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Chaplin, Modern Times, 1936



[A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set]



Computer vision as
world measurement

) 3‘ . |
Two cameras, simultaneous Single moving camera and
vViews static scene



Multiple view geometry

Camera calibration

Epipolar geometry

Dense depth
map estimation




Multi-view geometry problems

« Camera ‘Motion’: Given a set of corresponding 2D/3D
points in two or more images, compute the camera

parameters.
O O
\ .
A

P -

Camera 1

Camera 3

C 2
Rl’tl ? aanZe’;:az ? R3’t3 ? Slide credit:

Noah Snavely



Multi-view geometry problems

« Stereo correspondence: Given known camera
parameters and a point in one of the images, where could
Its corresponding points be in the other images?

-
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Y
y
Camera 1
R. t Camera 2 Camera 3
1'%1 R21t2 R3,t3 Slide credit;

Noah Snavely



Multi-view geometry problems

« Structure from Motion: Given projections of the same 3D
point in two or more images, compute the 3D coordinates

of that point

Camera 1

Ryt ?

Camera 2

Rot, ©

\ Camera 3

\ R3’t3 ? Slide credit:

Noah Snavely



Multi-view geometry problems

« Optical flow: Given two images, find the location of a world
point in a second close-by image with no camera info.

/
/4
Camera 1 A O O

Camera 2



Essential matrix

cF &€
o

Rtx(Rx)]=0 mm) K'EX'=0 with E=[t]R

E is a 3x3 matrix which relates

corresponding pairs of normalized Essential Matrix
homogeneous image points across pairs of (Longuet-Higgins, 1981)
images — for K calibrated cameras.

Estimates relative position/orientation.  ote: [1], is matrix representation of cross product



Fundamental matrix for uncalibrated cases

Intrinsics K’

Intrinsics K 7
| X'FX'=0 with F=KTEK"?

F x’= 0 is the epipolar line | associated with x’
 FTx =0 is the epipolar line I’ associated with x

» Fis singular (rank two): det(F)=0
« Fe’'=0 and F'e=0 (nullspaces of F =¢€’; nullspace of FT = ¢’)
 F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0



Fundamental matrix

Let X be a point in left image, x’in right image

Epipolar relation
* X maps to epipolar line I’
* X’maps to epipolar line |
Epipolar mapping described by a 3x3 matrix F:
" =Fx
| =FTx

It follows that: x'Fx = 0



Fundamental matrix

This matrix F iIs called

 the “Essential Matrix”
— when image intrinsic parameters are known

« the “Fundamental Matrix”
— more generally (uncalibrated case)

Can solve for F from point correspondences
« Each (x, x’) pair gives one linear equation in entries of F

x'Fx =0

* F has 9 entries, but really only 7 degrees of freedom.

» With 8 points it is simple to solve for F, but it is also possible
with 7. See Marc Pollefey’s notes for a nice tutorial



http://cs.unc.edu/~marc/tutorial/node53.html

VLFeat’s 800 most confident matches
among 10,000+ local features.

i /&‘J oA




RANSAC

R N
. ’

Q,’ Inliers

=14

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



Epipolar lines
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Keep only the matches at are “inliers” with
respect to the “best” fundamental matrix
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Stereo image rectification




Stereo image rectification

Reproject image planes

onto a common plane
arallel to the line
etween camera centers

Pixel motion is horizontal
after this transformation

Two homographies (3x3
transform), one for each
Input image reprojection

C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




A photon’s life choices

Absorption

Diffusion

Reflection
Transparency
Refraction
Fluorescence
Subsurface scattering
Phosphorescence
Interreflection

light source

James Hays



A photon’s life choices

* Absorption
e Diffusion
e Reflection

light source

* Transparency
e Refraction

* Fluorescence
e Subsurface scattering ———————
* Phosphorescence

* |nterreflection

James Hays



A photon’s life choices

 Diffuse Reflection

light source

Perfect diffuse
= Lambertian
= Equal 1n all directions

James Hays



A photon’s life choices

light source

e Specular Reflection

Perfect specular
= mirror reflection
= only one direction

James Hays



A photon’s life choices

light source

e Specular (Glossy) Reflection

Glossy retflection
= ‘specular lobe’
= varying across directions

James Hays



A photon’s life choices

light source

* Transparency

James Hays



A photon’s life choices

* Absorption
e Diffusion
e Reflection

light source

* Transparency
* Refraction

* Fluorescence
* Subsurface scattering - ————————
* Phosphorescence S

* |nterreflection

James Hays



A photon’s life choices

* Absorption

e Diffusion light source
e Reflection

* Transparency .

e Refraction A,

* Fluorescence . R ,

e Subsurface scattering  ———a—
* Phosphorescence
* |nterreflection

James Hays



A photon’s life choices

light source

:\ ~
~

e Subsurface scattering

James Hays



A photon’s life choices

light source

* Phosphorescence

James Hays



A photon’s life choices

light source

(Specular Interreflection)

* Interreflection

James Hays



Lambertian Reflectance

In computer vision, surfaces are often assumed
to be ideal diffuse reflectors with no
dependence on viewing direction.

This is obviously nonsense, but a useful model!

James Hays



Correspondence problem

Multiple match
° Hypothesis1 hypotheses
© Hypothesis 2 . .
satisfy epipolar
constraint, but
which is correct?

O Hypothesis 3

Right image

Figure from Gee & Cipolla 1999



Dense correspondence search

— . N Saies
’}ﬁ .
0
X * .
3 |

30
000000
-

For each epipolar line:
For each pixel / window in the left image:

« Compare with every pixel / window on same
epipolar line in right image

* Pick position with minimum match cost (e.g., SSD,
normalized correlation)

Adapted from Li Zhang



Think-Pair-Share

How can we solve this problem?

