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Enforcement Says Entire Glient List Was Stolen
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Clearview Al, which contracts with law enforcement after reportedly scraping 3 billion images from the web, now says someone got What Bernie Really Got Done in His 29
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B REUTERS/Thomas Peter

A facial-recognition company that contracts with powerful law-enforcement

agencies just reported that an intruder stole its entire client list, according to a

notification the company sent to its customers.



IT"Warning !

Learning jargon is always painful...
...even if the concepts behind the jargon are not hard.

So, let’s get used to it.

“In mathematics you don't understand things.
You just get used to them.”
von Neumann
(telling a joke)



Gartner Hype Cycle
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ROCKET:A'

NEXT GENERATION OF APF

Launching in 2017, Rocket Al will be the global leader in
neurologically-inspired applied machine learning.
We build our systems around our patent-pending technology

Temporally Recurrent Optimal Learning™

We Are Hiring

launch@rocketai.org



Rocket Al

* Launch party
@ NIPS 2016
[now NeurlPS]

* Neural
Information
Processing
Systems

e Academic
conference

Markus Wulfmeier
December 8 at 5:15pm - Barcelona, Spain - @

#rocketai s launch party at #nips2016 clearly the best. Including the police involvement.



Rocket Al

Péle #Al au #Québec and 22 others liked

Andrej Karpathy karpathy - Dec B
"= & Best party of #nips2016 award goes to #rocketai (rocketai.org). Definitely a
company to watch closely.

3 4« ¥ 130

Karl Moritz Hermann ©karlmoritz - Dec 8
One day we will look back and realise that the #rocketal launch was the day
when things in our field changed forever.

¥ 2

; lan Goodfellow “goodfellow_ian - Dec 11
o #rocketal definitely has the most popular Jacobian-Optimized Kernel Expansion
of NIPS 2016
3 42 ¥ 214



Rocket Al

Metrics for the Rocket Al launch party

Email RSVPs to party: 316

People who emailed in their resume: 46

Large name brand funds who contacted us about investing: 5

Media: Twitter, Facebook, HackerNews, Reddit, Quora, Medium etc

Time Planning: < 8 hours

Money Spent: $79 on the domain, $417 on alcohol and snacks + (police fine)
For reference, NIPS sponsorship starts at $10k.

Estimated value of Rocket Al: in the tens of millions.

Article by Riva-Melissa Tez



ROCKET:A'

NEXT GENERATION OF APF

Launching in 2017, Rocket Al will be the global leader in
neurologically-inspired applied machine learning.
We build our systems around our patent-pending technology

Temporally Recurrent Optimal Learning™

We Are Hiring

launch@rocketai.org



Hype Cycle for Emerging Technologies, 2018

‘ Digital Twin

Expectations

Deep Neural Nets (Deep Learning)
Carbon Nanotube

oT Platform

Virtual Assistants
Silicon Anode Batteries
Blockchain

Biochips
Smart Workspace
Brain-Computer Interface

Autonomous Mobile Robots
Smart Robots

Deep Neural Network ASICs

Al PaaS
Quantum Computing

Connected Home
Autonomous Driving Level 4

Volumetric Displays
Self-Healing System Technology
Conversational Al Platform

Autonomous Driving Level 5 Mixed Reality

Edge Al

Exoskeleton
Blockchain for Data Security

Neuromorphic Hardware

Knowledge Graphs
4D Printing

Artificial General Smart Fabrics
Intelligence

Augmented Realit
Smart Dust ugmented fealty

Flying Autonomous Vehicles
Biotech — Cultured or Artificial Tissue

| ) Peak of
nnovation Inflated Trough of

Trigger Expectations

Disillusionment Slope of Enlightenment

Plateau will be reached in:
@ lessthan 2 years
. 210 5 years

@ 5to 10 years
/\ more than 10 years

As of August 2018

Plateau of
Productivity

Time

gartner.com/SmarterWithGartner

Source: Gartner (August 2018)
© 2018 Gartner, Inc. and/or its affiliates. All rights reserved.

