

Cats + mirrors + face filters

[reddit – juicysox]

[Isa Milefchik (1430 HTA Spring 2020)]

[Madelyn Adams (student Spring 2019)]

Zoom protocol

Please:

• Cameras on (it really helps me to see you)

• Real names

• Mics muted

• Raise hands in Zoom for questions,
unmute when I call

• I will ask more often for questions

Project 4 – due Friday

• Both parts

– Written

– Code

Project 5

• Questions and code due
Friday April 10th

Final group project

• Groups of four

• Groups of one are discouraged – you need a
good reason.

• Group by timezone where possible; use Piazza

• We’ll go over possible projects at a later date

Questions

• What else did I miss?

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

What is a camera?

Camera obscura: dark room

Known during classical period in China and Greece
(e.g., Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

James Hays

James, San Francisco, Aug. 2017

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

drawingchamber.wordpress.com

Camera lucida

Tim’s Vermeer

Vermeer, The Music Lesson, 1665 Tim Jenison (Lightwave 3D, Video Toaster)

Tim’s Vermeer – video still

First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

Holbein’s The Ambassadors - 1533

Holbein’s The Ambassadors – Memento Mori

2D IMAGE TRANSFORMS

Parametric (global) transformations

Transformation T is a coordinate-changing machine:
p’ = T(p)

What does it mean that T is global?
– T is the same for any point p
T can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p’ = Tp

T

p = (x,y) p’ = (x’,y’)









=









y

x

y

x
T

'

'

Common transformations

Translation Rotation Scaling

Affine Perspective

Original

Transformed

Slide credit (next few slides):

A. Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its

components by a scalar

• Uniform scaling means this scalar is the same for all
components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx

=

=

'

'

















=









y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

x

y

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

() ()

() () 














 −
=









y

x

y

x





cossin

sincos

'

'

T
RR =

−1

R

Basic 2D transformations

TranslateRotate

ShearScale

















=









y

x

y

x

y

x

1

1

'

'
























−
=









y

x

y

x

cossin

sincos

'

'

















=









y

x

s

s

y

x

y

x

0

0

'

'

























=













1
10

01
y

x

t

t

y

x

y

x

























=













1

y

x

fed

cba

y

x

Affine

Affine is any combination of

translation, scale, rotation, and shear

Affine Transformations

Affine transformations are combinations of

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

























=













1

y

x

fed

cba

y

x

































=

















11001

'

'

y

x

fed

cba

y

x

or

2D image transformations (reference table)

Szeliski 2.1

‘Homography’

Projective Transformations




























=















w

y
x

ihg

fed
cba

w

y
x

'

'
'Projective transformations are combos of

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 degrees of freedom)

Cameras and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera

rotation wrt. world?

James Hays

Let’s design a camera

Idea 1: Put a sensor in front of an object

Do we get a reasonable image?

Slide source: Seitz

sensor

Let’s design a camera

Idea 2: Add a barrier to block most rays
– Pinhole in barrier

– Only sense light from one direction.
• Reduces blurring.

– In most cameras, this aperture can vary in size.

Slide source: Seitz

sensor

Pinhole camera model

Figure from Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real

object

Projection: world coordinates→image coordinates

Camera

Center

(0, 0, 0)

















=

Z

Y

X

P.

.

. f Z Y









=

V

U
p

.
V

U

Z

f
XU *−=

Z

f
YV *−=

What is the effect if f and Z are equal?

p = distance from

image center

Image

center

(u0, v0)

Projective Geometry

Length (and so area) is lost.

Which is closer?

Who is taller?

Length and area are not preserved

Figure by David Forsyth

B’

C’

A’

Projective Geometry

Perpendicular?

Parallel?

Angles are lost.

Projective Geometry

What is preserved?

• Straight lines are still straight.

Vanishing points and lines

Parallel lines in the world intersect in
the projected image at a
“vanishing point”.

Parallel lines on the same plane in
the world converge to vanishing
points on a “vanishing line”.

