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Training Neural Networks

• Build network architecture

and define loss function

• Pick hyperparameters – learning rate, batch size

• Initialize weights + bias in each layer randomly

• While loss still decreasing
• Shuffle training data

• For each data point i=1…n  (maybe as mini-batch)
• Gradient descent

• Check validation set loss

“Epoch“



Stochastic Gradient Descent

Try to speed up processing with 
random training subsets

Loss will not always decrease 
(locally) as training data point is 
random, but converges over time.

Wikipedia

Momentum

𝜽𝑡+1 = 𝜽𝑡 − 𝛾 𝛼
𝜕𝐿

𝜕𝜽
𝑡−1

+
𝜕𝐿

𝜕𝜽
𝑡

Gradient descent step size is weighted 
combination over time to dampen ping pong.



Regularization

• Penalize weights for simpler solution
• Occam’s razor

• Dropout half of neurons for
each minibatch

• Forces robustness

𝜆



But James…

…I thought we were going to treat machine learning 
like a black box? I like black boxes.

Deep learning is: 
- a black box 
- also a black art.

- Grad student 
gradient descent : (

http://www.isrtv.com/



Why do we initialize the weights randomly?

What if we set zero weights?

Setting zero weights makes all neurons equivalent as 
there is no difference in the gradient computed across 
neurons. Called “symmetric updates”.

Setting zero bias is OK.
Typically, we standardize the data beforehand by 
subtracting the mean and dividing by std. dev.

Thus, a zero bias is a good initialization.

Where ҧ𝑥 is the mean of the input feature across 
the dataset (not spatially across the image)



Why do we initialize the weights randomly?

What if we set zero weights?

Wx = 0 for the layer output

-> produces uniform softmax output (each class equally 
probable; i.e., on MNIST, 0.1)

Gradient update rule and supervision label 𝑦𝑗 still 
provides the right signal

𝑝𝑗 vs 1 – 𝑝𝑗

…but all neurons not of class j receive same gradient 
update.



So what is a good initialization of the weights?

In general, initialization is very important.

Good strategy: He et al. 2015:

For ReLU, draw random weights from Gaussian 
distribution with variance = 2 / # inputs to layer

[Image Andre Perunicic]



What is activation function for?

To allow multiple layers; to avoid resulting composition of linear 
functions collapsing to a single layer. 

Difference between CNN and convolution in feature extraction?

No difference! Same operation [correlation/convolution]

Why do we shave off pixels?

We only use the valid region of convolution; typically no padding.

Some recent works special case these edge convolutions.

Why multidimensional kernels?

We wish to convolve over the outputs of many other learned 
kernels -> ‘integrating’ information via weighted sum of previous 
layer outputs.



How to know which kernels to use in 2nd+ convolution layers?

Gradient descent + back propagation learns them.

How to set weights on fully connected layers?

Gradient descent + back propagation learns them.

What even is back propagation again?

Computing the (change in) contribution of each neuron to the loss 
as the parameters vary.

Project 4 written has some good references.



How do we decide the parameters for network architecture?
For less complicated situations, we can use ‘trial and error’. 
Is there any other method?

‘Grid search’ -> trial and error

‘Bayesian optimization’ -> meta-learning; optimize the 
hyperparameters

General strategy:

Bottleneck -> extract information (kernel) and learn to 
squeeze representation into a smaller number of parameters.

But James – I happen to have a thousand GPUs:
Neural Architecture Search!



I’ve heard about many more terms of jargon!

Skip connections

Residual connections

Batch normalization

…we’ll get to these in a little while.



When something is not working…

…how do I know what to do next?



The Nuts and Bolts of Building 
Applications using Deep Learning
• Andrew Ng - NIPS 2016

• https://youtu.be/F1ka6a13S9I

https://youtu.be/F1ka6a13S9I


Bias/variance trade-off

Scott Fortmann-Roe 

Bias = accuracy
Variance = precision

"It takes surprisingly long time to grok bias and variance deeply, but 

people that understand bias and variance deeply are often able to 

drive very rapid progress." --Andrew Ng





Go collect a dataset

• Most important thing:
• Training data must represent target application!

