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Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

Lengths are lost…

…and so area is lost.

Angle preservation is lost…

…so parallel/perpendicular lines are lost.

How can we recover scene geometry to measure the world?



Slide Credit: Savarese
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 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
Extrinsic Matrix



Calibrating the Camera

Use an scene with known geometry

– Correspond image points to 3d points

– Get least squares solution (or non-linear solution)
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Can we factorize M back to K [R | T]?

• Yes!

• We can directly solve for the individual entries 
of K [R | T]. 

James Hays



James Hays

an = nth 

column of A



James Hays



James Hays



Can we factorize M back to K [R | T]?

Yes!

We can also use RQ factorization (not QR)
– R in RQ is not rotation matrix R; crossed names! 

• R (right diagonal) is K

• Q (orthogonal basis) is R the rotation matrix.

• T, the last column of [R | T], is inv(K) * last 
column of M.
– But you need to do a bit of post-processing to 

make sure that the matrices are valid. See 
http://ksimek.github.io/2012/08/14/decompose/

James Hays

http://ksimek.github.io/2012/08/14/decompose/


Recovering the camera center
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This is not the camera 

center C. 

It is –RC, as the point 

is rotated before tx, ty, 

and tz are added

This is t × K

Q

So  K-1 m4 is t

So we need 

-R-1 K-1 m4 to get C.

Q is K × R. 

So we just need -Q-1 m4

James Hays
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Estimate of camera center
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Great! So now I have K and Rt

Well, what is that useful for?

Goal: reconstruct depth.

So far: we have ‘calibrated’ one camera.

Or, potentially two…



Think-Pair-Share

What visual or physiological cues help us to 

perceive 3D shape and depth?



Shading

[Figure from Prados & Faugeras 2006]



Focus/defocus

[figs from H. Jin and P. Favaro, 2002]

Images from 

same point of 

view, different 

camera 

parameters

3d shape / depth 

estimates



Texture

[From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis]

http://www.csse.uwa.edu.au/~angie/thesis.pdf


Perspective effects

Image credit: S. Seitz



Motion

Figures from L. Zhang http://www.brainconnection.com/teasers/?main=illusion/motion-shape



Occlusion

Rene Magritt'e famous painting Le Blanc-Seing (literal translation: "The Blank Signature") roughly translates as "free hand" or "free rein".



Stereo

Slides: James Hays and Kristen Grauman



If stereo were critical for depth 

perception, navigation, recognition, etc., 

then rabbits would never have evolved.





Devin Montes



Human stereopsis
Human eyes fixate on point in space – rotate so that 
corresponding images form in centers of fovea. 



Disparity occurs when 

eyes fixate on one object; 

others appear at different 

visual angles.

Disparity is distance from 

b1 to b2 along retina.

Human stereopsis: disparity



Yes, you can be stereoblind.



Random dot stereograms

• Julesz 1960: 

Do we identify local brightness patterns before 
fusion (monocular process) or after (binocular)? 

• Think Pair Share – yes / no? how to test?



Random dot stereograms

• Julesz 1960: 

Do we identify local brightness patterns before 
fusion (monocular process) or after (binocular)? 

• To test: pair of synthetic images obtained by 
randomly spraying black dots on white objects



Random dot stereograms

Forsyth & Ponce



Random dot stereograms



1. Create an image of suitable size. Fill it with random dots. Duplicate the image.

2. Select a region in one image.

CC BY-SA 3.0, https://en.wikipedia.org/wiki/Random_dot_stereogram

3. Shift this region horizontally by a small amount. The stereogram is complete.



CC BY-SA 3.0, https://en.wikipedia.org/wiki/Random_dot_stereogram



Random dot stereograms

• When viewed monocularly, they appear random; 
when viewed stereoscopically, see 3d structure.

• Human binocular fusion not directly associated with 
the physical retinas; must involve the central nervous 
system (V2, for instance).

• Imaginary “cyclopean retina”  that combines the left 
and right image stimuli as a single unit.

• High level scene understanding not required for 
stereo…but, high level scene understanding is 
arguably better than stereo.



Autostereograms – ‘Magic Eye’

Images from magiceye.com

Exploit disparity as 

depth cue using single 

image.

