


Cats + mirrors + face filters

[reddit – juicysox]



[Isa Milefchik (1430 HTA Spring 2020)]



[Madelyn Adams (student Spring 2019)]



Zoom protocol

Please:

• Cameras on (it really helps me to see you)

• Real names

• Mics muted

• Raise hands in Zoom for questions, 
unmute when I call

• I will ask more often for questions



Project 4 – due Friday

• Both parts

– Written

– Code



Project 5

• Questions and code due
Friday April 10th



Final group project

• Groups of four

• Groups of one are discouraged – you need a 
good reason.

• Group by timezone where possible; use Piazza

• We’ll go over possible projects at a later date



Questions

• What else did I miss?



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



What is a camera?





Camera obscura: dark room

Known during classical period in China and Greece 
(e.g.,  Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

James Hays



James, San Francisco, Aug. 2017



Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

drawingchamber.wordpress.com

Camera lucida



Tim’s Vermeer

Vermeer, The Music Lesson, 1665 Tim Jenison (Lightwave 3D, Video Toaster)



Tim’s Vermeer – video still



First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes



Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image







Holbein’s The Ambassadors - 1533



Holbein’s The Ambassadors – Memento Mori



2D IMAGE TRANSFORMS



Parametric (global) transformations

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– T is the same for any point p
T can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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Common transformations

Translation Rotation Scaling

Affine Perspective

Original

Transformed

Slide credit (next few slides): 

A. Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its 

components by a scalar

• Uniform scaling means this scalar is the same for all 
components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

x

y



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

( ) ( )

( ) ( ) 














 −
=









y

x

y

x





cossin

sincos

'

'

T
RR =

−1

R



Basic 2D transformations

TranslateRotate

ShearScale
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Affine

Affine is any combination of 

translation, scale, rotation, and shear



Affine Transformations

Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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2D image transformations (reference table)

Szeliski 2.1

‘Homography’



Projective Transformations
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• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 degrees of freedom)



Cameras and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera 

rotation wrt. world?

James Hays





Let’s design a camera

Idea 1:  Put a sensor in front of an object

Do we get a reasonable image?

Slide source: Seitz

sensor



Let’s design a camera

Idea 2: Add a barrier to block most rays
– Pinhole in barrier

– Only sense light from one direction.
• Reduces blurring.

– In most cameras, this aperture can vary in size.

Slide source: Seitz

sensor



Pinhole camera model

Figure from Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real 

object



Projection: world coordinates→image coordinates

Camera 

Center 

(0, 0, 0)
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Projective Geometry

Length (and so area) is lost.

Which is closer?

Who is taller?



Length and area are not preserved

Figure by David Forsyth

B’

C’

A’



Projective Geometry

Perpendicular?

Parallel?

Angles are lost.



Projective Geometry

What is preserved?

• Straight lines are still straight.



Vanishing points and lines

Parallel lines in the world intersect in 
the projected image at a 
“vanishing point”.

Parallel lines on the same plane in 
the world converge to vanishing 
points on a “vanishing line”.

E.G., the horizon.

Vanishing Point Vanishing Point

Vanishing Line



Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi



Pinhole camera model

Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real 

object



Projection: world coordinates→image coordinates

Camera 

Center 

(0, 0, 0)
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Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Idea from www.tomdalling.com

Y

X

Projector



Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Y

X

Projector W

Idea from www.tomdalling.com



Varying w

w1 w2 < w1

Projected image becomes smaller.

Y

X

Projector

Y

X

Projector



Projective geometry

• 2D point in projective = (x,y,w) coordinates

– w defines the scale of the projected image.

– Each x,y point becomes a ray!

Y

X

Projector W



Projective geometry

• In 3D, point (x,y,z) becomes (x,y,z,w)

• Perspective is w varying with z:

– Objects far away are appear smaller

B’

C’



Homogeneous coordinates

Converting to homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates

Converting from homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates



Homogeneous coordinates

Scale invariance in projection space
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E.G., we can uniformly scale the projective space, and it will still 

produce the same image -> scale ambiguity



Homogeneous coordinates

• Projective

• Point becomes a line

Song Ho Ahn

To homogeneous

From homogeneous



Lenses
Real cameras aren’t pinhole cameras.