E.G., the horizon.

Vanishing Point Vanishing Point

Vanishing Line

Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi

Pinhole camera model

Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real

object

Projection: world coordinates→image coordinates

Camera

Center

(0, 0, 0)

















=

Z

Y

X

P.

.

. f Z Y









=

V

U
p

.
V

U

Z

f
XU *−=

Z

f
YV *−=

What is the effect if f and Z are equal?

p = distance from

image center

Image

center

(u0, v0)

Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Idea from www.tomdalling.com

Y

X

Projector

Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Y

X

Projector W

Idea from www.tomdalling.com

Varying w

w1 w2 < w1

Projected image becomes smaller.

Y

X

Projector

Y

X

Projector

Projective geometry

• 2D point in projective = (x,y,w) coordinates

– w defines the scale of the projected image.

– Each x,y point becomes a ray!

Y

X

Projector W

Projective geometry

• In 3D, point (x,y,z) becomes (x,y,z,w)

• Perspective is w varying with z:

– Objects far away are appear smaller

B’

C’

Homogeneous coordinates

Converting to homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates

Converting from homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates

Homogeneous coordinates

Scale invariance in projection space









=


























=

















w

y

w
x

kw

ky

kw
kx

kw

ky

kx

w

y

x

k

Homogeneous
Coordinates

Cartesian
Coordinates

E.G., we can uniformly scale the projective space, and it will still

produce the same image -> scale ambiguity

Homogeneous coordinates

• Projective

• Point becomes a line

Song Ho Ahn

To homogeneous

From homogeneous

Lenses
Real cameras aren’t pinhole cameras.

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Why so

blurry?

http://www.debevec.org/Pinhole/35mm-pinhole-camera.jpg
http://www.debevec.org/Pinhole/

Shrinking the aperture

Less light gets through

[Steve Seitz]

Integrate over fewer angles

Shrinking the aperture

Why not make the aperture as small as possible?
• Less light gets through

• Diffraction effects…

Less light gets through

[Steve Seitz]

Shrinking the aperture - diffraction

Light diffracts as wavelength of aperture equals wavelength of light

The reason for lenses

Slide by Steve Seitz

Let’s design a camera

Idea 2: Add a barrier to block most rays
• Pinhole in barrier

• Only sense light from one direction.

– Reduces blurring.

• In most cameras, this aperture can vary in size.

Slide source: Seitz

sensorworld barrier

Focus and Defocus

A lens focuses light onto the film
• There is a specific distance at which objects are “in focus”

– other points project to a “circle of confusion” in

the image

• Changing the shape of the lens changes this distance

“circle of

confusion”

or coma

Slide by Steve Seitz

sensorworld lens

Thin lenses

Thin lens equation:

Any object point satisfying this equation is in focus

What is the shape of the focus region?

How can we change the focus region?

Thin lens applet: https://sites.google.com/site/marclevoylectures/applets/operation-of-a-thin-lens
(by Andrew Adams, Nora Willett, Marc Levoy)

Slide by Steve Seitz

1

𝑓
−

1

𝑑𝑜
=

1

𝑑𝑖

https://sites.google.com/site/marclevoylectures/applets/operation-of-a-thin-lens

Beyond Pinholes: Real apertures

Bokeh:

[Rushif – Wikipedia]

Depth Of Field

Depth of Field

Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Changing the aperture size affects depth of field

A narrower aperture increases the range in

which the object is approximately in focus.

Narrower aperture reduces amount of light –

need to increase exposure.

Wide aperture

Narrow

aperture

Depth of field

Depth of field

Varying the aperture

Large aperture = small DOF Small aperture = large DOF

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture.

