstruction

- Simulated data to build prior
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(a) Training Image (b) Prior Learned (¢) Noisy Image

(d) Non Overlapping (e) Center Pixel (f) Averaged Overlapping (2) Our Method

Figure 2: The intuition behind our method. 2a A training image. 2b The prior learned from the image, only the 36 most frequent patches are
shown with their corresponding count above the patch - flat patches are the most likely ones, followed by edges with | pixel etc. 2c A noisy
image we wish to restore. 2d Restoring using non-overlapping patches - note the severe artifacts at patch borders and around the image. 2e
Taking the center pixels from each patch. 2f Better results are obtained by restoring all overlapping patches, averaging the results - artifacts
are still visible, and a lot of the patches in the resulting image are unlikely under the prior. 2g Result using the proposed method - note that
there are very few artifacts, and most patches are very likely under our prior.

[Zoran and Weiss, 2011]



Multiple view geometry

Camera calibration

Epipolar geometry

Dense depth
map estimation




Correspondence problem

Multiple match
° Hypothesis1 hypotheses
© Hypothesis 2 . .
satisfy epipolar
constraint, but
which is correct?

O Hypothesis 3

Right image

Figure from Gee & Cipolla 1999



Results with window search

Window-based matching ‘Ground truth’
(best window size)



“Shortest paths” for scan-line stereo

— Left image

_ — Right image. R
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Can be implemented with dynamic programming
Ohta & Kanade ’85, Cox et al. 96, Intille & Bobick, ‘01

Slide credit: Y. Boykov



Coherent stereo on 2D grid
- Scanline stereo generates streaking artifacts

- Can’t use dynamic programming to find spatially
coherent disparities/ correspondences on a 2D grid



E = Edata(ll’ |2’ D) +ﬂEsmooth(D)

Ep = > (W, (1) =W, (i +D(0)))’| |Esmon = 2, 2(D()~D(j))

i neighbors 1, j

Energy functions of this form can be minimized using graph cuts.

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Enerqy
Minimization via Graph Cuts, PAMI 2001

Source: Steve Seijtz


http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Better results. ..

Graph cut method Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/

SIFT + Fundamental Matrix + RANSAC + dense correspondence

Input images StM points MVS points

Colosseum

St. Peter'’s

Building Rome in a Day
By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



SIFT + Fundamental Matrix + RANSAC + dense correspondence

The Visual Turing Test for Scene Reconstruction
Supplementary Video

Qi Shan” Riley Adams™  Brian Curless’
Yasutaka Furukawa* Steve Seitz™

+University of Washington *Google

3DV 2013



Stereo correspondence

* Let x be a point in left image, x” in right image

* Epipolar relation
* x maps to epipolar line I
e X’ maps to epipolar line /

\I I/
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How does a depth camera work?

Microsoft Kinect v1

Intel laptop depth camera



Active stereo with structured light

e Project “structured” light patterns onto the object
— Simplifies the correspondence problem
— Allows us to use only one camera

—

camera

Stereo system! — D:

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/



http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

How does a depth camera work?

Stereo in infrared.




Time of Flight (Kinect V2)

e Depth cameras in HoloLens use time of flight
e “SONAR for light”

* Emit light of a known wavelength, and time how long it
takes for it to come back

- »mﬁ
:

stop

3D Surface



With either technique...

...| gain depth maps over time.

Optex Depth Camera Based on Canesta Solution



Color image

Color sensor

Depth sensor

Position

Depth image Point cloud

Rendered from different viewpoint

Yisheng Zhou



Once | have my depth map,
what can | do with it?

Measure.
Combine! (Reorganize?)



What if we want to align...
but we have no matched pairs?

* Hough transform and RANSAC not applicable

Problem: no initial guesses for correspondence



Applications

Medical imaging: match
brain scans or contours

Kwok and Tang



Iterative Closest Points (ICP) Algorithm

Goal:
Estimate transform between two dense point sets S, and S,

1. |Initialize transformation

Compute difference in mean positions, subtract
Compute difference in scales, normalize

2. Assign each pointin S, to its nearest neighborin s,
3. Estimate transformation parameters T

—  Least squares or robust least squares, e.g., rigid transform

4. Transform the pointsin S, using estimated parameters T
5. Repeat steps 2-4 until change is very small (convergence)



Example: solving for translation

Problem: no initial guesses for correspondence

ICP solution ¥ B W A t
. Initialize # by mean point translation = |+

. . . B A
Find nearest neighbors for each point Yi Yi
Compute transform using matches
Move points using transform

Repeat steps 2-4 until convergence

N



Example: aligning boundaries

Extract edge pixels p,..p,and q,..q,,
2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches

5. Transform points p accordingto T
Repeat 3-5 until convergence




ICP demonstration

Time = iterations of ICP

Bouaziz et al.



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Sparse ICP

Sofien Bouaziz

Andrea Tagliasacchi

Mark Pauly



BundleFusion: Real-time Globally Consistent
3D Reconstruction using Online Surface Re-integration

Angela Dai'  Matthias NiefSner!
Michael Zollhéfer’ Shahram Izadi’
Christian Theobalt?

!Stanford University
Max Planck Institute for Informatics
SMicrosoft Research

(contains audio)
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