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Dimensionality

Reduction Machine (3D to 2D)

3D worlo

; \

2D image
O

-) 2]

Point of observation

Lengths are lost...

=

...and so area is lost.

Angle preservation is lost...
...S0 parallel/perpendicular lines are lost.

How can we recover scene geometry to measure the world?

Figures © Stephen E. Palmer, 2002



Slide Credit: Savarese

Camera (projection) matrix
R,t

X .
/ X: Image Coordinates: (u,v,1)
X = K[R t] X K: Intrinsic Matrix (3x3)
R: Rotation (3x3)

\ V } t. Translation (3x1)
X: World Coordinates: (X,Y,Z,1)
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James Hays

Calibrating the Camera

Use an scene with known geometry
— Correspond image points to 3d points
— Get least squares solution (or non-linear solution)

Known 2d Known 3d
image coords  world locations

R

_ | X
m, m, m; my, Y
SVII=[My My My My, 7
S| My My Mgy Mg, 1

g

Unknown Camera Parameters




Can we factorize M backto K[R | T]?

* Yes!

* We can directly solve for the individual entries
of K[R | T].

James Hays



a, = nth

oo a  EXtracting camera parameters

/;a'rl — o cot 91’2 + uorg at, acot 0t, + uot., \

M - ,r;zl“ + v(_,'rg t + vyt = K[R T]
P

sin ¢ sin @ 7

-----------------------------------------------------------------------------------------------------------------------

o B

o —ocoth uo]

K- sinf Vo
A b o W
Box 1 . .
S 5 Intrinsic
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lT b bl p=il u, =p (al 33)
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cosh =13 2”3
Estimated values ‘al X 33‘ . ‘az X 33‘

James Hays



Extracting camera parameters

--------------------------------------------------------------------------

(EarlT — afcoté'r‘2 + uorg _;at — acot 0t, + ugt, \
: 8 : :
M = Ty + voTy —t,+ut, | = K[R T]
— sin ¢ 81119 :
p \ r?; t:-: )
.................................................................. Intrinsic
T -
A b
: : 2 .
A=|a,| b=|b,| : o = p’la, xa;|sin®
a b .
: 3 B =p’la,xa,|sin6
Estimated values

James Hays



Extracting camera parameters

------------------------------------------------------------------------------------------------------------------------

(;a'rl — « cot 91“2 + u(_,r3 Egat — acot 0t + ugt, \

: B | | iE 6 :
M — ,, 'r%—‘ -1 U()rg t - ’Uot = K[R T]
— sin ¢ sin @ 7
P\ 3 L, )
- E Extrinsic
A =lal — 1 r,=-—"
A az b bz |a Xa ‘ ‘33‘
: T :
. a3 b3 :
é................................................................g r — lo X lo _ _l

Estimated values 2 3 L T= p K™'b

James Hays



Can we factorize M backto K[R | T]?

Yes!
We can also use RQ factorization (not QR)
— R in RQ is not rotation matrix R; crossed names!
* R (right diagonal) is K
* Q (orthogonal basis) is R the rotation matrix.

* T, the last column of [R | T], is inv(K) * last
column of M.
— But you need to do a bit of post-processing to

make sure that the matrices are valid. See
http://ksimek.github.io/2012/08/14/decompose/

James Hays


http://ksimek.github.io/2012/08/14/decompose/

Recovering the camera center
x=K[R t]X N
This is not the camera

l ¢ center C.

o _ x| - Itis —RC, as the point
u a S U | Iy e Is rotated before t,, t,,
Y| andt, are added
Vi=|0 0 Vo|ly Iy ,
So we need
100 1fn &K 1 -R1K1m,to get C.

