

2020 COMPUTER VISION

Understanding what CNNs learn

• <u>https://distill.pub/2020/circuits/zoom-in/</u>

Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html

3rd November 2017

Technology

Single pixel change fools Al programs

Tiny changes can make image recognition systems think a school bus is an ostrich, find scientists.

() 3 hours ago | Technology

Algorithm learns to recognise natural beauty

Artificial intelligence fools security

Al used to detect breast cancer

Technology

Single pixel change fools Al programs

Tiny changes can make image recognition systems think a school bus is an ostrich, find scientists.

() 3 hours ago | Technology

Algorithm learns to recognise natural beauty

Artificial intelligence fools security

Al used to detect breast cancer

Yes, it's a blue brain image : (

Su et al., One pixel attack for fooling deep neural networks <u>https://arxiv.org/abs/1710.08864</u>

SYNTHESIZING ROBUST ADVERSARIAL EXAMPLES

https://arxiv.org/pdf/1707.07397.pdf

Anish Athalye^{*1,2}, Logan Engstrom^{*1,2}, Andrew Ilyas^{*1,2}, Kevin Kwok² ¹Massachusetts Institute of Technology, ²LabSix {aathalye,engstrom,ailyas}@mit.edu, kevin@labsix.org

classified as turtle

classified as rifle

classified as other

classified as turtle

classified as rifle

classified as other

Fooling Neural Networks in the Real World labsix

classified as baseball

classified as espresso

classified as other

Connectomics: Neural nets for neural nets

[Patric Hagmann]

Vision for understanding the brain

1mm cubed of brain Image at 5-30 nanometers

How much data?

[Kaynig-Fittkau et al.]

Vision for understanding the brain

1mm cubed of brain Image at 5-30 nanometers

How much data?

1 Petabyte – 1,000,000,000,000,000

~ All photos uploaded to Facebook per day

[Kaynig-Fittkau et al.]

Vision for understanding the brain

Instance segmentation (but the instances sometimes look quite different!)

Initial Segmentation

Merge- and Split Errors

Correct Borders

Fixed Segmentation

Network Architecture

[Haehn et al.]

Big space of designs!

But we still don't even know how many layers we need.

Architecture for Classification

Beyond AlexNet

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the pre-trained "VGG" networks that you use in project 4

ConvNet Configuration					
А	A-LRN	В	С	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	input (224×224 RGB image)				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
	maxpool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
FC-4096					
FC-4096					
FC-1000					
soft-max					

Table 2: Number of parameters (in millions).

Network	A A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

Table 4: ConvNet per	formance at multiple test scales.
----------------------	-----------------------------------

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
С	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Google LeNet (2014)

22 layers

6.67% error ImageNet top 5

Inception!

Softmax

Another view of GoogLeNet's architecture.

Parallel layers

Full Inception module

ResNet (He et al., 2015)

ResNet won ILSVRC 2015 with a top-5 error rate of 3.6%

Depending on their skill and expertise, humans generally hover around a 5-10% error.

Superhuman performance! But the task is arguably not well defined.

ImageNet Classification top-5 error (%)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

CIFAR-10

• 60,000 32x32 color images, 10 classes

Here are the classes in the dataset, as well as 10 random images from each:

airplane	🛁 📉 😹 📈 🏏 💳 🌌 🔐 🛶 💒
automobile	ar 🖏 🚵 🔜 🕍 😂 📾 🐝
bird	in 🖉 💋 👘 🔍 🖉 🔄 💓 💓
cat	li 🖉 🏹 🚵 💥 🖉 🔁 👘
deer	M M M M M M M M M M M M M M M M M M M
dog	998 🔬 🛹 💥 🎮 🎒 🦉 👘 🎊
frog	ST 🖉 😪 🍪 🍪 😒 🔬 📖 St
horse	🚔 🐼 🚵 🕅 🕅 🕋 🛣 🎆 🚺
ship	🥽 🏄 🚎 🚢 🚔 💋 🛷 💆 🐲
truck	🚄 🍱 🛵 🎆 💭 🔤 📷 🚮

Simply stacking layers?

- Plain nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Vanishing/exploding gradient problem

Backpropagation:

- Compute gradient update for every neuron which was involved in the output across layers

Involves chaining partial derivates over many layers!

