

!!! Warning !!!

Learning jargon is always painful…

…even if the concepts behind the jargon are not hard.

So, let’s get used to it.

“In mathematics you don't understand things.
You just get used to them.”

von Neumann
(telling a joke)

Gartner Hype Cycle

Rocket AI

• Launch party
@ NIPS 2016
[now NeurIPS]

• Neural
Information
Processing
Systems

• Academic
conference

Rocket AI

Rocket AI

Article by Riva-Melissa Tez

So far…

PASCAL VOC = ~75% 20-class

ImageNet = ~75% 1000-class, top 5

Human brains used intuition and understanding of
how we think vision works to develop computer

vision systems, and it’s pretty good.

Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building
(compression/quantization)

Classifier (decision making)

Hand designed.

Hand designed.

Hand designed.

Learned.

Captured+manual.

Classification Object DetectionRecognition: Segmentation

Well, what do we have?

Best performing visions systems have commonality:

Hand designed features
• Gradients + non-linear operations

(exponentiation, clamping, binning)
• Features in combination (parts-based models)
• Multi-scale representations

Machine learning from databases

Linear classifiers (SVM)
• Some non-linear kernel tricks

But it’s still not that good…

PASCAL VOC = ~75% 20-class

ImageNet = ~75% 1000-class, top 5

ImageNet (human) = ~95%

Problems:

- Lossy features

- Lossy quantization

- ‘Imperfect’ classifier

But it’s still not that good…

PASCAL VOC = ~75% 20-class

ImageNet = ~75% 1000-class, top 5

ImageNet (human) = ~95%

How to solve?
• Features: More principled modeling?

We know why the world looks (it’s physics!);
Let’s build better physically-meaningful models.

• Quantization: More data and more compute?
It’s just an interpolation problem; let’s represent the
space with fewer data approximations.

• Classifier: …

The limits of learning?
Where should we put our effort?

“The Unreasonable Effectiveness of Data” - Norvig

Previous claim:

It is more important to have
more or better labeled data than to use
a different supervised learning technique.

No free lunch theorem

Hume (c.1739):

“Even after the observation of the frequent or
constant conjunction of objects, we have no reason
to draw any inference concerning any object beyond
those of which we have had experience.”

-> Learning beyond our experience is impossible.

No free lunch theorem for ML

Wolpert (1996):

‘No free lunch’ for supervised learning:

“In a noise-free scenario where the loss function is
the misclassification rate, if one is interested in off-
training-set error, then there are no a priori
distinctions between learning algorithms.”

-> Averaged over all possible datasets,
no learning algorithm is better than any other.

OK, well, let’s give up. Class over.

No, no, no!

We can build a classifier which better matches the
characteristics of the problem!

But…didn’t we just do that?

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

We used intuition and understanding of how we
think vision works, but it still has limitations.

Why?

Linear spaces - separability

• + kernel trick to transform space.

Kawaguchi

Linearly separable data
+ linear classifer = good.

Non-linear spaces - separability

Take XOR – exclusive OR

E.G., human face has two eyes XOR sunglasses

Kawaguchi

Non-linear spaces - separability

Linear functions are insufficient on their own.

Kawaguchi

Curse of Dimensionality

Every feature that we
add requires us to
learn the useful
regions in a much
larger volume.

d binary variables =
O(2d) combinations

Curse of Dimensionality

Not all regions of this high-dimensional space are
meaningful.

>> I = rand(256,256);

>> imshow(I);

@ 8bit = 256 values ^ 65,536

Local constancy / smoothness of feature space

All existing learning algorithms we have seen assume
smoothness or local constancy.

-> New example will be near existing examples

-> Each region in feature space requires an example

-> Cannot generalize beyond examples

How to try and represent this high-dimensional
space in a way which maximizes generalization?

Extreme example: k-NN classifier. The number of
regions cannot be more than the number of examples.

More specialization?

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

Is there a way to make our system
better suited to the problem?

Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building
(compression/quantization)

Classifier (decision making)

Hand designed.

Hand designed.

Hand designed.

Learned.

Captured+manual.

Classification Object DetectionRecognition: Segmentation

Wouldn’t it be great if we could…

Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building
(compression/quantization)

Classifier (decision making)

Classification Object DetectionRecognition:

Learned.

Learned.

Learned.

Learned.

Captured+manual.

Segmentation

End to end
learning!

Goals

Build a classifier which is more powerful
at representing complex functions

and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function
relies on a composition of factors in a hierarchy.