l My _X_/ThisistXK
Su A / So Klm,ist
/
1

Qis K x R.
So we just need -Q1t m,

Q James Hays



Estimate of camera center

1.0486 -0.3645 1.5706 -0.1490 0.2598

-1.6851 -0.4004 ~ss -1.5282 0.9695 0.3802
-0.9437 -0.4200 o -0.6821 1.2856 0.4078
1.0682 0.0699 0.4124 -1.0201 -0.0915
0.6077 -0.0771 1.2095 0.2812 -0.1280 1
1.2543 -0.6454 0.8819 -0.8481 0.5255
-0.2709 0.8635 -0.9442 -1.1583 -0.3759
-0.4571 -0.3645 0.0415 1.3445 0.3240
-0.7902 0.0307 -0.7975 0.3017 -0.0826
0.7318 0.6382 -0.4329 -1.4151 -0.2774
-1.0580 0.3312 -1.1475 -0.0772 -0.2667
0.3464 0.3377 -0.5149 -1.1784 -0.1401
0.3137 0.1189 0.1993 -0.2854 -0.2114
-0.4310 0.0242 -0.4320 0.2143 -0.1053
-0.4799 0.2920 -0.7481 -0.3840 -0.2408
0.6109 0.0830 0.8078 -0.1196 -0.2631
-0.4081 0.2920 -0.7605 -0.5792 -0.1936
-0.1109 -0.2992 0.3237 0.7970 0.2170
0.5129 -0.0575 1.3089 0.5786 -0.1887

0.1406 -0.4527 1.2323 1.4421 0.4506



Great! So now | have K and Rt

Well, what is that useful for?

Goal: reconstruct depth.
So far: we have ‘calibrated” one camera.
Or, potentially two... - T —




Think-Pair-Share

What visual or physiological cues help us to
perceive 3D shape and depth?



Shading

[Figure from Prados & Faugeras 2006]



s/defocus

Focu

Images from
same point of
view, different
camera
parameters

3d shape / depth
estimates

[figs from H. Jin and P. Favaro, 2002]



Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]



http://www.csse.uwa.edu.au/~angie/thesis.pdf

Perspective effects

[ NATIONALGEOGRAPHIC © 2003 National Geographic Society. All rights reserved

Image credit: S. Seitz



Figures from L. Zhan http://www.brainconnection.com/teasers/?main=illusion/motion-shape
g g P



Occlusion

Rene Magritt'e famous painting Le Blanc-Seing (literal translation: "The Blank Signature™) roughly translates as "free hand" or "free rein"



Stereo
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Slides: James Hays and Kristen Grauman



www.MzePhotos.com

If stereo were critical for depth
perception, navigation, recognition, etc.,
then rabbits would never have evolved.






Devin Montes



Human stereopsis

Human eyes fixate on point in space — rotate so that
corresponding images form in centers of fovea.

&

From Bruce and Green, Visual Perception,
Physiology, Psychology and Ecology




Human stereopsis: disparity

FIGURE 7.3

AB
Vi
P Disparity occurs when
. // / eyes fixate on one object;
ﬁ\ others appear at different
1o / visual angles.

Disparity is distance from
bl to b2 along retina.

From Bruce and Green, Visual Perception,
Physiology, Psychology and Ecology

Adapted from David Forsyth, UC Berkeley



Yes, you can be stereoblind.




Random dot stereograms

e Julesz 1960:

Do we identify local brightness patterns before
fusion (monocular process) or after (binocular)?

* Think Pair Share —vyes / no? how to test?



Random dot stereograms

e Julesz 1960:

Do we identify local brightness patterns before
fusion (monocular process) or after (binocular)?

e To test: pair of synthetic images obtained by
randomly spraying black dots on white objects



Random dot stereograms

Forsyth & Ponce



Random dot stereograms




1. Create an image of suitable size.

Fill it with random dots. Duplicate the image.
T e '

= T
Ak

CC BY-SA 3.0, https://en.wikipedia.org/wiki/Random_dot_stereogram



CC BY-SA 3.0, https://en.wikipedia.org/wiki/Random_dot_stereogram



Random dot stereograms

* When viewed monocularly, they appear random;
when viewed stereoscopically, see 3d structure.

* Human binocular fusion not directly associated with
the physical retinas; must involve the central nervous
system (V2, for instance).

* Imaginary “cyclopean retina” that combines the left
and right image stimuli as a single unit.

* High level scene understanding not required for
stereo...but, high level scene understanding is
arguably better than stereo.