Antonio Torralba, William T. Freeman

Accidental Cameras

James Hays

DSLR – Digital Single Lens Reflex Camera

DSLR – Digital Single Lens Reflex Camera

Your

eye

The

world

1. Objective (main) lens

2. Mirror

3. Shutter

4. Sensor

5. Mirror in raised position

6. Viewfinder focusing lens

7. Prism

8. Eye prescription lens

“See what the main lens sees”

Shutters

[The Slo-Mo Guys]

Shutters

[The Slo-Mo Guys]

Shutters

[The Slo-Mo Guys]

Sensors: Rolling shutter vs. global shutter

Many modern cameras have purely digital shutters.

[Reddit – r/educationalgifs – u/Mass1m01973]

Sensor ISO

ISO = old film terminology

= sensitivity to light

ISO 200 is twice as sensitive as ISO 100.

Digital Photography:

ISO = ‘gain’ or amplification of sensor signal

[Don Pettit]

[Don Pettit]

Field of View (Zoom)

Field of View (Zoom)

Field of View (Zoom) = Cropping

f

FOV depends of Focal Length

Smaller FOV = larger Focal Length

f

From Zisserman & Hartley

Field of View / Focal Length

Large FOV, small f

Camera close to car

Small FOV, large f

Camera far from the car

Lens Flaws

Lens Flaws: Chromatic Aberration

• Dispersion: wavelength-dependent refractive index
– (enables prism to spread white light beam into rainbow)

• Modifies ray-bending and lens focal length: f()

Color fringes near edges of image

Corrections: add ‘doublet’ lens of flint glass, etc.

Chromatic Aberration

Near Lens Center Near Lens Outer Edge

Radial Distortion (e.g. ‘barrel’ and ‘pin-cushion’)

Straight lines curve around the image center

Radial Distortion

• Radial distortion of the image
– Caused by imperfect lenses
– Deviations are most noticeable for

rays that pass through the edge of
the lens

No distortion Pin cushion Barrel

Corrected Barrel Distortion

Image from Martin Habbecke

Vignetting

Optical system occludes rays
entering at obtuse angles.

Causes darkening at edges.

‘Old mode’ - but WHY?

Computer-aided lens design
(optimization) and

manufacturing made
removing (all) these flaws

much easier.

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

Slide Credit: Savarese

Camera (projection) matrix

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,t

X

x

Extrinsic Matrix

 X0IKx =


































=

















1
0100

000

000

1
z

y

x

f

f

v

u

w

K

Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x
(0,0,0)

Projection: world coordinates→image coordinates

Camera

Center

(0, 0, 0)

















=

Z

Y

X

P.

.

. f Z Y









=

V

U
p

.
V

U

Z

f
XU *−=

Z

f
YV *−=

p = distance from

image center

Image

center

(u0, v0)

Remove assumption: known optical center

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w

Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays

K

Remove assumption: equal aspect ratio

 X0IKx =


































=

















1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w y

x

Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays

Remove assumption: non-skewed pixels

 X0IKx =


































=

















1
0100

00

0

1

0

0

z

y

x

vf

usf

v

u

w y

x

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters James Hays

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

X

x

James Hays

Allow camera translation

 XtIKx =


















































=

















1
100

010

001

100

0

1

0

0

z

y

x

t

t

t

vf

usf

v

u

w

z

y

x

y

x

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

James Hays

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:















 −

=

















−

=

















−=

100

0cossin

0sincos

)(

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

















z

y

x

R

R

R

p

p’

γ

y

z

Slide Credit: Saverese

x

Allow camera rotation

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

vf

usf

v

u

w

z

y

x

y

x

James Hays

Slide Credit: Savarese

Camera (projection) matrix

Ow

iw

kw

jw
R,t

X

x



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

vf

usf

v

u

w

z

y

x

y

x

 XtRKx =
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)
Extrinsic Matrix

Demo – Kyle Simek

“Dissecting the Camera Matrix”

Three-part blog series

• http://ksimek.github.io/2012/08/14/decompose/

• http://ksimek.github.io/2012/08/22/extrinsic/

• http://ksimek.github.io/2013/08/13/intrinsic/

“Perspective toy”

• http://ksimek.github.io/perspective_camera_toy.html

http://ksimek.github.io/2012/08/14/decompose/
http://ksimek.github.io/2012/08/22/extrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/perspective_camera_toy.html

Orthographic Projection

• Special case of perspective projection

– Distance from the COP to the image plane is infinite

– Also called “parallel projection”

– What’s the projection matrix?