Gartner



Gartner Hype Cycle for
Emerging Technologies, 2019

Biochips
Al PaaS,
AN 5G
Edge Analytics, /
Autonomous Driving Level 5 { '
Low-Earth-Orbit Satellite Systems._ \(’
Edge Al \\l\ Graph Analytics
Explainable Al - ,
Personification -
(7)) Knowledge Graphs — — Next-Generation Memory
g Synthetic Data " 3D Sensing Cameras
e Light Cargo Delivery Drones —— ]
E Transfer Learning - . — Emotion Al
- Flying Autonomous Vehicles — .
0 Augmented Intelligence —— —— Autonomous Driving Level 4
Q Nanoscale 3D Printing
% Decentralized Autonomous —
Organization —_DigitalOps
i g IR
Generative Adversarial Y Adaptive ML
Networks ———
Decentralized Web —

AR Cloud — Immersive Workspaces

Biotech - Cultured —
or Artificial Tissue

Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
Time
Plateau will be reached:
less than 2 years @ 2to5years 5 to 10 years () more than 10 years @ obsolete before plateau As of August 2019

gartner.com/SmarterWithGartner

Source: Gartner Ga t e
© 2019 Gartner, Inc. and/or its affiliates. All rights reserved. r n r@



So far...

PASCAL VOC =~75% 20-class
ImageNet =~75% 1000-class, top 5

Human brains used intuition and understanding of
how we think vision works to develop computer
vision systems, and it’s pretty good.



Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building
(compression/quantization)

Recognition:

Classifier (decision making)

Object Detection

Classification

Segmentation

Captured+manual.

Hand designed.

Hand designed.

Hand designed.

Learned.



Well, what do we have?

Best performing visions systems have commonality:

Hand designed features

* Gradients + non-linear operations
(exponentiation, clamping, binning)

e Features in combination (parts-based models)
* Multi-scale representations

Machine learning from databases

Linear classifiers (SVM) N
e Some non-linear kernel tricks o | @

X2

X1



But it’s still not that good...

PASCAL VOC =~75% 20-class
ImageNet =~75% 1000-class, top 5

ImageNet (human) = ~95%

Problems:

- Lossy features

- Lossy quantization

- ‘Imperfect’ classifier



But it’s still not that good...

PASCAL VOC =~75% 20-class
ImageNet =~75% 1000-class, top 5
ImageNet (human) = ~95%

How to solve?

* Features: More principled modeling?
We know why the world looks (it’s physics!);
Let’s build better physically-meaningful models.

* Quantization: More data and more compute?
It’s just an interpolation problem; let’s represent the
space with fewer data approximations.

* Classifier: ...



The limits of learning?

Where should we put our effort?



Previous claim:

It is more important to have
more or better labeled data than to use
a different supervised learning technique.

“The Unreasonable Effectiveness of Data” - Norvig



No free lunch theorem

Hume (c.1739):

“Even after the observation of the frequent or
constant conjunction of objects, we have no reason
to draw any inference concerning any object beyond
those of which we have had experience.”

-> Learning beyond our experience is impossible.



No free lunch theorem for ML

Wolpert (1996):
‘No free lunch’ for supervised learning:

“In a noise-free scenario where the loss function is
the misclassification rate, if one is interested in off-
training-set error, then there are no a priori
distinctions between learning algorithms.”

-> Averaged over all possible datasets,
no learning algorithm is better than any other.



OK, well, let’s give up. Class over.
No, no, no!

highly specialized algorithm

. &
performance

averdge R o . -

type of problem

We can build a classifier which better matches the
characteristics of the problem!

general-purpose algorithm -

L _.-'
L



But...didn't we just do that?

* PASCAL VOC ="~75%
* ImageNet = ~75%; human performance = ~95%

We used intuition and understanding of how we
think vision works, but it still has limitations.

Why?



Linear spaces - separability

* + kernel trick to transform space.

