.\\\wz/f \%
_\>S%_/-“”_J:;\\J>r@

’

HOBO T2

N

S

4

ASTMO\z

SIS
FUTUR1E95VOISION

TSAACIR

N

.%__’7

k o
—(=N [t\k{

2020

COMPUTER

VISION



Russell, 2009



Simultaneous contrast










Training Neural Networks

dense dense

+ Build network architecture ... H

mage 55

and define loss function |
* Pick hyperparameters — learning rate, batch size
* |nitialize weights + bias in each layer randomly

* While loss still decreasing

* Shuffle training data
* For each data point i=1...n (maybe as mini-batch) }Epoch

 Gradient descent
e Check validation set loss



Stochastic Gradient Descent

Try to speed up processing with ”‘

random training subsets -

Loss will not always decrease

(locally) as training data point is

random, but converges over time.

Momentum —

| R
Gradient descent step size is weighted 117 00NN\
I "__:I||I

combination over time to dampen ping pong. 7YV

Y =_, | Y I N
[ [N / ! I | [
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Wikipedia



Regularization

* Penalize weights for simpler solution
* Occam’s razor

C=Co+ A ) v’

* Dropout half of neurons for
each minibatch

e Forces robustness




But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box
- also a black art.

- Grad student G B e
gradient descent : ( ‘

http://www.isrtv.com/



Why do we initialize the weights randomly?
What if we set zero weights?

Setting zero weights makes all neurons equivalent as
there is no difference in the gradient computed across
neurons. Called “symmetric updates”.

Setting zero bias is OK.
Typically, we standardize the data beforehand by
subtracting the mean and dividing by std. dev.

/ L — T Where X is the mean of the input feature across
the dataset (not spatially across the image)

Thus, a zero bias is a good initialization.



Why do we initialize the weights randomly?
What if we set zero weights?

Wx = 0 for the layer output

-> produces uniform softmax output (each class equally
probable; i.e., on MNIST, 0.1)

Gradient update rule and supervision label y; still
provides the right signal

pPjvs1—Dp;j

...but all neurons not of class j receive same gradient
update.



So what is a good initialization of the weights?

In general, initialization is very important.

Initial Weights Set to Zero Initial Weights Drawn from N(0, o= 0.4) Initial Weights Drawn from N(0, o~ v 2/n;)
1.6
2304 14
12 12
@ 10
S 10
=] 0a
£
.% 2301 8 06
(=
2300 0.4
Li]
2209 a2
4
0o
2208
2 4 & 8 10 2 4 & B 10 2 4 Li] 8 10
Epoch Epoch Epoch

Good strategy: He et al. 2015:

For ReLU, draw random weights from Gaussian
distribution with variance = 2 / # inputs to layer



What is activation function for?

To allow multiple layers; to avoid resulting composition of linear
functions collapsing to a single layer.

Difference between CNN and convolution in feature extraction?
No difference! Same operation [correlation/convolution]

Why do we shave off pixels?
We only use the valid region of convolution; typically no padding.
Some recent works special case these edge convolutions.

Why multidimensional kernels?

We wish to convolve over the outputs of many other learned
kernels -> ‘integrating” information via weighted sum of previous
layer outputs.



How to know which kernels to use in 2"+ convolution layers?

Gradient descent + back propagation learns them.

How to set weights on fully connected layers?

Gradient descent + back propagation learns them.

What even is back propagation again?

Computing the (change in) contribution of each neuron to the loss
as the parameters vary.

Project 4 written has some good references.



How do we decide the parameters for network architecture?
For less complicated situations, we can use ‘trial and error".
Is there any other method?

‘Grid search’ -> trial and error

‘Bayesian optimization’ -> meta-learning; optimize the
hyperparameters

General strategy:

Bottleneck -> extract information (kernel) and learn to
squeeze representation into a smaller number of parameters.

But James — | happen to have a thousand GPUs:
Neural Architecture Search!