• Take all your data
• 60% training

• 40% testing
• 20% testing

• 20% validation (or ‘development’)



Properties

• Human level error = 1%

• Training set error = 10%

• Validation error = 10.2%

• Test error = 10.4%

“Bias”

“Variance”

Overfitting to 
validation



[Andrew Ng]

Val

Val

Val



http://theorangeduck.com/page/neural-network-not-working

Daniel Holden

http://theorangeduck.com/page/neural-network-not-working






























Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, AntonioTorralba

Massachusetts Institute of Technology

ICLR 2015



How Objects are Represented in CNN?

CNN uses distributed code to represent objects.

Agrawal, et al. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014  

Szegedy, et al. Intriguing properties of neural networks.arXiv preprint arXiv:1312.6199, 2013.

Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.

Conv2

Conv3

Conv4  

Pool5

Conv1



Estimating the Receptive Fields

Estimated receptive fields
pool1

Actual size of RF is much smaller than the theoretic size

conv3 pool5

Segmentation using the RF of Units

More semantically meaningful



Annotating the Semantics of Units

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.



Annotating the Semantics of Units

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%



Pool5, unit 13; Label: Lamps; Type: object; Precision: 84%

Annotating the Semantics of Units



Pool5, unit 77; Label:legs; Type: object part; Precision: 96%

Annotating the Semantics of Units



Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

Annotating the Semantics of Units



Annotating the Semantics of Units

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%



ImageNet vs. PlacesNet

http://places2.csail.mit.edu/
demo.html

ImageNet
• ~1 mil object-level images 

over 1000 classes

PlacesNet
• ~1.8 million images from 

365 scene categories 
(at most 5000 images per 
category).

http://places2.csail.mit.edu/demo.html


Distribution of Semantic Types at Each Layer



Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to  
classify scenes, without any object supervision!



How can free will coexist with divine preordination?

Ah yes.

Related works: 

- The Ontological Argument

- The Problem of Evil

- Ship of Theseus / Sorites Paradox

- What is Art

- 0.99 ሶ9 = 1

- Chinese Room AI



Short cuts to AI

With billions of images on the web, it’s often possible to find a 
close nearest neighbor.

We can shortcut hard problems by “looking up” the answer, 
stealing the labels from our nearest neighbor.



So what is intelligence?

Weak AI: 
The simulation of a ‘mind’ is a model for the ‘mind’.

Strong AI: 
The simulation of a ‘mind’ is a ‘mind’.



Chinese Room experiment, John Searle (1980) 

If a machine can convincingly simulate an 

intelligent conversation, does it understand? 



Chinese Room experiment, John Searle (1980) 

Most of the discussion consists of 

attempts to refute it. 

"The overwhelming majority," notes BBS

editor Stevan Harnad,“ still think that the 

Chinese Room Argument is dead wrong.“

The sheer volume of the literature that has 

grown up around it inspired Pat Hayes to 

quip that the field of cognitive science 

ought to be redefined as "the ongoing 

research program of showing Searle's 

Chinese Room Argument to be false.”

If a machine can convincingly simulate an 

intelligent conversation, does it understand? 

Searle imagines himself in a room, acting 

as a computer by manually executing a 

program that convincingly simulates the 

behavior of a native Chinese speaker.





Mechanical Turk

• von Kempelen, 1770.

• Robotic chess player.

• Clockwork routines.

• Magnetic induction (not vision)

• Toured the world; played 
Napoleon Bonaparte 
and Benjamin Franklin.



Mechanical Turk

• It was all a ruse!

• Ho ho ho.



"Can machines fly?" 
Yes; aeroplanes exist.

"Can machines fly like a bird?" 
No, because aeroplanes don’t flap.

"Can machines perceive?”
“Can machines understand?" 
Are these question like the first, or like the second?