Autostereograms — ‘Magic Eye’

Images from magiceye.com

Exploit disparity as
depth cue using single
Image.

(Single image random
dot stereogram, Single
Image stereogram)



Autostereograms

Images from magiceye.com



Left eye image Right eye image

Stereo attention is weird wrt. mind’s eye
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[Li Zhaoping, Understanding Vision]



Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly
different viewpoints and display so that each eye sees
only one of the images.




Anaglyph stereo

€ Copyright 2001 Johnson-Shaw Stereoscopic Museum

http://www.johnsonshawmuseum.org
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€ Copyright 2001 Johnson-Shaw Stereoscopic Museum

http://www.johnsonshawmuseum.org



Wiggle images

http://www.well.com/~jimg/stereo/stereo _list.html









Frederick Kingdon



Frederick Kingdon



Photo: Georges Jansoon. lllusion: Frederick Kingdom, Ali Yoonessi and Elena



Frederick Kingdom



Stereo vision

e

Two cameras, simultaneous Single moving camera and
VIEWS static scene



Why multiple views?

Structure and depth can be ambiguous from single views...

Images from Lana Lazebnik



Why multiple views?

Points at different depths along a line project to a single point

P1
P2

2

D

Optical center



Multiple views

SLAM

S 1M fenems
/m__tuzb [ocakzatir

Rt
— Stereo vision

— Structure from motion
—~Optical flow




Multi-view geometry problems

« Camera ‘Motion’: Given a set of corresponding 2D/3D
points in two or more images, compute the camera

parameters.
O O
\ .
A

P -

Camera 1

Camera 3

C 2
Rl’tl ? aanZe’;:az ? R3’t3 ? Slide credit:

Noah Snavely



Multi-view geometry problems

« Stereo correspondence: Given known camera
parameters and a point in one of the images, where could
Its corresponding points be in the other images?

-

/
, o O
/ O
\/l\
H
/
/
/ O
J @)
Y
y
Camera 1
R. t Camera 2 Camera 3
1'%1 R21t2 R3,t3 Slide credit;

Noah Snavely



Multi-view geometry problems

« Structure from Motion: Given projections of the same 3D
point in two or more images, compute the 3D coordinates

of that point

Camera 1

Ryt ?

Camera 2

Rot, ©

\ Camera 3

\ R3’t3 ? Slide credit:

Noah Snavely



Multi-view geometry problems

« Optical flow: Given two images, find the location of a world
point in a second close-by image with no camera info.

/
/4
Camera 1 A O O

Camera 2



Multiple views - Dogception




Estimating depth with stereo

« Stereo: shape from “motion” between two views

« We'll need to consider: _ phwic K
* Info on camera pose (“calibration”) 7) relahve o sIGS
* Image point correspondences

scene point

SN

.

< image|plane
2 ‘®
opticax /

center

James Hays



Geometry for a simple stereo system

 Assume:
— parallel optical axes,

— known camera parameters
(i.e., calibrated cameras):

« Goal: recover depth of X
by finding image coordinate \

X that corresponds to x




Image point

(left)
\

opﬂcaL//ﬂ
center

(left)

baseline T

Image poin
(right)

S

optical
() “\center
™ (right)

http//www.cse.psu.edu/~zyin/Demo/Stereo%20geometry. jpg




Geometry for a simple stereo system

« Assume parallel optical axes, known camera parameters
(i.e., calibrated cameras). What is expression for Z?

Similar triangles (p,, P, p,) and
(O, P, O)):

T+x-x T

L — 1 VA

=1 !

disparity




Depth from disparity

image I(x,y) Disparity map D(x,y) image I'(x",y’)

(XY )=(x+D(X,y), ¥)

If we could find the corresponding points in two images, we
could estimate relative depth...

James Hays



Depth from disparity

e Goal: recover depth by finding image coordinate x’ that
corresponds to x
* Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if
not already known)?

2. Correspondence: How do we search for the matching point x’?

X




What do we need to know?