I’'ve heard about many more terms of jargon!
Skip connections
Residual connections

Batch normalization

...we’ll get to these in a little while.



When something is not working...

...how do | know what to do next?



The Nuts and Bolts of Building
Applications using Deep Learning

* Andrew Ng - NIPS 2016
 https://youtu.be/Flka6al3S9l



https://youtu.be/F1ka6a13S9I

Bias/variance trade-off

"It takes surprisingly long time to grok bias and variance deeply, but
people that understand bias and variance deeply are often able to
drive very rapid progress." --Andrew Ng

Low Variance High Variance

Low Bias

High Bias

Bias = accuracy
Variance = precision

Scott Fortmann-Roe






Go collect a dataset

* Most important thing:
* Training data must represent target application!

* Take all your data
* 60% training
* 40% testing

* 20% testing
* 20% validation (or ‘development’)



Properties

* Human level error = 1%
“Bias”

* Training set error = 10%

“Variance”

e Validation error = 10.2%
Overfitting to

validation

* Test error = 10.4%



The Nuts and Bolts of Building Applications
Using Deep Learning

Bigger Model
Training Error High ——— Train Longer
l New Model Architecture
More Data
Train- Val Error High —-— Regularization
l New Model Architecture

Test Error High - Get More Val Data

!

Done

[Andrew Ng]



My Neural Network isn't working! What should I do?

Created on Aug. 19, 2017, 5:56 p.m.

50 you're developing the next great breakthrough in deep learning but you've hit an unfortunate setback: your
neural network isn't working and you have no idea what to do. You go to your boss/supervisor but they don't

know either - they are just as new to all of this as you - so what now?

Well luckily for you I'm here with a list of all the things you've probably done wrong and compiled from my

own experiences implementing neural networks and supervising other students with their projects:

—

. You Forgot to Normalize Your Data

2. You Forgot to Check your Results

3. You Forgot to Preprocess Your Data

4. You Forgot to use any Regularization

5. You Used a too Large Batch Size

6. You Used an Incorrect Learning Rate

7. You Used the Wrong Activation Function on the Final Layer

8. Your Metwork contains Bad Gradients

9. You Initialized yvour Network Weights Incorrectly

10. You Used a Network that was too Deep

11. You Used the Wrong Number of Hidden Units Daniel Holden

http://theorangeduck.com/page/neural-network-not-working



http://theorangeduck.com/page/neural-network-not-working

Outline

« Examples

31
Ranzaton




CONV NETS: EXAMPLES

- OCR / House number & Traffic sign classification

|- DN Tk
- I 2 (M2 V1250
T 5 TSR
llllmalmll

Ilﬂiglllmm

Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013 82
Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014



CONV NETS: EXAMPLES

- Object detection

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Face Verification & Identification

REPRESENTATIOMN
SFC labels

P . . - CL: M2 C3: L4; L5: LE: F7: F&
Colista_Flockhort_ (002 jpg Frontalization: 32x11x1143 EFEETETEN 16x9x3x32 16ExBxEnlé Iafaiule  16x5x5xl6 A0%6d 40304
Detection & Localization @152%152x3 @142x142 @771 A6 @EEKEE B25%25 @21x21

92
Taigman et al. “DeepFace...” CVPR 2014 Ranzaton




CONV NETS: EXAMPLES

- Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 85
Pinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Segmentation 3D volumetric images