- If derivative < 1, gradient gets smaller and smaller as we go deeper and deeper -> vanishing gradients!
- If derivative > 1, gradient gets larger and larger as we go deeper and deeper -> exploding gradients!
Vanishing/exploding gradient re: activation

- If derivative < 1, gradient gets smaller and smaller as we go deeper and deeper -> vanishing gradients!
- If derivative > 1, gradient gets larger and larger as we go deeper and deeper -> *exploding gradients*!

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Regular net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

Residual Unit

A residual block

Residual Unit

to a node in a higher layer. X weight layer relu $\mathcal{F}(\mathbf{x})$ X weight layer identity $\mathcal{F}(\mathbf{x}) + \mathbf{x}$ relu

The inputs of a lower layer is added

A residual block

Network "Design"

plain net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Why so steep?

Training rate change – lower allows finer exploration of narrow 'valleys' in energy landscape.

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Flat regions in energy landscape

James, do we have to go deeper?

Compute vs. parameters / multiply-adds

Hmm...efficient nets... might be useful for final project ???

https://www.infoq.com/news/2017/06/google-mobilenets-tensorflow https://arxiv.org/abs/1704.04861

ConvNets perform classification

48

[Slides from Long, Shelhamer, and Darrell]

CONV NETS: EXAMPLES

- Object detection

Sermanet et al. "OverFeat: Integrated recognition, localization, ..." arxiv 2013 Girshick et al. "Rich feature hierarchies for accurate object detection..." arxiv 2013 91 Szegedy et al. "DNN for object detection" NIPS 2013 Ranzato

At test time, run only is forward mode (FPROP). 24@18x18 Fully 24@6x6 8@92x9 connected 1008@23x23 2@96x96 (500_weights) 6x6 4x46x6 5x5 subsampling convolution 3x3 convolution subsampling (2400 kernels) convolution (96 kernels) (16 kernels)

Naturally, convnet can process larger images

Naturally, convnet can process larger images

Naturally, convnet can process larger images

Naturally, convnet can process larger images

R-CNN: Region-based CNN

Figure: Girshick et al.

Stage 2: Efficient region proposals?

- Brute force on 1000x1000 = 250 billion rectangles
 - Testing the CNN over each one is too expensive
- Let's use B.C. vision! Before CNNs
 - Hierarchical clustering for segmentation

Remember clustering for segmentation?

Oversegmentation

Undersegmentation

Hierarchical Segmentations

Cluster low-level features

• Define similarity on color, texture, size, 'fill'

 Greedily group regions together by selecting the pair with highest similarity

– Until the whole image become a single region

Draw a bounding box around each one
Into a hierarchy

Vs Ground Truth

Average Best Overlap (ABO)

$$ABO = \frac{1}{|G^c|} \sum_{g_i^c \in G^c} \max_{l_j \in L} Overlap(g_i^c, l_j).$$
$$Overlap(g_i^c, l_j) = \frac{\operatorname{area}(g_i^c) \cap \operatorname{area}(l_j)}{\operatorname{area}(g_i^c) \cup \operatorname{area}(l_j)}.$$

(a) Bike: 0.863

(b) Cow: 0.874

(c) Chair: 0.884

(d) Person: 0.882

(e) Plant: 0.873

Mean Average Best Overlap (MABO)

Thanks to Song Cao

method	recall	MABO	# windows
Arbelaez et al. [3]	0.752	0.649 ± 0.193	418
Alexe et al. [2]	0.944	0.694 ± 0.111	1,853
Harzallah et al. [16]	0.830	-	200 per class
Carreira and Sminchisescu [4]	0.879	0.770 ± 0.084	517
Endres and Hoiem [9]	0.912	0.791 ± 0.082	790
Felzenszwalb et al. [12]	0.933	0.829 ± 0.052	100,352 per class
Vedaldi et al. [34]	0.940	-	10,000 per class
Single Strategy	0.840	0.690 ± 0.171	289
Selective search "Fast"	0.980	0.804 ± 0.046	2,134
Selective search "Quality"	0.991	0.879 ± 0.039	10,097

Table 5: Comparison of recall, Mean Average Best Overlap (MABO) and number of window locations for a variety of methods on the Pascal 2007 TEST set.

R-CNN: Region-based CNN

Figure: Girshick et al.

10,000 proposals with recall 0.991 is better.... but still takes 17 seconds per image to generate them. Then I have to test each one!

Fast R-CNN

Rol = Region of Interest

Figure: Girshick et al.