Home-made pinhole camera 

http://www.debevec.org/Pinhole/

Why so

blurry?

http://www.debevec.org/Pinhole/35mm-pinhole-camera.jpg
http://www.debevec.org/Pinhole/


Shrinking the aperture

Less light gets through

[Steve Seitz]

Integrate over fewer angles



Shrinking the aperture

Why not make the aperture as small as possible?
• Less light gets through

• Diffraction effects…

Less light gets through

[Steve Seitz]



Shrinking the aperture - diffraction

Light diffracts as wavelength of aperture equals wavelength of light



The reason for lenses

Slide by Steve Seitz



Let’s design a camera

Idea 2: Add a barrier to block most rays
• Pinhole in barrier

• Only sense light from one direction.

– Reduces blurring.

• In most cameras, this aperture can vary in size.

Slide source: Seitz

sensorworld barrier



Focus and Defocus

A lens focuses light onto the film
• There is a specific distance at which objects are “in focus”

– other points project to a “circle of confusion” in 

the image

• Changing the shape of the lens changes this distance

“circle of 

confusion” 

or coma

Slide by Steve Seitz

sensorworld lens



Thin lenses

Thin lens equation:

Any object point satisfying this equation is in focus

What is the shape of the focus region?

How can we change the focus region?

Thin lens applet: https://sites.google.com/site/marclevoylectures/applets/operation-of-a-thin-lens
(by Andrew Adams, Nora Willett, Marc Levoy)

Slide by Steve Seitz
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https://sites.google.com/site/marclevoylectures/applets/operation-of-a-thin-lens


Beyond Pinholes: Real apertures

Bokeh:

[Rushif – Wikipedia]



Depth Of Field



Depth of Field



Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm



Changing the aperture size affects depth of field

A narrower aperture increases the range in 

which the object is approximately in focus.

Narrower aperture reduces amount of light –

need to increase exposure.

Wide aperture

Narrow 

aperture

Depth of field

Depth of field



Varying the aperture 

Large aperture  = small DOF Small aperture = large DOF



Accidental Cameras

Accidental Pinhole and Pinspeck Cameras 
Revealing the scene outside the picture. 

Antonio Torralba, William T. Freeman



Accidental Cameras

James Hays



DSLR – Digital Single Lens Reflex Camera



DSLR – Digital Single Lens Reflex Camera

Your 

eye

The 

world

1. Objective (main) lens

2. Mirror

3. Shutter

4. Sensor

5. Mirror in raised position

6. Viewfinder focusing lens

7. Prism

8. Eye prescription lens

“See what the main lens sees”



Shutters

[The Slo-Mo Guys]



Shutters

[The Slo-Mo Guys]



Shutters

[The Slo-Mo Guys]



Sensors: Rolling shutter vs. global shutter

Many modern cameras have purely digital shutters.

[Reddit – r/educationalgifs – u/Mass1m01973]



Sensor ISO

ISO = old film terminology

= sensitivity to light

ISO 200 is twice as sensitive as ISO 100.

Digital Photography:

ISO = ‘gain’ or amplification of sensor signal



[Don Pettit]



[Don Pettit]



Field of View (Zoom)



Field of View (Zoom)



Field of View (Zoom) = Cropping



f

FOV depends of Focal Length

Smaller FOV = larger Focal Length

f



From Zisserman & Hartley



Field of View / Focal Length

Large FOV, small f

Camera close to car

Small FOV, large f

Camera far from the car



Lens Flaws



Lens Flaws: Chromatic Aberration

• Dispersion: wavelength-dependent refractive index
– (enables prism to spread white light beam into rainbow)

• Modifies ray-bending and lens focal length: f()

Color fringes near edges of image

Corrections: add ‘doublet’ lens of flint glass, etc.