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012

86
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzaton



CONV NETS: EXAMPLES

- Robotics

&8

Sermanet et al. “Mapping and planning ...with long range perception” IROS 2008



CONV NETS: EXAMPLES

- Denoising

original

89
Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012 Ranzatol 3




CONV NETS: EXAMPLES

- Dimensionality reduction / learning embeddings

90
Hadsell et al. “Dimensionality reduction by learning an invariant mapping” CVPR 2006



Dataset: ImageNet 2012

T & L 4Gt o W
M Hay DElu MR Pl ¢
| B ] - A ECR

mammal —— placental — camivore — canine — working dog

® 5 (a) Eskimo dog, husky (breed of heavy-coated Arctic sled dog)
& diract fypermym | inkerited hypernym | sister term
* §: (o) working dog (anv of sevaral braeds of wsually large powerful dogs bred to work as draft ansmale and puard and mide dogs)
» 5 (n) dog, domestic dog, Cans familiaris (a member of the genns Cants (probably descendad from the common welf) that has been demesticated by man since prebistoric times; occurs in many
breeds) "the dog barked all might”
& 5:(n) canme, canid (any of various fissiped mamsals with neaeetractle claves and tvpically long nuzzles)
® S (n) camnivore (2 terrestrial or aquatic flesh-eating mammal) "ferrestrial carnivores have four or five clawed digits on each Tmb™
* 5 (n) placental, placental mammal, sutherian, eutherian mammal (mammals having a placenta; all mammals except monotremes and marsupéals)
* 5 (1) mammal mesrmakipn (any wann-blooded vertebrate having the skin more or less covered with hair; young are bean alive except for the small subclass of
monotremes wnd nowrshed with milk}
® 5 (n) vertebrate, craniate {animals having a bony or catilagnous skeleton with 2 sapmented spimal columa and a larps brain snclosed i a skull or cranmm)
® 5 in) L}wchle (aﬂ} animal otfl.he ph},imx Cherdata hnving a nomchmd of spimal cohm}

. ; (1) oraanism, _g(ahmgdmgthathas (mcmdc&cbp_}thcabﬂm wmmﬁnmnmdcpmd:ﬂﬂ_\']
o 5 () bving thing, ananate thing (3 bving (or once iving) entity)
& 5 () whole, unit (an assemblage of parts that is regarded az a smgle entity) "how big i that part compared to the
whole?"': "the ream is a wair”
* 5 () object, physical object (4 tangible and vishle entity, an enfity that can cast a shadow) " was fill of rackets,
balls and other objects"
» 5. (1) physical eniity (an entity that has physical existence)
® 5 (n) entity (that which is percerved or known or imferrad to have its own distinct axistence (hing or
noalving))

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009



contamer ship

mite motor scooter Ieopard
mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick r fireboat bumper car show leopard
drilling platform golfcart Egyptlan cat

starfish

"_F' =

gr |Ile

mushroom

cherry

e ‘-“\..J
i r'f.

Madagascar cat

convertible

pickup
beach wagon
fire engine

grille |

agaric
mushroom
jelly fungus
gill fungus
dead-man's-fingers

dalmatian squirrel monkey

grape spider monkey

elderberry titi
ffordshire bullterrier indri
currant howler monkey




Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

Krizhevsky et al. “lmageNet Classification w'.t'HpéJéep CNNs” NIPS 2012

category
prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

Total nr. flops: 832M

4M

16M
37M

74M

224M
149M

223M

105M

96
Ranzaton




35

Error %
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|
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Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

Results: ILSVRC 2012

TASK 1 - CLASSIFICATION

N2
o
|

CNN

SIFT+FV  SVM1

SVM2

NCM

TASK2 - DETECTION

CNN

DPM-SVM1 DPM-SYM2

9%
Ranzaton




Interpretation

prediction of class

high-level

parts
| = distributed representations
mid-level |
s feature sharing
parts f .
» compositionality
low level
parts
Input image Pt e

e

T el 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton




Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, AntonioTorralba

Massachusetts Institute of Technology

ICLR 2015



How ODbjects are Represented in CNN?

CNN uses distributed code to represent objects.

Convl
ilhll!ll&l:“l-\lix\l lEENINZANNAZ SSlZAl SNz eI EN I EZEI AT A I s

( OnV 2 A S T T R I T e ek (OO (A (L

(@f0] |\ V7Z p—

Pool5

Agrawal, et al. Analyzing the performance of multilayer neural networks for object recognition. ECCV, 2014
Szegedy, et al. Intriguing properties of neural networks.arXiv preprint arXiv:1312.6199, 2013.
Zeiler, M. et al. Visualizing and Understanding Convolutional Networks, ECCV 2014.