Xi A Linearly separable data
o + linear classifer = good.
. O o O
x 0
o 0
x | o
X "
0
X X O
t o
X X X X2
- 0
X 2

Kawaguchi



Non-linear spaces - separability

Take XOR — exclusive OR
E.G., human face has two eyes XOR sunglasses

X, X Y A

0 0 0 1

0 1 1 & ®

1 0 1

1 1 0

Y = X.PX
® P X
0 17

Kawaguchi



Non-linear spaces - separability

Linear functions are insufficient on their own.

X1 X2 Y
0 0 0 1
0 1 1
1 0 1
1 1 0

Li .|
Y = Xi PXe _

—p»= X2

Kawaguchi



Curse of Dimensionality

1 dimension:
10 positions

Every feature that we
add requires us to
learn the useful 2 dimensions:
regions in a much *
larger volume.

d binary variables =
0(29) combinations

3 dimensions:
> 1000 positions!
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Local constancy / smoothness of feature space

All existing learning algorithms we have seen assume
smoothness or local constancy.

-> New example will be near existing examples

-> Each region in feature space requires an example

-> Cannot generalize beyond examples

Extreme example: k-NN classifier. The number of
regions cannot be more than the number of examples.

How to try and represent this high-dimensional
space in a way which maximizes generalization?



More specialization?

* PASCAL VOC ="~75%
* ImageNet = ~75%; human performance = ¥95%

highly specialized algorithm

performance | | .
L/ general-purpose algorithm \

type of problem

Is there a way to make our system
better suited to the problem?



Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building
(compression/quantization)

Recognition:

Classifier (decision making)

Object Detection

Classification

Segmentation

Captured+manual.

Hand designed.

Hand designed.

Hand designed.

Learned.



Wouldn’t it be great if we could...

Image formation (+database+labels) Captured+manual.
Filtering (gradients/transforms) Learned.

Feature points (saliency+description) Learned.

. .. buildi “End to end
chtlonary. uiiding -~ Learned. learning!
(compression/quantization)

Classifier (decision making) Learned.

Recognition:  Classification Object Detection  Segmentation




Goals

Build a classifier which is more powerful
at representing complex functions
and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function
relies on a composition of factors in a hierarchy.

Dependencies between regions in feature space
= factor composition



Example

Iz there an eyve in the top left?

Iz there an eve in the top right?

Iz there a nose in the middle?

= 7

Is there a mouth at the bottom?

Iz there halr on top?

¥ Iz this a face?

Nielsen, National Geographic



Example

Iz there an evebrow?

Iz there an eyve In the top left? Are there evelashesT s

L 3

Is there an iris?

Nielsen, National Geographic



Non-linear spaces - separability

Composition of linear functions can represent
more complex functions.

X: X Y
0 0 0
0 1 1
1 0 1
1 1 0
Y = Xi DX

X1
i #
]_ ,*'-I-“.'I.
¢ o
Ll__. |
O. '.-'I —p» Xo

Kawaguchi



Goals

Build a classifier which is more powerful
at representing complex functions
and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function
relies on a composition of factors in a hierarchy.

2. Learn a feature representation specific to the dataset.

10k/100k + data points + factor composition
= sophisticated representation.



Reminder: Viola Jones Face Detector

Combine thousands of ‘weak classifiers’

-1 +1

G-

Two-rectangle features Three-rectangle features

A

=l

Learn how to combine in cascade with boosting

CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=801361



Viola Jones

Image formation

Captured+manual.
(+database+labels)
Features Specified space, but
(Sa|iency+description) selected automatically.

Classifier

Learned combination.