Image World

Slide by Steve Seitz



































=

















1
1000

0010

0001

1
z

y

x

v

u

w

Things to remember

Projection loses length,
area, angle, but straight
lines remain straight.

Pinhole camera model
and camera projection
matrix.

Homogeneous
coordinates.

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

 XtRKx =

James Hays

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116

[Grad TA Eleanor Tursman’s dog – Blueberry]

How to calibrate the camera?
(also called “camera resectioning”)



































=

















1

Z

Y

X

w

wv

wu

 XtRKx =

James Hays

𝐱 = 𝐌𝐗

Linear least-squares regression!

Simple example: Fitting a line

Least squares fitting – line model
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize

022 =−= yAApA
TT

dp

dE

 

2

11

1

2

1

1

1

















−
























=













−








= =

nn

n

i ii

y

y

b

m

x

x

y
b

m
xE 

 =
−−=

n

i ii bxmyE
1

2
)(

(xi, yi)

y=mx+b

() yAAApyAApA
TTTT 1−

==

Matlab: p = A \ y;
Python:
p = np.linalg.lstsq(A,y)[0]

Modified from S. Lazebnik

)()()(2 ApApyApyy
TTT

+−=

2
yAp −=

(Closed form solution)

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares setup









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)























−

−

−

−

=






























A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: discovering rot/trans/scale

A1

A2 A3

Given matched points in {A} and {B}, estimate the transformation matrix









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x








=

dc

ba

Are these transformations enough?

World vs Camera coordinates

James Hays

Calibrating the Camera

Use an scene with known geometry

– Correspond image points to 3d points

– Get least squares solution (or non-linear solution)



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

Known 3d

world locations
Known 2d

image coords

Unknown Camera Parameters

James Hays

M

How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913

307.518 308.175 29.069

309.950 311.262 29.990

312.160 310.772 29.080

311.988 312.709 30.514

880 214

43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

783 521

235 427

665 429

655 362

427 333

412 415

746 351

434 415

525 234

716 308

602 187

Known 3d

world locations

Known 2d

image coords

James Hays

What is least squares doing?

• Given 3D point evidence, find best M which
minimizes error between estimate (p’) and
known corresponding 2D points (p).

Camera

center

















=

Z

Y

X

P.

.
. f Z

Y









=

v

u
p

.
v

u

p = distance from image center

Error between

M estimate

and known

projection point

p’ under M .

What is least squares doing?

• Best M occurs when p’ = p, or when p’ – p = 0

• Form these equations from all point evidence

• Solve for model via closed-form regression

Camera

center

















=

Z

Y

X

P.

.
. f Z

Y









=

v

u
p

.
v

u

p = distance from image center

Error between

M estimate

and known

projection point

p’ under M .



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

14131211 mZmYmXmsu +++=

24232221 mZmYmXmsv +++=

34333231 mZmYmXms +++=

Known 3d

locations

Known 2d

image coords

Unknown Camera Parameters

34333231

14131211

mZmYmXm

mZmYmXm
u

+++

+++
=

34333231

24232221

mZmYmXm

mZmYmXm
v

+++

+++
=

James Hays

Two equations

per 3D point

correspondence

First, work out

where X,Y,Z

projects to under

candidate M.



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

34333231

14131211

mZmYmXm

mZmYmXm
u

+++

+++
=

34333231

24232221

mZmYmXm

mZmYmXm
v

+++

+++
=

1413121134333231)(mZmYmXmumZmYmXm +++=+++

2423222134333231)(mZmYmXmvmZmYmXm +++=+++

1413121134333231 mZmYmXmumuZmuYmuXm +++=+++

2423222134333231 mZmYmXmvmvZmvYmvXm +++=+++

Unknown Camera Parameters

Next, rearrange into form

where all M coefficients are

individually stated in terms

of X,Y,Z,u,v.