(Single image random 

dot stereogram, Single 

image stereogram)



Images from magiceye.com

Autostereograms



Stereo attention is weird wrt. mind’s eye

[Li Zhaoping, Understanding Vision]



Stereo photography and stereo viewers

Invented by Sir Charles Wheatstone, 1838
Image from fisher-price.com

Take two pictures of the same subject from two slightly 

different viewpoints and display so that each eye sees 

only one of the images.



Anaglyph stereo

http://www.johnsonshawmuseum.org



http://www.johnsonshawmuseum.org



Wiggle images

http://www.well.com/~jimg/stereo/stereo_list.html







Frederick Kingdom



Frederick Kingdom



Photo: Georges Jansoon. Illusion: Frederick Kingdom, Ali Yoonessi and Elena 

Gheorghiu



Frederick Kingdom



Two cameras, simultaneous 

views

Single moving camera and 

static scene

Stereo vision



Why multiple views?

Structure and depth can be ambiguous from single views...

Images from Lana Lazebnik



Why multiple views?

Points at different depths along a line project to a single point

Optical center

P1

P2

P1’=P2’



Multiple views

Hartley and Zisserman

Lowe

Stereo vision

Structure from motion

Optical flow



Multi-view geometry problems

• Camera ‘Motion’: Given a set of corresponding 2D/3D 

points in two or more images, compute the camera 

parameters.

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3? ? ? Slide credit: 

Noah Snavely



Multi-view geometry problems

• Stereo correspondence: Given known camera 

parameters and a point in one of the images, where could 

its corresponding points be in the other images?

Camera 3

R3,t3

Camera 1
Camera 2

R1,t1 R2,t2
Slide credit: 

Noah Snavely



Multi-view geometry problems

• Structure from Motion: Given projections of the same 3D 

point in two or more images, compute the 3D coordinates 

of that point

Camera 3

R3,t3 Slide credit: 

Noah Snavely

?

Camera 1
Camera 2

R1,t1 R2,t2
? ? ?



Multi-view geometry problems

• Optical flow: Given two images, find the location of a world 

point in a second close-by image with no camera info.

Camera 1

Camera 2



Multiple views - Dogception



Estimating depth with stereo

• Stereo: shape from “motion” between two views

• We’ll need to consider:

• Info on camera pose (“calibration”)

• Image point correspondences 

scene point

optical 

center

image plane

James Hays



Geometry for a simple stereo system

• Assume:

– parallel optical axes, 

– known camera parameters 

(i.e., calibrated cameras):

• Goal: recover depth of X 

by finding image coordinate 

x’ that corresponds to x

X

x

x'



baseline

optical 

center 

(left)

optical 

center 

(right)

Focal 

length

World 

point

image point 

(left)

image point 

(right)

Depth of p



• Assume parallel optical axes, known camera parameters 

(i.e., calibrated cameras).  What is expression for Z?

Similar triangles (pl, P, pr) and 

(Ol, P, Or):

Geometry for a simple stereo system

Z

T

fZ

xxT rl =
−

−+

lr xx

T
fZ

−
=

disparity



Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

If we could find the corresponding points in two images, we 

could estimate relative depth…

James Hays



Depth from disparity

• Goal: recover depth by finding image coordinate x’ that 
corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if 
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'



What do we need to know?

1. Calibration for the two cameras.

1. Intrinsic matrices for both cameras (e.g., f)

2. Baseline distance T in parallel camera case

3. R, t in non-parallel case

2. Correspondence for every pixel.

Like project 2, but project 2 is “sparse”.

We need “dense” correspondence!



Correspondence for every pixel.
Where do we need to search?



Wouldn’t it be nice to know 
where matches can live? 

Epipolar geometry
Constrains 2D search to 1D



Potential matches for x have to

lie on the corresponding line l’.

Potential matches for x’ have to 

lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X



• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’



• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers



Think Pair Share

Where are the epipoles?

What do the epipolar lines look like?

X

a)
X

b)

X

c)
X

d)

= camera center



Example: Converging cameras



Example: Motion parallel to image plane



e

e’

Example: Forward motion

Epipole has same coordinates in both 

images.

Points move along lines radiating from e: 

“Focus of expansion”



What is this useful for?

Reduce search space for stereo disparity estimation.

• Help find x’: If I know x, and have calibrated cameras (known 
intrinsics K,K’ and extrinsic relationship), I can restrict x’ to be 
along l’.