1. Calibration for the two cameras.
1. Intrinsic matrices for both cameras (e.g., f)
2. Baseline distance T in parallel camera case

3. R, tin non-parallel case

2. Correspondence for every pixel.
Like project 2, but project 2 is “sparse”.
We need “dense” correspondence!



Correspondence for every pixel.
Where do we need to search?




Wouldn’t it be nice to know
where matches can live?

Epipolar geometry
Constrains 2D search to 1D



Key idea: Epipolar constraint

\E

~
_ \\

\_

L
e
@)
_/ .
Potential matches ?(ﬁ W%VE to Potential matches for x have to

lie on the corresponding line |. lie on the corresponding line /’.



Epipolar geometry: notation

X

4

n e e@

O

» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline (1D family)



Epipolar geometry: notation

X

4

: Dr e

O

» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline (1D family)

» Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)




® — camera center

Think Pair Share

Where are the epipoles?
What do the epipolar lines look like?

a) K/X\f b) \X'g
.\




Example: Converging cameras




Example: Motion parallel to image plane




Example: Forward motion

e

Epipole has same coordinates in both
images.

Points move along lines radiating from e:
“Focus of expansion”




What is this useful for?

X

Reduce search space for stereo disparity estimation.

* Help find x”: If | know x, and have calibrated cameras (known
intrinsics K,K’ and extrinsic relationship), | can restrict x” to be
along /.



Epipolar lines

T
Vil = 'ﬂgimm

M i

i
b




What is this useful for?

If we have enough x, x” correspondences, we can
estimate relative position and orientation between

the cameras and the 3D position of corresponding
image points -> estimate E.



What is this useful for?

Camera model ‘sanity check’:

* See if candidate x, x” correspondences fit
estimated projection models of cameras 1 and 2.



VLFeat’s 800 most confident matches
among 10,000+ local features.

i 4 v




Keep only the matches at are “inliers” with
respect to the “best” fundamental matrix




Epipolar constraint: Calibrated case

X

y J N\ Intrinsics K’

o >
Intrinsics K
A — A _1
X:K:LXZX\ X'=K'"™x'= X'
Homogeneous 2d point '\ 3D scene point T
(3D ray towards X) 2D pixel coordinate 30 scene point in 21
(homogeneous)

camera’s 3D coordinates



Epipolar constraint: Calibrated case

X

Intrinsics K’

0
Intrinsics K <

A — A -1

R=K* x=X X=K'*'x'=X"

: 3D scene point
Homogeneous 2d point \ Po! T
(3D ray towards X) 2D pixel coordinate 3D scene point in 2
(homogeneous)

camera’s 3D coordinates
R-[tx(RXN]=0

(because X, Rx’, and t are co-planar)



Essential matrix

L e el

o o’

Rtx(Rx)]=0 mm) K'EX'=0 with E=[t]R

E is a 3x3 matrix which relates

corresponding pairs of normalized Essential Matrix
homogeneous image points across pairs of (Longuet-Higgins, 1981)
iImages — for intrinsic K calibrated cameras.

Estimates relative position/orientation.  ote: [1], is matrix representation of cross product



Epipolar constraint: Uncalibrated case

If we don’t know intrinsics K and K’, then we
can write the epipolar constraint in terms of
unknown normalized coordinates:

TER =0 x=KX, x =KX



The Fundamental Matrix

Without knowing K and K’, we can define a similar
relation using unknown normalized coordinates

ki m) x'Fx'=0 with F=K 'EK'™
Kr—l ' l

Fundamental Matrix
(Faugeras and Luong, 1992)




Properties of the Fundamental matrix

X FxX'=0 with F=K TEK'™?

« F x’=0is the epipolar line | associated with x’
 FTx =0 is the epipolar line I’ associated with x

» Fis singular (rank two): det(F)=0
« Fe’'=0 and F'e=0 (nullspaces of F =¢€’; nullspace of FT = ¢’)
 F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0



F in more detalil

* Fisa 3x3 matrix

* Rank 2 -> projection; one column is a linear
combination of the other two.

 Determined up to scale.
* 7 degrees of freedom

a b aa+ Pb
c d ac+ ,Bd where a is scalar; e.g., can normalize out.

e f ae+ff

Given x projected from X into image 1, F constrains the
projection of x” into image 2 to an epipolar line.