Estimating the Receptive Fields

Estimated receptive fields Actual size of RF is much smaller than the theoretic size
pooll conv3 pool5

\
e

Segmentation using the RF of Units
oI1 pool2
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More semantically meaningful
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ImageNet-CNN  places-CNN




Annotating the Semantics of Units

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.

Task 2

Mark (by clicking on them) the images which don’t correspon

ask 1
Word/Short description:
ower
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Task 3

IWhich calegory does your short description mostly belong lo?
Scene (kitchen, corridor, street, beach, ...)

Reglon or surtace (road, grass, wall, floor, sky, ...)
@Ob}ecl (bed, car, building, tree, ...)
Object part (leg, head, wheel, roof, )

Texture or material (striped, rugged, wooden, plastic, ...)

: Simple elements or colors (vertical line, curved line, color blue, ...)



Annotating the Semantics of Units

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%
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Annotating the Semantics of Units

Pool5, unit 13; Label: Lamps; Type: : 84%
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Annotating the Semantics of Units




Annotating the Semantics of Units

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%
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Annotating the Semantics of Units

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%
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ImageNet vs. PlacesNet

http://places2.csail.mit.edu/ .
demo.html

ImageNet

* ~1 mil object-level images
over 1000 classes

PlacesNet

e ~1.8 million images from
365 scene categories
(at most 5000 images per
category).



http://places2.csail.mit.edu/demo.html

Distribution of Semantic Types at Each Layer

—@— places-CNN
@ imagenet-CNN
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Distribution of Semantic Types at Each Layer

o)

i
o

Object detectors emerge within CNN trained to

classify scenes, without any object supervision!
: 4 .....

W
o

N
o

—
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percent units (perf>75%)

—@— places-CNN
@ imagenet-CNN
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How can free will coexist with divine preordination?

Ah yes.

Related works:

- The Ontological Argument

- The Problem of Evil

- Ship of Theseus / Sorites Paradox
- What is Art

- 0.999 =1

- Chinese Room Al



Short cuts to Al

With billions of images on the web, it’s often possible to find a
close nearest neighbor.

We can shortcut hard problems by “looking up” the answer,
stealing the labels from our nearest neighbor.

-
L




So what is intelligence?

Weak Al:
The simulation of a ‘mind’ is a model for the ‘mind’.

Strong Al:
The simulation of a ‘mind’ is a ‘mind’.



Chinese Room experiment, John Searle (1980)

If a machine can convincingly simulate an

Intelligent conversation, does it understand? @ 2 .,{
o L] —




Chinese Room experiment, John Searle (1980)

If a machine can convincingly simulate an
Intelligent conversation, does it understand?

Searle imagines himself in a room, acting

as a computer by manually executing a .
program that convincingly simulates the
behavior of a native Chinese speaker. 5

Most of the discussion consists of

attempts to refute it. .
"The overwhelming majority," notes BBS

editor Stevan Harnad,” still think that the

Chinese Room Argument is dead wrong.” .

The sheer volume of the literature that has

grown up around it inspired Pat Hayes to g
quip that the field of cognitive science :
ought to be redefined as "the ongoing

research program of showing Searle's

Chinese Room Argument to be false.”




. Yann LeCun
October 23 at 9:58pm - @

Questions from the piece:

Q1. Does the Chinese Room argument prove the impossibility of machine
consciousness?
A1: Hell no. ... See More

Can Machines Become Moral?

The question is heard more and more often, both from those who think that
machines cannot become moral, and who think that to believe otherwise is a
dangerous illusion, and from those who think that machines must become moral....

BIGQUESTIONSONLINE.COM | BY DON HOWARD

OO‘.‘ You and 156 others 30 Comments 20 Shares

il Like ® Comment # Share



Mechanical Turk

von Kempelen, 1770.