Chromatic Aberration 

Near Lens Center Near Lens Outer Edge



Radial Distortion  (e.g. ‘barrel’ and ‘pin-cushion’)

Straight lines curve around the image center 



Radial Distortion

• Radial distortion of the image
– Caused by imperfect lenses
– Deviations are most noticeable for 

rays that pass through the edge of 
the lens

No distortion Pin cushion Barrel

Corrected Barrel Distortion

Image from Martin Habbecke



Vignetting

Optical system occludes rays 
entering at obtuse angles.

Causes darkening at edges.

‘Old mode’ - but WHY?

Computer-aided lens design 
(optimization) and 

manufacturing made 
removing (all) these flaws 

_much_ easier.



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



Slide Credit: Savarese

Camera (projection) matrix

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
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Extrinsic Matrix
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Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x
(0,0,0)



Projection: world coordinates→image coordinates

Camera 

Center 

(0, 0, 0)
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Remove assumption: known optical center
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Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays

K



Remove assumption: equal aspect ratio
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Remove assumption: non-skewed pixels
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• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters James Hays



Oriented and Translated Camera
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James Hays



Allow camera translation

 XtIKx =
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James Hays



3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:
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Slide Credit: Saverese
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Allow camera rotation

 XtRKx =
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Slide Credit: Savarese

Camera (projection) matrix

Ow

iw

kw

jw
R,t

X

x



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

vf

usf

v

u

w

z

y

x

y

x

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3) 

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
Extrinsic Matrix



Demo – Kyle Simek

“Dissecting the Camera Matrix”

Three-part blog series

• http://ksimek.github.io/2012/08/14/decompose/

• http://ksimek.github.io/2012/08/22/extrinsic/

• http://ksimek.github.io/2013/08/13/intrinsic/

“Perspective toy”

• http://ksimek.github.io/perspective_camera_toy.html

http://ksimek.github.io/2012/08/14/decompose/
http://ksimek.github.io/2012/08/22/extrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/perspective_camera_toy.html


Orthographic Projection

• Special case of perspective projection

– Distance from the COP to the image plane is infinite

– Also called “parallel projection”

– What’s the projection matrix?

Image World

Slide by Steve Seitz
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Things to remember

Projection loses length, 
area, angle, but straight 
lines remain straight.

Pinhole camera model 
and camera projection 
matrix.

Homogeneous 
coordinates.

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

 XtRKx =

James Hays



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116



[Grad TA Eleanor Tursman’s dog – Blueberry]





How to calibrate the camera?
(also called “camera resectioning”)
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 XtRKx =

James Hays

𝐱 = 𝐌𝐗

Linear least-squares regression!



Simple example: Fitting a line



Least squares fitting – line model
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 
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Matlab: p = A \ y;
Python: 
p = np.linalg.lstsq(A,y)[0]

Modified from S. Lazebnik
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(Closed form solution)



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares setup
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Example: discovering rot/trans/scale

A1

A2 A3

Given matched points in {A} and {B}, estimate the transformation matrix
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Are these transformations enough?



World vs Camera coordinates

James Hays



Calibrating the Camera

Use an scene with known geometry

– Correspond image points to 3d points

– Get least squares solution (or non-linear solution)
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How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913
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309.950 311.262 29.990
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746  351
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525  234

716  308

602  187

Known 3d 

world locations

Known 2d 

image coords

James Hays



What is least squares doing?

• Given 3D point evidence, find best M which 
minimizes error between estimate (p’) and 
known corresponding 2D points (p).
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What is least squares doing?

• Best M occurs when p’ = p, or when p’ – p = 0

• Form these equations from all point evidence

• Solve for model via closed-form regression
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Two equations 

per 3D point 

correspondence

First, work out 

where X,Y,Z 

projects to under 

candidate M.
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Next, rearrange into form 

where all M coefficients are 

individually stated in terms 

of X,Y,Z,u,v.