Dependencies between regions in feature space
= factor composition

Example

Nielsen, National Geographic

Example

Nielsen, National Geographic

Non-linear spaces - separability

Composition of linear functions can represent
more complex functions.

Kawaguchi

Goals

Build a classifier which is more powerful
at representing complex functions

and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function
relies on a composition of factors in a hierarchy.

2. Learn a feature representation specific to the dataset.

10k/100k + data points + factor composition
= sophisticated representation.

Reminder: Viola Jones Face Detector

Combine thousands of ‘weak classifiers’

Two-rectangle features Three-rectangle features Etc.

-1 +1

CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=801361

Learn how to combine in cascade with boosting

Examples

Stage 1
H1(x) > t1?

Reject

No

Yes

Stage 2
H2(x) > t2?

Stage N
HN(x) > tN?

Yes

…
Pass

Reject

No

Reject

No

Viola Jones

Image formation
(+database+labels)

Features
(saliency+description)

Classifier

(decision making)

Object DetectionRecognition:

Specified space, but
selected automatically.

Learned combination.

Captured+manual.

Neural Networks

Neural Networks

Basic building block for composition is a
perceptron (Rosenblatt c.1960)

Linear classifier – vector of weights w and a ‘bias’ b

𝒘 = (𝑤1, 𝑤2, 𝑤3)
𝒃 = 0.3

Output (binary)

𝑥1

𝑥2

𝑥3

Binary classifying an image

Each pixel of the image would be an input.

So, for a 28 x 28 image, we vectorize:

x = 1 x 784

w is a vector of weights for each pixel, 784 x 1

b is a scalar bias per perceptron

Result = xw + b -> (1x784) x (784x1) + b = (1x1)+b

Neural Networks - multiclass

Add more perceptrons

Binary output

𝑥1

𝑥2

𝑥3

Binary output

Binary output

Multi-class classifying an image

Each pixel of the image would be an input.

So, for a 28 x 28 image, we vectorize.

x = 1 x 784

W is a matrix of weights for each pixel/each perceptron
W = 10 x 784 (10-class classification)

b is a bias per perceptron (vector of biases); (1 x 10)

Result = xW + b -> (1x784) x (784 x 10) + b

-> (1 x 10) + (1 x 10) = output vector

Bias convenience

Let’s turn this operation into a multiplication only:
• Create a ‘fake’ feature with value 1 to represent the bias

• Add an extra weight that can vary

1

𝒘 = (𝑏,𝑤1, 𝑤2, 𝑤3)

Output (binary)

𝑥1

𝑥2

𝑥3

Composition

Attempt to represent complex functions as compositions
of smaller functions.

Outputs from one perception are fed into inputs of
another perceptron.

Nielsen

Composition

Sets of layers and the connections (weights) between
them define the network architecture.

Layer 1 Layer 2

Nielsen

Composition

Layers that are in between the input and the output are
called hidden layers, because we are going to learn their
weights via an optimization process.

Hidden
Layer 1

Hidden
Layer 2

Nielsen

Composition

It’s all just matrix multiplication!
GPUs -> special hardware for fast/large matrix multiplication.

Hidden
Layer 1

Hidden
Layer 2

Matrix! Matrix!Matrix!

Multiple

Nielsen

Problem 1 with all linear functions

We have formed chains of linear functions.

We know that linear functions can be reduced
• g = f(h(x))

Our composition of functions is really
just a single function : (

Problem 2 with all linear functions

Linear classifiers: small change in input can cause
large change in binary output
= problem for composition of functions

Activation function
for a perceptron:

Heaviside function

Nielsen

Problem 2 with all linear functions

Linear classifiers: small change in input can cause
large change in binary output.

We want:

Nielsen

Let’s introduce non-linearities

We’re going to introduce non-linear functions to
transform the features.

Nielsen

Universality

A single-layer of perceptrons can learn any
univariate function:

• Combination of many step functions

• So long as it is differentiable

• To some approximation;
More perceptrons = a better approximation

Visual proof (Michael Nielson):

http://neuralnetworksanddeeplearning.com/chap4.html

- using non-linear activation functions

http://neuralnetworksanddeeplearning.com/chap4.html

Perceptron model

• Use is grounded in theory
• Universal approximation theorem (Goodfellow 6.4.1)

• Can represent a NAND circuit, from which any
binary function can be built by compositions of
NANDs

• With enough parameters, it can approximate
any function.

Mark 1 Perceptron
c.1960

20x20 pixel
camera feed

Wikipedia

If a single-layer network can learn any function…
…given enough parameters…

…then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow
networks at learning such hierarchies of knowledge.

