




!!! Warning !!!

Learning jargon is always painful…

…even if the concepts behind the jargon are not hard.

So, let’s get used to it. 

“In mathematics you don't understand things. 
You just get used to them.” 

von Neumann 
(telling a joke)



Gartner Hype Cycle





Rocket AI

• Launch party
@ NIPS 2016
[now NeurIPS]

• Neural
Information
Processing
Systems

• Academic
conference
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So far…

PASCAL VOC = ~75% 20-class

ImageNet = ~75% 1000-class, top 5

Human brains used intuition and understanding of 
how we think vision works to develop computer 

vision systems, and it’s pretty good.



Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building 
(compression/quantization)

Classifier (decision making)

Hand designed.

Hand designed.

Hand designed.

Learned.

Captured+manual.

Classification Object DetectionRecognition: Segmentation



Well, what do we have?

Best performing visions systems have commonality:

Hand designed features
• Gradients + non-linear operations 

(exponentiation, clamping, binning)
• Features in combination (parts-based models)
• Multi-scale representations

Machine learning from databases

Linear classifiers (SVM)
• Some non-linear kernel tricks



But it’s still not that good…

PASCAL VOC = ~75% 20-class

ImageNet = ~75% 1000-class, top 5

ImageNet (human) = ~95%

Problems:

- Lossy features

- Lossy quantization

- ‘Imperfect’ classifier



But it’s still not that good…

PASCAL VOC = ~75% 20-class

ImageNet = ~75% 1000-class, top 5

ImageNet (human) = ~95%

How to solve?
• Features: More principled modeling?

We know why the world looks (it’s physics!); 
Let’s build better physically-meaningful models.

• Quantization: More data and more compute?
It’s just an interpolation problem; let’s represent the 
space with fewer data approximations.

• Classifier: …



The limits of learning?
Where should we put our effort?



“The Unreasonable Effectiveness of Data” - Norvig

Previous claim:

It is more important to have 
more or better labeled data than to use 
a different supervised learning technique.



No free lunch theorem

Hume (c.1739):

“Even after the observation of the frequent or 
constant conjunction of objects, we have no reason 
to draw any inference concerning any object beyond 
those of which we have had experience.”

-> Learning beyond our experience is impossible.



No free lunch theorem for ML

Wolpert (1996):

‘No free lunch’ for supervised learning:

“In a noise-free scenario where the loss function is 
the misclassification rate, if one is interested in off-
training-set error, then there are no a priori 
distinctions between learning algorithms.”

-> Averaged over all possible datasets, 
no learning algorithm is better than any other.



OK, well, let’s give up. Class over.

No, no, no!

We can build a classifier which better matches the 
characteristics of the problem!



But…didn’t we just do that?

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

We used intuition and understanding of how we 
think vision works, but it still has limitations.

Why?



Linear spaces - separability

• + kernel trick to transform space.

Kawaguchi 

Linearly separable data 
+ linear classifer = good.



Non-linear spaces - separability

Take XOR – exclusive OR

E.G., human face has two eyes XOR sunglasses

Kawaguchi 



Non-linear spaces - separability

Linear functions are insufficient on their own.

Kawaguchi 



Curse of Dimensionality

Every feature that we 
add requires us to 
learn the useful 
regions in a much 
larger volume.

d binary variables = 
O(2d) combinations



Curse of Dimensionality

Not all regions of this high-dimensional space are 
meaningful.

>> I = rand(256,256);

>> imshow(I);

@ 8bit = 256 values ^ 65,536



Local constancy / smoothness of feature space

All existing learning algorithms we have seen assume 
smoothness or local constancy.

-> New example will be near existing examples

-> Each region in feature space requires an example

-> Cannot generalize beyond examples

How to try and represent this high-dimensional 
space in a way which maximizes generalization?

Extreme example: k-NN classifier. The number of 
regions cannot be more than the number of examples.



More specialization?

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

Is there a way to make our system 
better suited to the problem?



Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building 
(compression/quantization)

Classifier (decision making)

Hand designed.