(decision making)

Recognition: Object Detection



Neural Networks



Neural Networks

Basic building block for composition is a
perceptron (Rosenblatt c.1960)

Linear classifier — vector of weights w and a ‘bias’ b

W = (W1;W2;W3)
X
1 b=03
Xy % Output (binary)
X3 /

0 ifw-2z4+5<0
output = - w-Tr = . WST 5,
P { ifw-z+b>0 2.5 3%



Binary classifying an image

Each pixel of the image would be an input.
So, for a 28 x 28 image, we vectorize:
Xx=1x784

W is a vector of weights for each pixel, 784 x 1
b is a scalar bias per perceptron

Result=xw+b -> (1x784) x (784x1) + b = (1x1)+b



Neural Networks - multiclass

Add more perceptrons

a

X1 > > Binary output

) »  Binary output

X3 >  Binary output




Multi-class classifying an image

Each pixel of the image would be an input.
So, for a 28 x 28 image, we vectorize.
Xx=1x784

W is a matrix of weights for each pixel/each perceptron
W =10 x 784 (10-class classification)

b is a bias per perceptron (vector of biases); (1 x 10)

Result=xW +b ->(1x784)x (784 x10)+b
-> (1 x10) + (1 x 10) = output vector



Bias convenience

Let’s turn this operation into a multiplication only:
* Create a ‘fake’ feature with value 1 to represent the bias
* Add an extra weight that can vary

W = (b, W1,W2,W3)
X9 % Output (binary)

0 ifw-z <0 w-xzzjwj;cj,



Composition

output

Attempt to represent complex functions as compositions
of smaller functions.

Outputs from one perception are fed into inputs of
another perceptron.

Nielsen



Composition

Layer 1 Layer 2

output

Sets of layers and the connections (weights) between
them define the network architecture.

Nielsen



Composition

Hidden Hidden
Layer 1 Layer 2

output

Layers that are in between the input and the output are
called hidden layers, because we are going to learn their
weights via an optimization process.

Nielsen



Composition

Hidden Hidden
Layer 1 —tayer-2—

Multiple output

mputs ‘

[ KKK

Matrix! Matrix! Matrix!

It’s all just matrix multiplication!

GPUs -> special hardware for fast/large matrix multiplication.
Nielsen



Problem 1 with all linear functions

We have formed chains of linear functions.

We know that linear functions can be reduced
* g =f(h(x))

Our composition of functions is really
just a single function : (



Problem 2 with all linear functions

Linear classifiers: small change in input can cause
large change in binary output
= problem for composition of functions

step function

1.0+

0.8 -

Activation function
for a perceptron:
Heaviside function

0.6 -

0.2+

0.0

Nielsen



Problem 2 with all linear functions

Linear classifiers: small change in input can cause
large change in binary output.

We want:

small change in any weight (or bias)

causes a small change in the output
w4+ Aw

ﬂutput—}—ﬂ{mt:]mt

Nielsen



Let’s introduce non-linearities

We’re going to introduce non-linear functions to
transform the features.

sigmoid function
1.0

06+

1 0.4

0.0

Nielsen



Universality

A single-layer of perceptrons can learn any
univariate function:

 Combination of many step functions

* So long as it is differentiable

* To some approximation;
More perceptrons = a better approximation

Visual proof (Michael Nielson):
http://neuralnetworksanddeeplearning.com/chap4.html

- using non-linear activation functions


http://neuralnetworksanddeeplearning.com/chap4.html

Perceptron model

* Use is grounded in theory
e Universal approximation theorem (Goodfellow 6.4.1)

e Can represent a NAND circuit, from which any
binary function can be built by compositions of
NANDs

* With enough parameters, it can approximate
any function.
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If a single-layer network can learn any function...
...given enough parameters...

...then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow
networks at learning such hierarchies of knowledge.



Multi-layer perceptron (MLP)

e ...is a ‘fully connected’ neural network with non-
linear activation functions.

output

* ‘Feed-forward’ neural network

Nielson



What is the relationship between SVMs
and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.




What is the relationship between SVMs
and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

A perceptron does not.
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal
stability’ is used in SVM:

Perceptron

+ optimal stability

+ kernel trick

= foundations of SVM

| I | |
| & w ) = (=] = N w B w




Does anyone pass along the weight without an
activation function?

No — this is linear chaining.

Output vector




Does anyone pass along the weight without an
activation function?

No — this is linear chaining.

Input

Output vector
vector



Are there other activation functions?

Yes, many.

As long as:

- Activation function s(z) is well-defined
as zZ->-o0 gnd z -> oo
- These limits are different

Then we can make a step!
It can be shown that it is universal for function
approximation.