X

x x’



Epipolar lines



What is this useful for?

If we have enough x, x’ correspondences, we can 
estimate relative position and orientation between 
the cameras and the 3D position of corresponding 
image points -> estimate E.

X

x x’



What is this useful for?

Camera model ‘sanity check’: 

• See if candidate x, x’ correspondences fit 
estimated projection models of cameras 1 and 2.

X

x x’



VLFeat’s 800 most confident matches 
among 10,000+ local features.



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix



Epipolar constraint: Calibrated case

x x’

X

XxKx
1 ==
−ˆ

ො𝑥′
ො𝑥

XxKx
1

==
−ˆ

Homogeneous 2d point 

(3D ray towards X) 2D pixel coordinate 

(homogeneous)

3D scene point

3D scene point in 2nd

camera’s 3D coordinates

Intrinsics K

Intrinsics K’



Epipolar constraint: Calibrated case

x x’

X

t

XxKx
1 ==
−ˆ

0)]ˆ([ˆ = xRtx

(because ො𝑥, 𝑅 ො𝑥′, and 𝑡 are co-planar)

ො𝑥′
ො𝑥

XxKx
1

==
−ˆ

Homogeneous 2d point 

(3D ray towards X) 2D pixel coordinate 

(homogeneous)

3D scene point

3D scene point in 2nd

camera’s 3D coordinates

Intrinsics K

Intrinsics K’



Essential Matrix

(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ = xRtx   RtExEx
T

== with0ˆˆ

X

x x’

E is a 3x3 matrix which relates 

corresponding pairs of normalized 

homogeneous image points across pairs of 

images – for intrinsic K calibrated cameras.

Estimates relative position/orientation. Note: [t]× is matrix representation of cross product 



Epipolar constraint: Uncalibrated case

If we don’t know intrinsics K and K’, then we 
can write the epipolar constraint in terms of 
unknown normalized coordinates:

X

x x’

0ˆˆ =xEx
T xKxxKx == ˆ,ˆ



The Fundamental Matrix

Fundamental Matrix

(Faugeras and Luong, 1992)

0ˆˆ =xEx
T

1
with0

−− == KEKFxFx
TT

Without knowing K and K’, we can define a similar 

relation using unknown normalized coordinates

xKx
1−

=ˆ

xKx
1 =

−ˆ



Properties of the Fundamental matrix

1
with0

−− == KEKFxFx
TT

• F x’ = 0 is the epipolar line l associated with x’ 

• FTx = 0 is the epipolar line l’ associated with x 

• F is singular (rank two): det(F)=0

• F e’ = 0   and   FTe = 0   (nullspaces of F = e’; nullspace of FT = e’)

• F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

X

x x’



F in more detail

• F is a 3x3 matrix
• Rank 2 -> projection; one column is a linear 

combination of the other two.
• Determined up to scale.
• 7 degrees of freedom

𝑎 𝑏 𝛼𝑎 + 𝛽𝑏
𝑐 𝑑 𝛼𝑐 + 𝛽𝑑
𝑒 𝑓 𝛼𝑒 + 𝛽𝑓

where a is scalar; e.g., can normalize out.

Given x projected from X into image 1, F constrains the 
projection of x’ into image 2 to an epipolar line.



Estimating the Fundamental Matrix

• 8-point algorithm

– Least squares solution using SVD on equations 
from 8 pairs of correspondences

– Enforce det(F)=0 constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

0=xx F
T

𝑢𝑢′𝑓11 + 𝑢𝑣′𝑓12 + 𝑢𝑓13 + 𝑣𝑢′𝑓21 + 𝑣𝑣′𝑓22 + 𝑣𝑓23 + 𝑢′𝑓31 + 𝑣′𝑓32 + 𝑓33 = 0

A𝒇 =
𝑢1𝑢1′ 𝑢1𝑣1′ 𝑢1 𝑣1𝑢1′ 𝑣1𝑣1′ 𝑣1 𝑢1′ 𝑣1′ 1
⋮

𝑢𝑛𝑢𝑣
′

⋮
𝑢𝑛𝑣𝑛′

⋮
𝑢𝑛

⋮
𝑣𝑛𝑢𝑛′

⋮
𝑣𝑛𝑣𝑛′

⋮
𝑣𝑛

⋮
𝑢𝑛′

⋮
𝑣𝑛′

⋮
1

𝑓11
𝑓12
𝑓13
𝑓21
⋮
𝑓33

=0



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

Matlab: 
[U, S, V] = svd(A);
f = V(:, end);
F = reshape(f, [3 3])’;