For which ‘real-world’ phenomena will this work?
For which will 1t not?



Intensity | /\ﬂ\w
profiles ‘“"ﬂ W
H

0 100 200 00 400 S00 & 100 200 300 400 500

. Clear»correSpohdence between intensitiés, but also noise and ambiguity

Source: Andrew Zisserman



Correspondence problem

=

epipolar

Neighborhoods of corresponding points are
similar in intensity patterns.

Source: Andrew Zisserman



Correlation-based window matching




Correlation-based window matching

3 .- - left image band (x)
s .- g right image band (x/)




Correlation-based window matching

right image band (x’)

Cross
correlation

disparity = x/ - x






Correlatlon based window matching

/ target region

b |i left image band (x)
| j right image band (x/)

Cross

/\ /\/\ J\ correlation
0 A I ann / Textureless regions are
/ \/J v \/ \W“ non-distinct; high

ambiguity for matches.




Effect of window size

P’

L B .-..I‘I-I -

B I L =
L5 R R

W=3 W =20

g =

i -\#-E;r_J F"' 1-"

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same dispatrity.

Figures from Li Zhang



Problem: Occlusion

- Uniqueness says “up to match” per pixel
- When is there no match?

Occluded pixels



Disparity gradient constraint

- Assume piecewise continuous surface, so want disparity
estimates to be locally smooth

Left image Right image

Epipolar
line

\ o " \ e o ?

Given matches e and o, point o in the left image

must match point 1 in the right image. Point 2
would exceed the disparity gradient limit.

Figure from Gee &
Cipolla 1999



Ordering constraint

- Points on same surface (opaque object) will be in same
order in both views

e Satisfies ordering
constraint

Left image Right image 0:

Figure from Gee &
Cipolla 1999



Ordering constraint

« Won't always hold, e.g. consider transparent object, or
an occluding surface

o Violates ordering
constraint

Left image Right image

Figures from Forsyth & Ponce



Stereo — Tsukuba test scene (now old)




Results with window search

Window-based matching ‘Ground truth’
(best window size)



Better solutions

- Beyond individual correspondences to estimate
disparities:
- Optimize correspondence assignments jointly

- Scanline at a time (DP)
- Full 2D grid (graph cuts)



Scanline stereo

Try to coherently match pixels on the entire scanline
Different scanlines are still optimized independently
Left image | Right image

i .

Intensity

| ] N
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1] 100 200 aon 400 500 0 100 200 Jon 400 500




“Shortest paths” for scan-line stereo

— Left image

_ — Right image. R

Right | AU
occlusion P v

4/ one-to-one il
N\ T\ .

r Right
\:1 occlusion

B )

e
k2

| eft
occlusion ¢«

p

Le
occlusion

S

[
»

right

Can be implemented with dynamic programming
Ohta & Kanade ’85, Cox et al. 96, Intille & Bobick, ‘01

Slide credit: Y. Boykov



Coherent stereo on 2D grid
- Scanline stereo generates streaking artifacts

- Can’t use dynamic programming to find spatially
coherent disparities/ correspondences on a 2D grid



Stereo as energy minimization

F=S" HON. ABRAIIAM LINCOLN, President of United States.

What defines a good stereo correspondence?

Match quality
Want each pixel to find a good match in the other image

Smoothness

If two pixels are adjacent, they should (usually) move about
the same amount



E = Edata(ll’ |2’ D) +ﬂEsmooth(D)

Ep = > (W, (1) =W, (i +D(0)))’| |Esmon = 2, 2(D()~D(j))

i neighbors 1, j

Energy functions of this form can be minimized using graph cuts.

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Enerqy
Minimization via Graph Cuts, PAMI 2001

Source: Steve Seijtz


http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Better results. ..

Graph cut method Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/



http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/

Challenges

- Low-contrast ‘textureless’ image regions
- Occlusions

- Violations of brightness constancy
- Specular reflections

- Really large baselines
- Foreshortening and appearance change

- Camera calibration errors



SIFT + Fundamental Matrix + RANSAC + Sparse correspondence

Photo Tourism

Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006



SIFT + Fundamental Matrix + RANSAC + dense correspondence

Despite their scale invariance and robustness to appear-
ance changes, SIFT features are /ocal and do not contain
any global information about the image or about the loca-
tion of other features in the image. Thus feature matching
based on SIFT features is still prone to errors. However,
since we assume that we are dealing with rigid scenes,
there are strong geometric constraints on the locations of
the matching features and these constraints can be used to
clean up the matches. In particular, when a rigid scene is
imaged by two pinhole cameras, there exists a 3 x 3 matrix
F, the Fundamental matrix, such that corresponding points
x; and x, (represented in homogeneous coordinates) in two
images j and k satisfy':

T, _
X, Fx; =0. (3)

A common way to impose this constraint is to use a greedy
randomized algorithm to generate suitably chosen ran-
dom estimates of F and choose the one that has the larg-
est support among the matches, i.e., the one for which the
most matches satisfy (3). This algorithm is called Random
Sample Consensus (RANSAC)® and is used in many com-
puter vision problems.

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski 2009
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



SIFT + Fundamental Matrix + RANSAC + dense correspondence

Input images StM points MVS points

Colosseum

St. Peter'’s

Building Rome in a Day
By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



SIFT + Fundamental Matrix + RANSAC + dense correspondence

The Visual Turing Test for Scene Reconstruction
Supplementary Video

Qi Shan” Riley Adams™  Brian Curless’
Yasutaka Furukawa* Steve Seitz™

+University of Washington *Google

3DV 2013