Activation functions:
Rectified Linear Unit

* RelLU

f(z)

1.0 4

0.8

0.6+

0.4

0.2 -

0.0

= max(0, z).

T 1 | T I
-4 -3 -2 -1 0 1

I
2



RelU

Lt 3

Wyr +b Wir 4+ b

Cyh24 - http://prog3.com/sbdm/blog/cyh 24



Rectified Linear Unit

Question: What do ReLU layers accomplish?

Answer: Piece-wise linear tiling: mapping is locally linear.

Ranzato



Goals

Build a classifier which is more powerful at
representing complex functions and more suited to
the learning problem.

What does this mean?

1. Assume that the underlying data generating
function relies on a composition of factors.

2. Learn a feature representation that is specific to
the dataset.



Supervised Learning

[(xi, y'),i=1.. P] training dataset

i
X

!
Y

P

I-th input training example
I-th target label

number of training examples

X
m———

Goal: predict the target label of unseen inputs.

2
Ranzaton




Supervised Learning: Examples

Classification

OCR

3
Ranzaton




Supervised Deep Learning

Classification

&
F

g ﬂ_.
1

Denoising

OCR

“2345”

4
Ranzaton




Alternative Graphical Representation

d i
h2 k+1
k h2
h3 k+1
k h3

h4

12
Ranzaton




X

hl

Neural Networks: example

Input
1-st layer hidden units

h* 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).

7
Ranzaton




Why do we need many layers?

- A hierarchical structure is potentially more efficient because we
can reuse intermediate computations.

- Different representations can be distributed across classes.

[0010000100110010...]truckfeature

Exponentially more efficient than a
1-of-N representation (a la k-means)

14
Ranzaton




Interpretation

[1100010100001101] motorbike

001000010011 0010...] tuck

AN

15
Ranzaton




Interpretation

prediction of class

high-level

parts
| = distributed representations
mid-level |
s feature sharing
parts f .
» compositionality
low level
parts
Input image Pt e

e

T el 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton




Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are
the answer. In general, the wider and the deeper the network the
more complicated the mapping.

Question: How do | set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.

Then, we need to define a procedure to adjust the parameters. .
Ranzaton




X

hl

Neural Networks: example

Input
1-st layer hidden units

h® 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).

.
Hanzaton




Outline

» Convolutional Neural Networks

32
Ranzaton




Images as input to neural networks

il

40 T
[T
< | .....x,”...i.;...r
NIANEI ] \
: 1l

N

33

Ranzaton




Images as input to neural networks

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

33
Ranzaton




Images as input to neural networks

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

. . 33
training samples anyway.. Ranzat n
anzato




Motivation

» Sparse interactions — receptive fields

* Assume that in an image, we care about ‘local
neighborhoods’ only for a given neural network layer.

* Composition of layers will expand local -> global.



Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
. when input image is registered (e.g., |
face recognition). Ranzaton




STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10

4 j . AM parameters

Note: This parameterization IS good
when input image is registered (e.g., N
face recognition). Ranzaton




Motivation

» Sparse interactions — receptive fields

* Assume that in an image, we care about ‘local
neighborhoods’ only for a given neural network layer.

* Composition of layers will expand local -> global.

* Parameter sharing

* ‘Tied weights’ — use same weights for more than one
perceptron in the neural network.

* Leads to equivariant representation
* If input changes (e.g., translates), then output changes similarly



i ! ,

S5

" Share the same parameters across
( N different locations (assuming input is

ationary):

36
Ranzaton




Filtering reminder: f[. -1 FEE
Correlation (rotated convolution) ARE

IT.,.] ., ]

O~

him,n] =3 F[k, 1] 1[m+k,n+1]

Credit: S. Seitz



Convolutional Layer

0 fw-z4+5b<0
1 ifw-z4+b>0

- ’

AL .| w-xr =) j WiT;.

v Share the same parameters across
» ( S different locations (assuming input is

" f;" v, stationary):
11 = Convolutions with learned kernels

ST

_ ‘ Perceptron: output = {
A

36
Ranzaton




Convolution

3x3 kernel

10 1 TR RS
*-101
-101_ o
Shared weights é




Convolutional Layer

Learn multiple filters.