Python Numpy:
U, S, Vh = np.linalg.svd(A)
# V = Vh.T -> note = different from MATLAB
F = Vh[-1,:]
F = np.reshape(F, (3,3))



Need to enforce singularity constraint



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

2. Resolve det(F) = 0 constraint using SVD

Matlab: 
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Matlab: 
[U, S, V] = svd(F);

S(3,3) = 0;

F = U*S*V’;

Python Numpy:
U, S, Vh = np.linalg.svd(F)
S[-1] = 0
F = U @ np.diagflat(S) @ Vh

Python Numpy:
U, S, Vh = np.linalg.svd(A)
F = Vh[-1,:]
F = np.reshape(F, (3,3))

@ operator = matrix multiplication



Problem with eight-point algorithm
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Problem with eight-point algorithm

Poor numerical conditioning

Can be fixed by rescaling the data



The normalized eight-point algorithm

• Center the image data at the origin, and scale it so 

the mean squared distance between the origin and 

the data points is 2 pixels

• Use the eight-point algorithm to compute F from the 

normalized points

• Enforce the rank-2 constraint (for example, take SVD 

of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: 

if T and T’ are the normalizing transformations in the 

two images, than the fundamental matrix in original 

coordinates is T’T F T

(Hartley, 1995)



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



From epipolar geometry to camera calibration

• If we know the calibration matrices of the two cameras, we 
can estimate the essential matrix: E = KTFK’

• The essential matrix gives us the relative rotation and 
translation between the cameras, or their extrinsic 
parameters.

• Fundamental matrix lets us compute relationship up to scale 
for cameras with unknown intrinsic calibrations.

• Estimating the fundamental matrix is a kind of “weak 
calibration”



Let’s recap…

• Fundamental matrix song

• http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/


Among all my matches, how do I know which 
ones are good?



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3
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Problem: outliers A4-B4 and A5-B5 which incorrectly correspond

A4

A5

B5

B4



Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 

 =
−−=

n

i ii bxmyE
1

2
)(

(xi, yi)

y=mx+b

Matlab: p = A \ y;
Python: p = np.linalg.lstsq(A,y)[0]

Modified from S. Lazebnik

(Closed form solution)



Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters ϴ
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The robust function ρ
• Favors a configuration 

with small residuals

• Constant penalty for large 

residuals
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Slide from S. Savarese

ρ – robust function with scale parameter σ

Effect of scale 

parameter σ



Choosing the scale: Just right

The effect of the outlier is minimized



The error value is almost the same for every

point and the fit is very poor

Choosing the scale: Too small



Choosing the scale: Too large

Behaves much the same as least squares



Robust estimation: Details

• Robust fitting is a nonlinear optimization 
problem that must be solved iteratively

• Scale of robust function should be chosen 
adaptively based on median residual 

• Least squares solution can be used for 
initialization



VLFeat’s 800 most confident matches 
among 10,000+ local features.

What if I have many outliers?

Episcopal Gaudi image pair



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution
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1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers A4-B4 and A5-B5 which incorrectly correspond

A4

A5

B5

B4



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit 

to a known model.



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit 

to a known model.

Here, we expect to see a line, but least-

squares fitting will produce the wrong result 

due to strong outlier presence.



RANSAC

Algorithm:

1. Sample (randomly) the number of points s required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6=InliersN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14=InliersN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of algorithm iterations N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g., p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) 

within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

( ) ( )( )s
epN −−−= 11log/1log

Proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys
For p = 0.99

How many iterations 

do I need?



VLFeat’s SIFT produces 800 most confident 
matches among 10,000+ local features.



Epipolar lines



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix



RANSAC conclusions

Good
• Robust to outliers
• Applicable for large number of objective function parameters 

(than Hough transform)
• Optimization parameters are easier to choose (than Hough 

transform)

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Estimating fundamental matrix (relating two views)
• Computing a homography (e.g., image stitching)



SCANLINE ALIGNMENT VIA
RECTIFICATION

Found F – now what?



Stereo image rectification



Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

➢ C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example