[Adapted from Norvig]



Ornithopters

James Hays



Festo SmartBird [2011]



Interesting CNN properties
…or other ways to measure reception

http://yosinski.com/deepvis

http://yosinski.com/deepvis


What input to a neuron maximizes a class score?

Neuron of choice i

An image of random noise x.

Repeat:

1. Forward propagate: compute activation ai(x)

2. Back propagate: compute gradient at neuron ∂ai(x) / ∂x
3. Add small amount of gradient back to noisy image.

Andrej Karpathy

To visualize the function of a specific unit in a 
neural network, we synthesize an input to that 
unit which causes high activation.



What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

http://yosinski.com/deepvis


What image maximizes a class score?

Andrej Karpathy



Wow!

They just ‘fall out’!



Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html

https://twitter.com/fchollet


Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf


Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictionsfor  

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf


Adversarial Patches

• https://www.theverge.com/2018/1/3/16844842/ai
-computer-vision-trick-adversarial-patches-google

• https://arxiv.org/pdf/1712.09665.pdf

[Brown et al., Google, 2018]

https://www.theverge.com/2018/1/3/16844842/ai-computer-vision-trick-adversarial-patches-google


Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html

https://twitter.com/fchollet


Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html

https://twitter.com/fchollet


Curiosity: The success of 
obfuscating gradients
• https://github.com/anishathalye/obfuscated-

gradients

https://github.com/anishathalye/obfuscated-gradients


Reconstructing images

Question: Given a CNN code, is it possible

to reconstruct the original image?

Andrej Karpathy



Reconstructing images

Find an image such that:

- Its code is like a given code

- It “looks natural” 

- Neighboring pixels should look similar

Andrej Karpathy

Image



Reconstructing images

Understanding Deep Image Representations by Inverting Them

[Mahendran and Vedaldi, 2014]

original image
Reconstructions  

from the 1000  

log probabilities  

for ImageNet  

(ILSVRC)

classes

Andrej Karpathy



Reconstructing images

Reconstructions from the representation after last last poolinglayer

(immediately before the first Fully Connected layer)

Andrej Karpathy



DeepDream

DeepDream https://github.com/google/deepdream

Andrej Karpathy

https://github.com/google/deepdream


DeepDream

DeepDream modifies the image in a way that “boosts” all activations, at any layer

This creates a feedback loop: e.g., any slightly detected dog face will be made

more and more dog-like over time.

Andrej Karpathy



DeepDream

Andrej Karpathy

Deep Dream Grocery Trip

https://www.youtube.com/watch?v=DgPaCWJL7XI

Deep Dreaming Fear & Loathing in Las Vegas: the Great San Francisco AcidWave  

https://www.youtube.com/watch?v=oyxSerkkP4o

https://www.youtube.com/watch?v=DgPaCWJL7XI
https://www.youtube.com/watch?v=oyxSerkkP4o


Style transfer



Neural Style

[ A NeuralAlgorithm of Artistic Style by Leon A. Gatys,  

Alexander S. Ecker, and Matthias Bethge, 2015]  

good implementation by Justin Johnson in Torch:  

https://github.com/jcjohnson/neural-style

Andrej Karpathy

https://github.com/jcjohnson/neural-style


Neural Style

Step 1: Extract content targets (ConvNet activations ofall  

layers for the given content image)

content activations

e.g.

at CONV5_1 layer we would have a [14x14x512] array of target activations

Andrej Karpathy



Neural Style
Step 2: Extract style targets (Gram matrices of  

ConvNet activations of all layers for the given style 

image)

style gram matrices

e.g.
at CONV1 layer (with [224x224x64] activations) would give a [64x64] Gram  

matrix of all pairwise activation covariances (summed across spatial locations)

Andrej Karpathy



Neural Style

Step 3: Optimize over image to have:
- The content of the content image (activations match content)

- The style of the style image (Gram matrices of activations match style)

Adapted from Andrej Karpathy

matchcontent

matchstyle



Neural Style

make your own easily on deepart.io

Andrej Karpathy



Dataset Distillation

• https://arxiv.org/pdf/1811.10959.pdf