Filter = ‘local’ perceptron.
g\ Also called kernel.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton




Interpretation

prediction of class

high-level
parts

= distributed representations
s feature sharing
= compositionality

mid-level
parts

low level
parts

Input image ey

e

e el 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Hanzaton




Convolutional Layer

n = layer number

h max O Z B K = kernel size
=1 j =#channels (input)
or # filters (depth)

output input feature kernel
feature map map

Conv.
layer

55
Ranzaton




Convolutional Layer

K
n__ n—1 n
h';=max (0, Zkzl e KXW

/

output input feature kernel
feature map map

56
Ranzaton




Convolutional Layer

K
n__ n—1 n
h';=max (0, Zkzl e KXW

/

output input feature kernel
feature map map

57
Ranzaton




Stride =1




Stride =1




Stride = 3




Stride = 3




Stride = 3




Stride = 3




Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60
Ranzaton




Pooling Layer

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

61
Ranzaton




Pooling is similar to downsampling

Level 4
Blur and %.1/16 resolution
subsample f& Level 3
Blur and : 1/8 resolution
subsample ' <8 Level 2
< 1/4 resolution
Blur and
subsample :
. ' Level 1
- 1/2 resolution
Blur and
subsample '
| Level 0
Original
] H
< : Image

...except sometimes we don’t want to blur,
as other functions might be better for classification.



Pooling Layer: Receptive Field Size




Pooling Layer: Examples
Max-pooling:
h};(x’y):maxfeN(x),jzeN(y) ]

Average pooling'

I/sze ), VEN(y f;_l



Max pooling

Single depth slice

-

Wikipedia




Pooling Layer: Examples
Max-pooling:
1 n—1;_ _
h]-('x’y):ma‘xfeN(x),j/EN(y)hj ('x:y)
Average pooling-

)J=UK DY N E, )

), VEN(y

L2-pooling:
n — n—1y7—_ _—\2
hj(x’y)_\/szN(x),jzeN(y) hj (x?y)

L2-pooling over features:

W, )=V 2 e P (3, 0)

62
Ranzaton




Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

(P+KAX(P+K1) o
5eee
gz %
g ale %
X
’b‘ 66
‘ Ranzaton




Pooling Layer: Receptive Field Size

hn—l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

67
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Local Contrast Normalization

68
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Local Contrast Normalization
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Local Contrast Normalization

K )= (N (5, )
= N )

N(x,y) = model pixel values in window
as a normal distribution

m = mean
O = variance

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




Local Contrast Normalization
W, )2 )= (N ()
o (N(x,y))

Performed also across features
and in the higher layers..

Effects:

— Improves invariance
— improves optimization
— increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank
courtesy of

Mormalization
K. Kavukcuoglu Ranzaton




ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
—>

Class
Fully Conn, |Labels
Layers

73
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ConvNets: Typical Architecture

Whole system

Input Class
Image | Fully Conn. |Labels
Layers
1% stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling —» SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012
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Ranzaton




Yann LeCun’s MINIST CNN architecture

; G301 maps 16E10x10

B@ 2828
3232 52: f. maps C5: layer e
B@14x14 o ey R

Full connectian Gaussian connections
i Subsamplin |Liti Subsamplin Full ecli
Canvalutions pling Canvolutions pling Uil conneciion Ranzato




DEMO

http://scs.ryerson.ca/~aharley/vis/conv/

Thanks to Adam Harley for making this.