Robotic chess player.
Clockwork routines.

Magnetic induction (not vision)

Toured the world; played
Napoleon Bonaparte
and Benjamin Franklin.




Mechanical Turk

It was all a ruse

Ho ho ho.




"Can machines fly?"
Yes; aeroplanes exist.

"Can machines fly like a bird?"
No, because aeroplanes don’t flap.

"Can machines perceive?”
“Can machines understand?"
Are these question like the first, or like the second?



Ornithopters

James Hays



Festo SmartBird [2011]

, b~

SmartBird




Interesting CNN properties

...or other ways to measure reception

http://yosinski.com/deepvis



http://yosinski.com/deepvis

What input to a neuron maximizes a class score?

7 f dense  dense
13 3

256

pooling 4096 4096

To visualize the function of a specific unitin a

neural network, we synthesize an input to that
unit which causes high activation.

Neuron of choice i
An image of random noise Xx.

Repeat:

1. Forward propagate: compute activation a;(x)

2. Back propagate: compute gradient at neuron 0a,(x) / 0x
3. Add small amount of gradient back to noisy image.

Andrej Karpathy



What image maximizes a class score?

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]
http://yosinski.com/deepvis

Andrej Karpathy


http://yosinski.com/deepvis

What image maximizes a class score?

e

Layer 8

Pirate Ship Rocking Chair Teddy Bear Windsor Tie Pitcher

Layer 7

Andrej Karpathy



Wow!

They just “fall out’!



f(x) f(x)

Pandal Gibbon class Gibbon!
gradient

Panda Adversarial example

Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html



https://twitter.com/fchollet

Breaking CNNs

correct +distort ostrich correct +distort ostrich

Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the
resulting image (right).

Intriguing properties of neural networks [Szegedy ICLR 2014]

Andrej Karpathy



http://arxiv.org/pdf/1312.6199v4.pdf

Breaking CNNs
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Deep Neural Networks are Easily Fooled: High Confidence Predictionsfor
Jia-bin Huang Unrecognizable Images [Nguyen et al. CVPR 2015]



http://arxiv.org/pdf/1412.1897.pdf

Adversarial Patches

* https://www.theverge.com/2018/1/3/16844842/ai
-computer-vision-trick-adversarial-patches-google

* https://arxiv.org/pdf/1712.09665.pdf

_ Classifier Input _ Classifier Output

0&

banana slug snail orange

[Brown et al., Google, 2018]


https://www.theverge.com/2018/1/3/16844842/ai-computer-vision-trick-adversarial-patches-google

A same set of
data points or ° ®
Experience

.J .
e

Local generalization: Extreme generalization:
Generalization power of Generalization power
pattern recognition achieved via

abstraction and reasoning

Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html



https://twitter.com/fchollet

The boy is holding a baseball bat.

Francois Chollet - https://blog.keras.io/the-limitations-of-deep-learning.html



https://twitter.com/fchollet

Curiosity: The success of
obfuscating gradients

* https://github.com/anishathalye/obfuscated-
gradients

In our recent paper, we evaluate the robustness of eight papers accepted to ICLR 2018 as non-certified white-box-secure
defenses to adversarial examples. We find that seven of the eight defenses provide a limited increase in robustness and can
be broken by improved attack techniques we develop.

The only defense we observe that significantly increases robustness to adversarial examples within the threat model proposed
is “Towards Deep Learning Models Resistant to Adversarial Attacks” (Madry et al. 2018), and we were unable to defeat this
defense without stepping outside the threat model. Even then, this technique has been shown to be difficult to scale to
ImageNet-scale (Kurakin et al. 2016). The remainder of the papers rely either inadvertently or intentionally on what we call
obfuscated gradients. Standard attacks apply gradient descent to maximize the loss of the network on a given image to
generate an adversarial example on a neural network. Such optimization methods require a useful gradient signal to succeed.
When a defense obfuscates gradients, it breaks this gradient signal and causes optimization based methods to fail.