-> Allows us to form lsq

matrix.



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

1413121134333231 mZmYmXmumuZmuYmuXm +++=+++

2423222134333231 mZmYmXmvmvZmvYmvXm +++=+++

umuZmuYmuXmmZmYmXm 34333231141312110 −−−−+++=

vmvZmvYmvXmmZmYmXm 34333231242322210 −−−−+++=

Unknown Camera Parameters

Next, rearrange into form

where all M coefficients are

individually stated in terms

of X,Y,Z,u,v.

-> Allows us to form lsq

matrix.

• Finally, solve for m’s entries using linear least squares

• Method 1 –























=































































−−−

−−−

−−−

−−−

n

n

nnnnnnnnn

nnnnnnnnn

v

u

v

u

m

m

m

m

m

m

m

m

m

m

m

ZvYvXvZYX

ZuYuXuZYX

ZvYvXvZYX

ZuYuXuZYX



1

1

33

32

31

24

23

22

21

14

13

12

11

111111111

111111111

10000

00001

10000

00001

Ax=b form

MATLAB:

M = A\b;

M = [M;1];

M = reshape(M,[],3)';

Python Numpy:

M = np.linalg.lstsq(A,b)[0];

M = np.append(M,1)
M = np.reshape(M, (3,4))



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

Hays

Unknown Camera Parameters

A

x

b

Note: Must reshape M afterwards!



































=

















1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su
Known 3d

locations

Known 2d

image coords

• Or, solve for m’s entries using total linear least-squares

• Method 2 –
– Find non-trivial solution (not A=0)























=



































































−−−−

−−−−

−−−−

−−−−

0

0

0

0

10000

00001

10000

00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111



m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnn

MATLAB:
[U, S, V] = svd(A);

M = V(:,end);

M = reshape(M,[],3)’;

Python Numpy:

U, S, Vh = np.linalg.svd(a)

V = Vh.T

M = Vh[-1,:]

M = np.reshape(M, (3,4))

Ax=0 form

James Hays

Unknown Camera Parameters

A

x

How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913

307.518 308.175 29.069

309.950 311.262 29.990

312.160 310.772 29.080

311.988 312.709 30.514

880 214

43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

783 521

235 427

665 429

655 362

427 333

412 415

746 351

434 415

525 234

716 308

602 187

Known 3d

world locations

Known 2d

image coords

James Hays

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

…..

880 214

43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

…

Known 3d world locationsKnown 2d image coords























=



































































−−−−

−−−−

−−−−

−−−−

0

0

0

0

10000

00001

214086.30214140.309214747.3122141086.30140.309747.3120000

880086.30880140.309880747.31288000001086.30140.309747.312

34

33

32

31

24

23

22

21

14

13

12

11



m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnn

1st point

Projection error defined by two equations – one for u and one for v

(𝑢1, 𝑣1) (𝑋1, 𝑌1, 𝑍1)

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

…..

880 214

43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

…

Known 3d world locationsKnown 2d image coords























=









































































−−−−

−−−−

−−−−

−−−−

−−−−

−−−−

0

0

0

0

10000

00001

203356.3043649.311203796.3052031356.30649.311796.3050000

43356.3043649.31143796.3054300001356.30649.311796.305

214086.30214140.309214747.3122141086.30140.309747.3120000

880086.30880140.309880747.31288000001086.30140.309747.312

34

33

32

31

24

23

22

21

14

13

12

11





m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnnn

2nd point (𝑢2, 𝑣2) (𝑋2, 𝑌2, 𝑍2)

Projection error defined by two equations – one for u and one for v

How many points do I need to fit the model?

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6Degrees of freedom?

Think 3:

- Rotation around x

- Rotation around y

- Rotation around z

How many points do I need to fit the model?

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6Degrees of freedom?

M is 3x4, so 12 unknowns, but projective scale ambiguity – 11 deg. freedom.