More here: http://scs.ryerson.ca/~aharley/vis



http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/

Convolutions: More detall

32x32x3 image

32 height

3 depth

Andrej Karpathy




Convolutions: More detall

32x32x3 image

5x5x3 filter

32 II|

32

Andrej Karpathy



Convolutions: More detall

Convolution Layer

activation map

_— 32X%32X%3 Image

T 5x5x3 filter /
2
@>® ”

convolve (slide) over all

spatial locations
32 28

Andrej Karpathy




Convolutions: More detall

For example, if we had 6 5x3 filters, we'll get 6 separate activation maps:

activation maps
Z

NN

32

28

Convolution Layer

7

32 i 28
3 6

We stack these up to get a “new image” of size 28x28x6!

Andrej Karpathy



Convolutions: More detall

32

Andrej Karpathy

32

CONV,
RelLU
eg. 6
IXOX3
filters

28

28

CONYV,
RelLU
e.g. 10
IXOX6
filters

10

24

CONYV,
RelLU

24




Think-Pair-Share

Input size: 96 x 96 x 3
Kernel size: 5x5x 3
Stride: 1

Max pooling layer: 4 x 4

Output feature map size?
a)5x5

b) 22 x 22

c) 23 x 23

d) 24 x 24

e) 25 x 25

Input size: 96 x 96 x 3
Kernel size: 3 x3x 3
Stride: 3

Max pooling layer: 8 x 8

Output feature map size?
a)2x?2

b)3x3

c)4x4

d)5x5

e)12x12



Convolutions: More detail
N

Output size:
(N - F)/ stride + 1

Andrej Karpathy



Our connectomics diagram

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Input
75x75x4
Image 4X75x75 64x73x73 64x36x36 48x34x34 48x17x17 48x15x15 48XTxT 48x5x5 48x2x2
m [ [ [ s [ [ [ [
Prob. 3x3p 2x2F 3x3p 2x2F 3x3P 2x2F 3x3p 2x2P
Label Input Convolution Pooling Convolution Pooling Convolution Pooling Convolution Pooling
B (Max) (Max) (Max) (Max)
Dropout Dropout Dropout Dropout
Border p=.2 p=.2 p=.2 p=.2
Conv1 Conv 2 Conv 3 Conv 4
3x3x4 3x3x64 3x3x48 3x3x48
64 filters 48 filters 48 filters 48 filters

Max pooling Max pooling Max pooling Max pooling
2x2 per filter 2x2 per filter 2x2 per filter 2x2 per filter

Dense
RelLU
Dropout
p=.5

2
1: Split Error
0: Correct

Dense
Softmax



Rea d N g params AlexNet FLOPs

architecture v ST o
diagrams

Layers

- Kernel sizes
- Strides

- #channels

- #kernels

- Max pooling

307K 223M

35K




[Krizhevsky et al. 2012]

AlexNet diagram (simplified)

Input size
227 x 227 x 3
5%
2 dense dense
13 13 13 _— dense
11 \ .
! T e, 3 2
i | M, 8 ' : 13 3 13 T ™M r
. 27 1 3
Input “NA 3 3
image - 384 _ 384 256 1000
(RGB) - e || L
‘ Max = Max pooling 4096 4096
Stride 96 r— pooling
227 ofd 3x3 3x3
- Stride 2 Stride 2
Conv1 Conv 2 Conv3 Conv 4 Conv 4
11x11x3 5x5x96 3x3x256 3x3x192 3x3x192
Stride 4 Stride 1 Stride 1 Stride 1 Stride 1

96 filters 256 filters 384 filters 384 filters 256 filters



Outline

« Examples
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CONV NETS: EXAMPLES

- OCR / House number & Traffic sign classification

|- DN Tk
- I 2 (M2 V1250
T 5 TSR
llllmalmll

Ilﬂiglllmm

Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013 82
Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014



CONV NETS: EXAMPLES

- Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 85
Pinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Segmentation 3D volumetric images

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012

86
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzaton



CONV NETS: EXAMPLES

- Object detection

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Face Verification & Identification

REPRESENTATIOMN
SFC labels

P . . - CL: M2 C3: L4; L5: LE: F7: F&
Colista_Flockhort_ (002 jpg Frontalization: 32x11x1143 EFEETETEN 16x9x3x32 16ExBxEnlé Iafaiule  16x5x5xl6 A0%6d 40304
Detection & Localization @152%152x3 @142x142 @771 A6 @EEKEE B25%25 @21x21