Multi-layer perceptron (MLP)

• …is a ‘fully connected’ neural network with non-
linear activation functions.

• ‘Feed-forward’ neural network

Nielson

What is the relationship between SVMs
and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

What is the relationship between SVMs
and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

A perceptron does not.
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal
stability’ is used in SVM:

Perceptron
+ optimal stability
+ kernel trick
= foundations of SVM

Does anyone pass along the weight without an
activation function?

No – this is linear chaining.

Output vector
Input
vector

Output vector
Input
vector

Does anyone pass along the weight without an
activation function?

No – this is linear chaining.

Are there other activation functions?

Yes, many.

As long as:

- Activation function s(z) is well-defined
as z -> -∞ and z -> ∞

- These limits are different

Then we can make a step! [Think visual proof]
It can be shown that it is universal for function

approximation.

Activation functions:
Rectified Linear Unit
• ReLU

Cyh24 - http://prog3.com/sbdm/blog/cyh_24

Rectified Linear Unit

Ranzato

Goals

Build a classifier which is more powerful at
representing complex functions and more suited to
the learning problem.

What does this mean?

1. Assume that the underlying data generating
function relies on a composition of factors.

2. Learn a feature representation that is specific to
the dataset.

Why do we need many layers?

- A hierarchical structure is potentially more efficient because we
can reuse intermediate computations.

- Different representations can be distributed across classes.

Images as input to neural networks

Images as input to neural networks

Images as input to neural networks

Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.

Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.

• Parameter sharing
• ‘Tied weights’ – use same weights for more than one

perceptron in the neural network.

• Leads to equivariant representation
• If input changes (e.g., translates), then output changes similarly

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]I

Filtering reminder:
Correlation (rotated convolution) 111

111

111],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=

Perceptron:

This is convolution!

v

v

v v

Shared weights

Convolution

3x3 kernel

Filter = ‘local’ perceptron.
Also called kernel.

n = layer number
K = kernel size
j = # channels (input)
or # filters (depth)

Stride = 1

Stride = 1

Stride = 3

Stride = 3

Stride = 3

Stride = 3

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

Pooling is similar to downsampling

…except sometimes we don’t want to blur,
as other functions might be better for classification.

Wikipedia

Max pooling

N(x,y) = model pixel values in window
as a normal distribution

m = mean
σ = variance

Yann LeCun’s MNIST CNN architecture

DEMO

http://scs.ryerson.ca/~aharley/vis/conv/

Thanks to Adam Harley for making this.

More here: http://scs.ryerson.ca/~aharley/vis

http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/

Think-Pair-Share

Input size: 96 x 96 x 3

Kernel size: 5 x 5 x 3

Stride: 1

Max pooling layer: 4 x 4

Output feature map size?

a) 5 x 5

b) 22 x 22

c) 23 x 23

d) 24 x 24

e) 25 x 25

Input size: 96 x 96 x 3

Kernel size: 3 x 3 x 3

Stride: 3

Max pooling layer: 8 x 8

Output feature map size?

a) 2 x 2

b) 3 x 3

c) 4 x 4

d) 5 x 5

e) 12 x 12

Our connectomics diagram

Conv 1
3x3x4
64 filters

Max pooling
2x2 per filter

Conv 2
3x3x64
48 filters

Max pooling
2x2 per filter

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Conv 3
3x3x48
48 filters

Max pooling
2x2 per filter

Conv 4
3x3x48
48 filters

Max pooling
2x2 per filter

Input
75x75x4

Reading
architecture
diagrams

Layers
- Kernel sizes
- Strides
- # channels
- # kernels
- Max pooling

AlexNet diagram (simplified)
Input size
227 x 227 x 3

Conv 1
11 x 11 x 3
Stride 4
96 filters

227

227

Conv 2
5 x 5 x 96
Stride 1
256 filters

3x3
Stride 2

3x3
Stride 2

[Krizhevsky et al. 2012]

Conv 3
3 x 3 x 256
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
256 filters

Wait, why isn’t it called a correlation neural network?

It could be.

Deep learning libraries actually implement correlation.

Correlation relates to convolution via a 180deg rotation
of the kernel. When we learn kernels, we could easily
learn them flipped.

Associative property of convolution ends up not being
important to our application, so we just ignore it.

[p.323, Goodfellow]

Phew!

Monday:

How to Train your Dragon Network

Project 4: Out Friday

- Questions

- Code part 1

Due 15th.

More ConvNet explanations

• https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