Estimating the Fundamental Matrix

e 8-point algorithm

— Least squares solution using SVD on equations
from 8 pairs of correspondences

— Enforce det(F)=0 constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations
X'Fx'=0

uu'fig +uv'fi; +ufiz +vu'fo; +vvfor +vfos +u'fz V' fao +f33=0

(f11]
[ / / / / / / i f12
U Uy Uy Uy Uy vy v Uy v 1 [
. . . . . . . . 13

!/ !/ !/ !/ !/ !/
| UpUy UpUn Up VpUnp UnUn VUn Up VUn 1 | fz !
—f 33-

Af =




8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations
Solve f from Af=0 using SVD

Matlab:
[U, S, V] = svd(A);
f = V(:, end);

F = reshape(f, [3 3])’;

Python Numpy:

U, S, Vh = np.linalg.svd(A)

#V = Vh.T -> note = different from MATLAB
F = Vh[-1,:]

F = np.reshape(F, (3,3))



Need to enforce singularity constraint

Fundamental matrix has rank 2 : det(F) = 0.

e W

r

J

Left : Uncorrected F — epipolar lines are not coincident.

Right: Epipolar lines from corrected F.



8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations
Solve f from Af=0 using SVD

Matlab: Python Numpy:

[U, S, V] = svd(A); U, S, Vh = np.linalg.svd(A)
f =V(:, end); F = Vh[-1,:]

F = reshape(f, [3 3])’; F = np.reshape(F, (3,3))

2. Resolve det(F) = 0 constraint using SVD

Matlab: Python Numpy:

[U, S, V] = svd(F); U, S, Vh = np.linalg.svd(F)
S(3,3) = 0; S[-1] = ©

F = U*3*V’; F =U@ np.diagflat(S) @ Vh

@ operator = matrix multiplication



Problem with eight-point algorithm

=
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N
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Problem with eight-point algorithm

250906, 36| 153269.57 921.81| 200931.10| 146766.13 738,21 272,19 1958. 81
2692, 28| 131633.03 176,27 6136, 73 302975, 59 405,71 15,27 746,79
416374, 23| §71684.30 935.47 408110.89| 554354, 92 916.90 445.10 831.81

1 191183.600 171759.40 410,27 4le435.62] 374125.90 B93.65 465.99 4158.65
45988, 86| 30401.76 57,89 298604, 57 185309, 58 352,87 gda6. 22 25,15
led7ge. 04| 546559.87 813.17 1998, 37 BEEG. 1o 9.86 z20Z.65 B7a. 14
116407.01 272775 135.89 169941, 27 39582, 21 202,77 B38. 12 19.64
135384, 58| 75411.13 195.72) 411350.03| 229127.78 B03. 79 651.28 379.45

Poor numerical conditioning

Can be fixed by rescaling the data

= =
N N

-
w

w N N
— w N
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The normalized eight-point algorithm

(Hartley, 1995)

« Center the image data at the origin, and scale it so
the mean squared distance between the origin and
the data points is 2 pixels

« Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint (for example, take SVD
of F and throw out the smallest singular value)

« Transform fundamental matrix back to original units:
If T and T’ are the normalizing transformations in the
two images, than the fundamental matrix in original
coordinatesis TTF T



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel




From epipolar geometry to camera calibration

e |If we know the calibration matrices of the two cameras, we
can estimate the essential matrix: E = KTFK’

e The essential matrix gives us the relative rotation and
translation between the cameras, or their extrinsic
parameters.

e Fundamental matrix lets us compute relationship up to scale
for cameras with unknown intrinsic calibrations.

e Estimating the fundamental matrix is a kind of “weak
calibration”



Let’s recap...

* Fundamental matrix song

* http://danielwedge.com/fmatrix/



http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/

Among all my matches, how do | know which
ones are good?