92
Taigman et al. “DeepFace...” CVPR 2014 Ranzaton




Dataset: ImageNet 2012

T & L 4Gt o W
M Hay DElu MR Pl ¢
| B ] - A ECR

mammal —— placental — camivore — canine — working dog

® 5 (a) Eskimo dog, husky (breed of heavy-coated Arctic sled dog)
& diract fypermym | inkerited hypernym | sister term
* §: (o) working dog (anv of sevaral braeds of wsually large powerful dogs bred to work as draft ansmale and puard and mide dogs)
» 5 (n) dog, domestic dog, Cans familiaris (a member of the genns Cants (probably descendad from the common welf) that has been demesticated by man since prebistoric times; occurs in many
breeds) "the dog barked all might”
& 5:(n) canme, canid (any of various fissiped mamsals with neaeetractle claves and tvpically long nuzzles)
® S (n) camnivore (2 terrestrial or aquatic flesh-eating mammal) "ferrestrial carnivores have four or five clawed digits on each Tmb™
* 5 (n) placental, placental mammal, sutherian, eutherian mammal (mammals having a placenta; all mammals except monotremes and marsupéals)
* 5 (1) mammal mesrmakipn (any wann-blooded vertebrate having the skin more or less covered with hair; young are bean alive except for the small subclass of
monotremes wnd nowrshed with milk}
® 5 (n) vertebrate, craniate {animals having a bony or catilagnous skeleton with 2 sapmented spimal columa and a larps brain snclosed i a skull or cranmm)
® 5 in) L}wchle (aﬂ} animal otfl.he ph},imx Cherdata hnving a nomchmd of spimal cohm}

. ; (1) oraanism, _g(ahmgdmgthathas (mcmdc&cbp_}thcabﬂm wmmﬁnmnmdcpmd:ﬂﬂ_\']
o 5 () bving thing, ananate thing (3 bving (or once iving) entity)
& 5 () whole, unit (an assemblage of parts that is regarded az a smgle entity) "how big i that part compared to the
whole?"': "the ream is a wair”
* 5 () object, physical object (4 tangible and vishle entity, an enfity that can cast a shadow) " was fill of rackets,
balls and other objects"
» 5. (1) physical eniity (an entity that has physical existence)
® 5 (n) entity (that which is percerved or known or imferrad to have its own distinct axistence (hing or
noalving))

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009



contamer ship

mite motor scooter Ieopard
mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick r fireboat bumper car show leopard
drilling platform golfcart Egyptlan cat

starfish

"_F' =

gr |Ile

mushroom

cherry

e ‘-“\..J
i r'f.

Madagascar cat

convertible

pickup
beach wagon
fire engine

grille |

agaric
mushroom
jelly fungus
gill fungus
dead-man's-fingers

dalmatian squirrel monkey

grape spider monkey

elderberry titi
ffordshire bullterrier indri
currant howler monkey




Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

Krizhevsky et al. “lmageNet Classification w'.t'HpéJéep CNNs” NIPS 2012

category
prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

Total nr. flops: 832M

4M

16M
37M

74M

224M
149M

223M

105M

96
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35

Error %

o
|

()

N
I

O

Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

Results: ILSVRC 2012

TASK 1 - CLASSIFICATION

N2
o
|

CNN

SIFT+FV  SVM1

SVM2

NCM

TASK2 - DETECTION

CNN

DPM-SVM1 DPM-SYM2

9%
Ranzaton




Wait, why isn’t it called a correlation neural network?

It could be.
Deep learning libraries actually implement correlation.

Correlation relates to convolution via a 180deg rotation
of the kernel. When we learn kernels, we could easily
learn them flipped.

Associative property of convolution ends up not being
important to our application, so we just ignore it.

[p.323, Goodfellow]



Phew!

Monday:
How to Train your Bragen Network

Project 4: Out Friday
- Questions

- Code part 1

Due 15,



More ConvNet explanations

* https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/



https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