One equation per unknown -> 5 1/2 point correspondences determines a solution

(e.g., either u or v).

More than 5 1/2 point correspondences -> overdetermined, many solutions to M.

Least squares is finding the solution that best satisfies the overdetermined system.

Why use more than 6? Robustness to error in feature points.

Calibration with linear method

• Advantages

– Easy to formulate and solve

– Provides initialization for non-linear methods

• Disadvantages

– Doesn’t directly give you camera parameters

– Doesn’t model radial distortion

– Can’t impose constraints, such as known focal length

• Non-linear methods are preferred

– Define error as difference between projected points and measured points

– Minimize error using Newton’s method or other non-linear optimization

James Hays

Can we factorize M back to K [R | T]?

• Yes! We can directly solve for the individual
entries of K [R | T].

James Hays

James Hays

an = nth

column of A

James Hays

James Hays

Can we factorize M back to K [R | T]?

• Yes! We can also use RQ factorization (not QR)
– R in RQ is not rotation matrix R; crossed names!

R (upper triangular or ‘Right’ triangular) is K

Q (orthogonal basis) is R

T, the last column of [R | T], is inv(K) * last
column of M.

– But you need to do a bit of post-processing to
make sure that the matrices are valid. See
http://ksimek.github.io/2012/08/14/decompose/

James Hays

http://ksimek.github.io/2012/08/14/decompose/

Recovering the camera center



































=

















1

Z

Y

X

s

sv

su

 XtRKx =



















































=

















1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





This is not the camera

center C.

It is –RC, as the point

is rotated before tx, ty,

and tz are added

This is t × K

Q

So K-1 m4 is t

So we need

-R-1 K-1 m4 to get C.

Q is K × R.

So we just need -Q-1 m4

James Hays

m4

t

Estimate of camera center

1.5706 -0.1490 0.2598

-1.5282 0.9695 0.3802

-0.6821 1.2856 0.4078

0.4124 -1.0201 -0.0915

1.2095 0.2812 -0.1280

0.8819 -0.8481 0.5255

-0.9442 -1.1583 -0.3759

0.0415 1.3445 0.3240

-0.7975 0.3017 -0.0826

-0.4329 -1.4151 -0.2774

-1.1475 -0.0772 -0.2667

-0.5149 -1.1784 -0.1401

0.1993 -0.2854 -0.2114

-0.4320 0.2143 -0.1053

-0.7481 -0.3840 -0.2408

0.8078 -0.1196 -0.2631

-0.7605 -0.5792 -0.1936

0.3237 0.7970 0.2170

1.3089 0.5786 -0.1887

1.2323 1.4421 0.4506

1.0486 -0.3645

-1.6851 -0.4004

-0.9437 -0.4200

1.0682 0.0699

0.6077 -0.0771

1.2543 -0.6454

-0.2709 0.8635

-0.4571 -0.3645

-0.7902 0.0307

0.7318 0.6382

-1.0580 0.3312

0.3464 0.3377

0.3137 0.1189

-0.4310 0.0242

-0.4799 0.2920

0.6109 0.0830

-0.4081 0.2920

-0.1109 -0.2992

0.5129 -0.0575

0.1406 -0.4527

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Great! So now I have K and Rt

Marker-based augmented reality.
- Define marker with known real-world geometry

- Find points on marker in image

- Estimate camera pose from corresponding 2D/3D points

- Render graphics from virtual camera with same pose

Great! So now I have K and Rt

Building block for detailed reconstruction.

Goal: reconstruct depth.

So far: we have ‘calibrated’ one camera.

Or, potentially two…

Summary

• Projections

– Rotation, translation, affine, perspective

• Cameras

– Lenses, apertures, sensors

• Pinhole camera model and camera matrix

– Intrinsic matrix

– Extrinsic matrix

• Recovering camera matrix using
least squares regression

ONE DIFFICULT EXAMPLE…

Erik Johansson – The Architect