Fast R-CNN

- Convolve whole image into feature map (many layers; abstracted)
- For each candidate Rol:
 - Squash feature map weights into fixed-size 'RoI pool' adaptive subsampling!
 - Divide Rol into H x W subwindows, e.g., 7 x 7, and max pool
 - Learn classification on RoI pool with own fully connected layers (FCs)
 - Output classification (softmax) + bounds (regressor)

Figure: Girshick et al.

Martian lava field, NASA, Wikipedia

Old Man of the Mountain, Franconia, New Hampshire

Pareidolia

http://smrt.ccel.ca/2013/12/16/pareidolia/

Reddit for more :) https://www.reddit.com/r/Pareidolia/top/

Pareidolia

Seeing things which aren't really there...

DeepDream as reinforcement pareidolia

Powerpoint Alt-text Generator

Vision-based caption generator

Alt Text

How would you describe this picture and its context to someone who is blind?

(1-2 sentences recommended)

A person standing on a rocky hill

Description generated with very high confidence

Alt Text

- ×

How would you describe this object and its context to someone who is blind?

(1-2 sentences recommended)

A person standing on a rocky hill

Description automatically generated

2018

A stranger once waved at Boo James on a bus. She did not think any more of it - until it later emerged it was her mother.

She has a relatively rare condition called face blindness, which means she cannot recognise the faces of her family, friends, or even herself.

[...]

But how do people with prosopagnosia perceive faces? Those with the condition say it can be difficult to describe.

"I can see component parts of a face," Boo said. "I can see there's a nose, I can see there are eyes and a mouth and ears.

"But it's very difficult for my brain to hold them all together as the image of a face."

 <u>https://www.washingtonpost.com/news/mag</u> <u>azine/wp/2019/08/21/feature/my-life-with-</u> <u>face-blindness/</u>

 <u>https://www.nytimes.com/2020/01/17/opinio</u> <u>n/sunday/facebook-facial-recognition-</u> <u>accessibility.html</u>

What if we want pixels out?

monocular depth estimation Eigen & Fergus 2015

Naturally, convnet can process larger images at little cost.

ConvNet: unrolls convolutions over bigger images and produces outputs at several locations.

R-CNN does detection

Fully Convolutional Networks for Semantic Segmentation

77

Slides from Long, Shelhamer, and Darrell

A classification network...

A classification network...

The response of every kernel across all positions are attached densely to the array of perceptrons in the fully-connected layer.

The response of every kernel across all positions are attached densely to the array of perceptrons in the fully-connected layer.

AlexNet: 256 filters over 6x6 response map Each 2,359,296 response is attached to one of 4096 perceptrons, leading to 37 mil params.

[Long et al.]

Problem

We want a label at every pixel

Current network gives us a label for the whole image.

Approach:

- Make CNN for every sub-image size ?
- 'Convolutionalize' *all layers* of network, so that we can treat it as one (complex) filter and slide around our full image.

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

The response of every kernel across all positions are attached densely to the array of perceptrons in the fully-connected layer.

AlexNet: 256 filters over 6x6 response map Each 2,359,296 response is attached to one of 4096 perceptrons, leading to 37 mil params.

[Long et al.]

In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution kernels and a full connection table.

Convolutionalization

1x1 convolution operates across all filters in the previous layer, and is slid across all positions.

Back to the fully-connected perceptron... $output = \begin{cases} 0 \\ 0 \end{cases}$

$$ext{output} = egin{cases} 0 & ext{if} \, w \cdot x & \leq 0 \ 1 & ext{if} \, w \cdot x & > 0 \end{cases}$$

 $w\cdot x\equiv \sum_j w_j x_j,$

Perceptron is connected to every value in the previous layer (across all channels; 1 visible).

Convolutional Layer

Convolutionalization

1x1 convolution operates across all filters in the previous layer, and is slid across all positions.

e.g., 64x1x1 kernel, with shared weights over 13x13 output, x1024 filters = 11mil params.

[Long et al.]

Becoming fully convolutional

sized image

When we turn these operations into a convolution, the 13x13 just becomes another parameter and our output size adjust dynamically.

94

Now we have a *vector/matrix* output, and our network acts itself like a complex filter.

[Long et al.]

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

Upsampling the output

[Long et al.]

End-to-end, pixels-to-pixels network

End-to-end, pixels-to-pixels network

What is the upsampling layer?

Hint: it's an upsampling network

'Deconvolution' networks learn to upsample

Often called "deconvolution", but misnomer.

Not the deconvolution that we saw in deblurring -> that is division in the Fourier domain.

'Transposed convolution' is better.