-> Allows us to form lsq

matrix.
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• Finally, solve for m’s entries using linear least squares

• Method 1 –
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Ax=b form

MATLAB:

M = A\b;

M = [M;1];

M = reshape(M,[],3)';

Python Numpy:

M = np.linalg.lstsq(A,b)[0];

M = np.append(M,1)
M = np.reshape(M, (3,4))
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Note: Must reshape M afterwards!
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• Or, solve for m’s entries using total linear least-squares  

• Method 2 –
– Find non-trivial solution (not A=0)
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MATLAB:
[U, S, V] = svd(A);

M = V(:,end);

M = reshape(M,[],3)’;

Python Numpy:

U, S, Vh = np.linalg.svd(a)

# V = Vh.T

M = Vh[-1,:]

M = np.reshape(M, (3,4))

Ax=0 form

James Hays
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How do we calibrate a camera?
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1st point

Projection error defined by two equations – one for u and one for v

(𝑢1, 𝑣1) (𝑋1, 𝑌1, 𝑍1)
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2nd point (𝑢2, 𝑣2) (𝑋2, 𝑌2, 𝑍2)

Projection error defined by two equations – one for u and one for v



How many points do I need to fit the model?

 XtRKx =
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5 6Degrees of freedom?

Think 3: 

- Rotation around x 

- Rotation around y 

- Rotation around z



How many points do I need to fit the model?

 XtRKx =
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5 6Degrees of freedom?

M is 3x4, so 12 unknowns, but projective scale ambiguity – 11 deg. freedom.

One equation per unknown -> 5 1/2 point correspondences determines a solution 

(e.g., either u or v).

More than 5 1/2 point correspondences -> overdetermined, many solutions to M.

Least squares is finding the solution that best satisfies the overdetermined system.

Why use more than 6? Robustness to error in feature points.



Calibration with linear method

• Advantages

– Easy to formulate and solve

– Provides initialization for non-linear methods

• Disadvantages

– Doesn’t directly give you camera parameters

– Doesn’t model radial distortion

– Can’t impose constraints, such as known focal length

• Non-linear methods are preferred

– Define error as difference between projected points and measured points

– Minimize error using Newton’s method or other non-linear optimization

James Hays



Can we factorize M back to K [R | T]?

• Yes! We can directly solve for the individual 
entries of K [R | T]. 

James Hays



James Hays

an = nth 

column of A



James Hays



James Hays



Can we factorize M back to K [R | T]?

• Yes! We can also use RQ factorization (not QR)
– R in RQ is not rotation matrix R; crossed names! 

R (upper triangular or ‘Right’ triangular) is K

Q (orthogonal basis) is R

T, the last column of [R | T], is inv(K) * last 
column of M.

– But you need to do a bit of post-processing to 
make sure that the matrices are valid. See 
http://ksimek.github.io/2012/08/14/decompose/

James Hays

http://ksimek.github.io/2012/08/14/decompose/


Recovering the camera center
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This is not the camera 

center C. 

It is –RC, as the point 

is rotated before tx, ty, 

and tz are added

This is t × K

Q

So  K-1 m4 is t

So we need 

-R-1 K-1 m4 to get C.

Q is K × R. 

So we just need -Q-1 m4

James Hays

m4

t



Estimate of camera center
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Oriented and Translated Camera
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Great! So now I have K and Rt

Marker-based augmented reality.
- Define marker with known real-world geometry

- Find points on marker in image

- Estimate camera pose from corresponding 2D/3D points

- Render graphics from virtual camera with same pose



Great! So now I have K and Rt

Building block for detailed reconstruction.

Goal: reconstruct depth.

So far: we have ‘calibrated’ one camera.

Or, potentially two…



Summary

• Projections

– Rotation, translation, affine, perspective

• Cameras

– Lenses, apertures, sensors

• Pinhole camera model and camera matrix

– Intrinsic matrix

– Extrinsic matrix

• Recovering camera matrix using
least squares regression



ONE DIFFICULT EXAMPLE…



Erik Johansson – The Architect