Example: solving for translation

Given matched points in {A} and {B}, estimate the translation of the object

L



Example: solving for translation




Least squares: Robustness to noise

e Least sauares fit to the red points:

-10

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B




Least squares line fitting

*Data: (X1, ¥;), ..., (X,, V) A
*Line equlatilon: yi = :nx?+ b I y=mx+b
*Find (M, b) to minimize /
- b Y0
E = Zizl(yi —mx; —b)’ .
Matlab:p = A \ vy;
Python:p = np.linalg.lstsq(A,y)[0

(Closed form solution)

Modified from S. Lazebnik



Least squares: Robustness to noise

e Least squares fit with an outlier:

0 / i
P #

-10

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B

Problem: squared error heavily penalizes outliers



Robust least squares (to deal with outliers)

General approach:
minimize Zp(ui (Xi | 9)’ G) U2 :Zin:l(yi —mx. _b)z
i

u; (i, ) — residual of it" point w.r.t. model parameters 6

p — robust function with scale parameter o

The robust function p
e Favors a configuration
with small residuals

e Constant penalty for large
residuals

15t Effect of scale
sl parameter o

2
(7

(u0) = ———
Pl o2 4+ u?

Slide from S. Savarese



Choosing the scale: Just right

=10}k

12

-14

1 1 1 1 1 1 1 1 1
-14 -12 -110 - -G -4 -2 1 2 4

The effect of the outlier is minimized



Choosing the scale: Too small

=10}k

12

_'Iq. 1 1 1 1 1 1 1 1 1

-14 -12 -110 - -G -4 -2 1 2 4

The error value is almost the same for every
point and the fit is very poor



Choosing the scale: Too large

=10}k

12

-14

.

14

1
-12

1 1 1 1 1 1 1 1 1
-110 - -G -4 -2 1 2 4 B

Behaves much the same as least squares




Robust estimation: Details

e Robust fitting is a nonlinear optimization
problem that must be solved iteratively

e Scale of robust function should be chosen
adaptively based on median residual

e Least squares solution can be used for
initialization



What if | have many outliers?

Episcopal Gaudi image pair

i /&‘J oA

VLFeat’s 800 most confident matches
among 10,000+ local features.




Example: solving for translation

Given matched points in {A} and {B}, estimate the translation of the object

L



Example: solving for translation

(t0 t)

Problem: outliers A,-B, and A.-B; which incorrectly correspond

RANSAC solution x B x A t
1. Sample a set of matching points (1 pair) IB = IA +
Solve for transformation parameters Yi Yi t

2.
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times



RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.



RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

@
@ 0“
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@



RANSAC ®

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit
to a known model.



RANSAC P

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit
to a known model.

Here, we expect to see a line, but least-
squares fitting will produce the wrong result
due to strong outlier presence.
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Algorithm:

1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC ° e
o o ®
Line fitting example O
.‘:
o ©
@ ® 0
O »
»

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (s=
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
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Line fitting example
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
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Algorithm: .

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

* Number of algorithm iterations N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g., p=0.99) (outlier ratio: e)

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose 0 so that a good point with noise is likely (e.g., prob=0.95)
within threshold

— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

How many iterations Proportion of outliers e
do | need? S 5% 10% 20% 25% 30% 40% 50%
2 2 3 S5 6 / 11 17
3 3 4 / 9 11 19 35
N = log(1- p)/log(l—(l—e)s) 4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
é 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 S 9 26 44 /8 272 1177
For P= 0.99 modified from M. Pollefeys
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VLFeat’s SIFT produces 800 most confident
matches among 10,000+ local features.




Epipolar lines
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Keep only the matches at are “inliers” with
respect to the “best” fundamental matrix
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RANSAC conclusions
Good

e Robust to outliers

* Applicable for large number of objective function parameters
(than Hough transform)

* Optimization parameters are easier to choose (than Hough
transform)

Bad

 Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting multiple fits

Common applications
e Estimating fundamental matrix (relating two views)
 Computing a homography (e.g., image stitching)



SCANLINE ALIGNMENT VIA
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Stereo image rectification




Stereo image rectification

Reproject image planes

onto a common plane
arallel to the line
etween camera centers

Pixel motion is horizontal
after this transformation

Two homographies (3x3
transform), one for each
Input image reprojection

C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