Zeiler et al., Deconvolutional Networks, CVPR 2010 Noh et al., Learning Deconvolution Network for Semantic Segmentation, ICCV 2015

Upsampling with transposed convolution

Convolution

Upsampling with transposed convolution

Convolution

Transposed convolution = padding/striding smaller image then weighted sum of input x filter: 'stamping' kernel

2x2, stride 1, 3x3 kernel, upsample to 4x4

2x2, stride 2, 3x3 kernel, upsample to 5x5.

Kernel

1	1	1
1	1	1
1	1	1

Feature map

1	2
3	4

Padded feature map

	1	2		
	3	4		

Ke	err	nel

1	1	1
1	1	1
1	1	1

Padded input feature map

	1	2		
	3	4		

Output feature map

1	1	1		
1	1	1		
1	1	1		

Κ	e	r	n	e	
	_			_	

1	1	1
1	1	1
1	1	1

Padded input feature map

Output feature map

1	4	4	3	
1	4	4	3	
1	4	4	3	

	Kerne	I
1	1	-

1 1 1 1 1 1

Input feature map

Padded input feature map

	1	2	
	3	4	

Output feature map

1	4	7	6	3	
1	4	7	6	3	
1	4	7	6	3	

Kernel				
1	1	1		
1	1	1		
1	1	1		

Padded input feature map

	1	2		
	3	4		

Output feature map

1	4	7	8	5	2
1	4	7	8	5	2
1	4	7	8	5	2

Kernel				
1	1	1		
1	1	1		
1	1	1		

Padded input feature map

Output feature map

1	4	7	8	5	2
5	8	11	8	5	2
5	8	11	8	5	2
4	4	4			

Kernel				
1	1	1		
1	1	1		
1	1	1		

Padded input feature map

Output feature map

1	4	7	8	5	2
5	18	21	18	5	2
5	18	21	18	5	2
4	14	14	10		

Kernel				
1	1	1		
1	1	1		
1	1	1		

Padded input feature map

Output feature map

1	4	7	8	5	2
5	18	31	34	21	8
9	32	55	60	37	14
11	38	66	64	43	16
7	24	41	44	27	10
3	10	17	18	11	4

Ке	r	n	e
	•	•••	-

1	1	1
1	1	1
1	1	1

Padded input feature map

	1	2		
	3	4		

Cropped output feature map

18	31	34	21
32	55	60	37
38	66	64	43
24	41	44	27

Uneven overlap across output

Is uneven overlap a problem?

Yes = causes grid artifacts

Could fix it by picking stride/kernel numbers which have no overlap...

Uneven overlap across output

Is uneven overlap a problem?

Yes = causes grid artifacts

Could fix it by picking stride/kernel numbers which have no overlap...

Or...think in frequency!

Introduce explicit bilinear upsampling before transpose convolution; let kernels of transpose convolution learn to fill in only highfrequency detail.

https://distill.pub/2016/deconv-checkerboard/

'Deconvolution' networks learn to upsample

Often called "deconvolution", but misnomer.

Not the deconvolution that we saw in deblurring -> that is division in the Fourier domain.

'Transposed convolution' is better.

Zeiler et al., Deconvolutional Networks, CVPR 2010 Noh et al., Learning Deconvolution Network for Semantic Segmentation, ICCV 2015
But we have downsampled *so far*...

How do we 'learn to create' or 'learn to restore' new high frequency detail?

Spectrum of deep features

Combine where (local, shallow) with what (global, deep)

image

3 P

intermediate layers

Fuse features into **deep jet**

(cf. Hariharan et al. CVPR15 "hypercolumn")

116

Learning upsampling kernels with skip layer refinement

Learning upsampling kernels with skip layer refinement

Learning upsampling kernels with skip layer refinement

UNet [Ronneberger et al., 2015]

Skip layer refinement

no skips

1 skip

2 skips

121

Results

Relative to prior state-of-the-art SDS:

- 30% relative improvement for mean IoU
- 286× faster

*Simultaneous Detection and Segmentation Hariharan et al. ECCV14

123

Even more: Faster R-CNN

'Region Proposal Network' uses CNN feature maps.

Then, FCN on top to classify.

End to end object detection.

Ren et al. 2016 https://arxiv.org/abs/1506.01497

Even more! Mask R-CNN

Extending Faster R-CNN for Pixel Level Segmentation He et al. - https://arxiv.org/abs/1703.06870

Add new training data: segmentation masks

n1.00

Deep Image Prior demo

https://warlock.ai/deepimageprior/

Generate some images and animations from this.

https://dmitryulyanov.github.io/d eep_image_prior

 <u>https://box.skoltech.ru/index.php/s/INaUzvTWLak3</u> <u>h7Q#pdfviewer</u>

Neural Style

make your own easily on deepart.io

Why is VGG a good network for style transfer?