https://github.com/anishathalye/obfuscated-gradients

Reconstructing images

Question: Given a CNN code, is it possible
to reconstruct the original image?

pooling pooling

Andrej Karpathy



Reconstructing images

Find an image such that:
- Its code is like a given code
- It "looks natural”
- Neighboring pixels should look similar

Image x* = argmin /(®(x), Pg) + AR(x)

XGRH XW xC

U(2(x), Bo) = [|(x) — Do

Andrej Karpathy



Reconstructing images

—— :
originalimage Reconstructions

from the 1000
log probabilities
for ImageNet
(ILSVRC)

classes

Understanding Deep Image Representations by Inverting Them
[Mahendran and Vedaldi, 2014]

Andrej Karpathy



Reconstructing images

Reconstructions from the representation after last last poolinglayer
(immediately before the first Fully Connected layer)

Andrej Karpathy



DeepDream

DeepDream https://github.com/google/deepd

Andrej Karpathy


https://github.com/google/deepdream

DeepDream

DeepDream modifies the image in a way that “boosts” all activations, at any layer

This creates a feedback loop: e.g., any slightly detected dog face will be made

more and more dog-like over time.

Andrej Karpathy "Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"



DeepDream

Deep Dream Grocery Trip
https://www.youtube.com/watch?v=DgPaCWJL7XI

Deep Dreaming Fear & Loathing in Las Vegas: the Great San Francisco Acid Wave
https://www.youtube.com/watch?v=oyxSerkkP40

Andrej Karpathy


https://www.youtube.com/watch?v=DgPaCWJL7XI
https://www.youtube.com/watch?v=oyxSerkkP4o

Style transfer



Neural Style

[ A Neural Algorithm of Artistic Style by Leon A. Gatys,
Alexander S. Ecker, and Matthias Bethge, 2015]
good implementation by Justin Johnson in Torch:
https://github.com/jcjohnson/neural-style

Andrej Karpathy


https://github.com/jcjohnson/neural-style

Neural Style

Step 1: Extract content targets (ConvNet activations ofall
layers for the given contentimage)

content activations

e.g.
at CONV5_1 layer we would have a [14x14x512] array of target activations

Andrej Karpathy



Neural Style

Step 2: Extract style targets (Gram matrices of
ConvNet activations of all layers for the given style
Image)

style gram matrices
T b ad B
e =¥V

at CONV1 layer (with [224x224x64] activations) would give a [64x64] Gram
matrix of all pairwise activation covariances (summed across spatial locations)

Andrej Karpathy



Neural Style

Step 3: Optimize over image to have:
- The content of the content image (activations match content)
- The style of the style image (Gram matrices of activations match style)

Etotal (]3. (_i F) — aEcontent (,ﬁ -1_:) 2 .B‘Cstyle ((_’:~ -1_:)

match content

\\\\\

2 | dense dense
1 1 1 dense
T = |
3 i r H 3 .
by \ >l ) J Lo N s
384 | 384 256 1000
- Max
- —_— pooling 4096 4096
% pooling

Adapted from Andrej Karpathy

match style




Neural Style

make your own easily on deepatrt.io

Andrej Karpathy



Dataset Distillation
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ABSTRACT

Model distillation aims to distill the knowledge of a complex model into a simpler
one. In this paper, we consider an allernative formulation called dataset distillation:
we keep the model fixed and instlead attempt to distill the knowledge from a large
training dataset into a small one. The idea is to synthesize a small number of data
points that do not need to come from the correct data distribution, but will, when
given to the learning algorithm as training data, approximate the model trained
on the original data. For example, we show that it is possible to compress 60, 000
MNIST training images into just 10 synthetic distilled images (one per class) and
achieve close to original performance with only a few gradient descent sieps, given
a fixed network initialization. We evaluate our method in various initialization
settings and with different learning objectives. Experiments on multiple datasets
show the advantage ol our approach compared to alternative methods.