Relation to adversarial examples and 'robust features' here:

https://distill.pub/2019/advex-bugsdiscussion/response-4/

Robustness of modern architectures to small image perturbations:

- https://arxiv.org/pdf/1903.12261.pdf

CONV NETS: EXAMPLES

- Face Verification & Identification

Taigman et al. "DeepFace..." CVPR 2014

Fancier Architectures: Multi-Scale

Farabet et al. "Learning hierarchical features for scene labeling" PAMI 2013

Fancier Architectures: Multi-Task

Zhang et al. "PANDA.." CVPR 2014

Fancier Architectures: Generic DAG

Fancier Architectures: Generic DAG

If there are cycles (RNN), one needs to un-roll it.

Pinheiro, Collobert "Recurrent CNN for scene labeling" ICML 2014 Graves "Offline Arabic handwriting recognition.." Springer 2012 What about learning across 'domains'?

Fancier Architectures: Multi-Modal

Frome et al. "Devise: a deep visual semantic embedding model" NIPS 2013

Two-stream networks – *action recognition*

[Simonyan et al. 2014]

What can we do with an FCN?

How much can an image tell about its geographic location?

6 million geo-tagged Flickr images

http://graphics.cs.cmu.edu/projects/im2gps/

im2gps (Hays & Efros, CVPR 2008)

How much can an image tell about its geographic location?

Nearest Neighbors according to gist + bag of SIFT + color histogram + a few others

Paris

Paris

Im2gps

Example Scene Matches

england

heidelberg

Italy

Cairo

Macau

Barcelona

France

Paris

Voting Scheme

im2gps

Houston

Bermuda

Mendoza

Brazil

Thailand

Arkansas

Hawaii

Effect of Dataset Size

Where is This?

[Vesselova, Kalogerakis, Hertzmann, Hays, Efros. Image Sequence Geolocation. ICCV'09]

Where is This?

Where are These?

15:14, June 18th, 2006 16:31, June 18th, 2006

Where are These?

15:14, June 18th, 2006

16:31, 17:24, June 18th, 2006 June 19th, 2006

Results

- im2gps 10% (geo-loc within 400 km)
- temporal im2gps 56%

PlaNet - Photo Geolocation with Convolutional Neural Networks

Tobias Weyand, Ilya Kostrikov, James Philbin

ECCV 2016

Discretization of Globe

Figure 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Right: Detail views of Great Britain and Ireland and the San

Network and Training

- Network Architecture: Inception with 97M parameters
- 26,263 "categories" places in the world

- 126 Million Web photos
- 2.5 months of training on 200 CPU cores

Photo CC-BY-NC by stevekc

Perice Barting and the second se

(a)

Photo CC-BY-NC by edwin.11

(b)

Photo CC-BY-NC by jonathanfh

Namibia / Botswana

ovelock / CC BY NC Photo by MongoosePhotography / CC BY NC

Photo by Mister-E / CC BY NC Photo by dalangalma / CC BY NC Photo by siamjack / CC BY NC

Kauai, Hawaii

Photo by stuartichambers / CC BY NC

Photo by steve-stevens / CC BY

Galapagos Islands

Paris

Photo by cvanholder / CC BY NO

Photo by Turansa Tours / CC BY NO oto by fred_v / CC By

Photo by Domen Jakus / CC BY NC

PlaNet vs im2gps (2008, 2009)

	Street	City	Region	Country	Continent
Method	1 km	25 km	200 km	750 km	2500 km
Im2GPS (orig) [17]		12.0%	15.0%	23.0%	47.0%
Im2GPS (new) [18]	2.5%	21.9%	32.1%	35.4%	51.9%
PlaNet	8.4%	24.5%	37.6%	53.6%	71.3%

Method	Manmade Landmark	Natural Landmark	City Scene	Natural Scene	Animal
Im2GPS (new)	61.1	37.4	3375.3	5701.3	6528.0
PlaNet	74.5	61.0	212.6	1803.3	1400.0

Spatial support for decision

PlaNet vs Humans

PlaNet vs. Humans

PlaNet summary

- Very fast geolocalization method by categorization.
- Uses far more training data than previous work (im2gps)
- Better than humans!