Hand designed.

Hand designed.

Learned.

Captured+manual.

Classification Object DetectionRecognition: Segmentation



Wouldn’t it be great if we could…

Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building 
(compression/quantization)

Classifier (decision making)

Classification Object DetectionRecognition:

Learned.

Learned.

Learned.

Learned.

Captured+manual.

Segmentation

End to end 
learning!



Goals

Build a classifier which is more powerful 
at representing complex functions 

and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function 
relies on a composition of factors in a hierarchy.

Dependencies between regions in feature space
= factor composition



Example

Nielsen, National Geographic



Example

Nielsen, National Geographic



Non-linear spaces - separability

Composition of linear functions can represent 
more complex functions.

Kawaguchi 



Goals

Build a classifier which is more powerful 
at representing complex functions 

and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function 
relies on a composition of factors in a hierarchy.

2. Learn a feature representation specific to the dataset.

10k/100k + data points + factor composition 
= sophisticated representation.



Reminder: Viola Jones Face Detector

Combine thousands of ‘weak classifiers’

Two-rectangle features Three-rectangle features Etc.

-1 +1

CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=801361

Learn how to combine in cascade with boosting

Examples

Stage 1
H1(x) > t1?

Reject

No

Yes

Stage 2
H2(x) > t2?

Stage N
HN(x) > tN?

Yes

…
Pass

Reject

No

Reject

No



Viola Jones

Image formation 
(+database+labels)

Features 
(saliency+description)

Classifier 

(decision making)

Object DetectionRecognition:

Specified space, but
selected automatically.

Learned combination.

Captured+manual.



Neural Networks



Neural Networks

Basic building block for composition is a 
perceptron (Rosenblatt c.1960)

Linear classifier – vector of weights w and a ‘bias’ b

𝒘 = (𝑤1, 𝑤2, 𝑤3)
𝒃 = 0.3

Output (binary)

𝑥1

𝑥2

𝑥3



Binary classifying an image

Each pixel of the image would be an input.

So, for a 28 x 28 image, we vectorize:

x = 1 x 784

w is a vector of weights for each pixel, 784 x 1

b is a scalar bias per perceptron

Result = xw + b     ->  (1x784) x (784x1) + b = (1x1)+b



Neural Networks - multiclass

Add more perceptrons

Binary output

𝑥1

𝑥2

𝑥3

Binary output

Binary output



Multi-class classifying an image

Each pixel of the image would be an input.

So, for a 28 x 28 image, we vectorize.

x = 1 x 784

W is a matrix of weights for each pixel/each perceptron
W = 10 x 784  (10-class classification)

b is a bias per perceptron (vector of biases); (1 x 10)

Result = xW + b   -> (1x784) x (784 x 10) + b

-> (1 x 10) + (1 x 10) = output vector



Bias convenience

Let’s turn this operation into a multiplication only:
• Create a ‘fake’ feature with value 1 to represent the bias

• Add an extra weight that can vary

1

𝒘 = (𝑏,𝑤1, 𝑤2, 𝑤3)

Output (binary)

𝑥1

𝑥2

𝑥3



Composition

Attempt to represent complex functions as compositions 
of smaller functions.

Outputs from one perception are fed into inputs of 
another perceptron.

Nielsen



Composition

Sets of layers and the connections (weights) between 
them define the network architecture.

Layer 1 Layer 2

Nielsen



Composition

Layers that are in between the input and the output are 
called hidden layers, because we are going to learn their 
weights via an optimization process.

Hidden 
Layer 1

Hidden 
Layer 2

Nielsen



Composition

It’s all just matrix multiplication!
GPUs -> special hardware for fast/large matrix multiplication.

Hidden 
Layer 1

Hidden 
Layer 2

Matrix! Matrix!Matrix!

Multiple

Nielsen



Problem 1 with all linear functions

We have formed chains of linear functions.

We know that linear functions can be reduced
• g = f(h(x))

Our composition of functions is really 
just a single function : (



Problem 2 with all linear functions

Linear classifiers: small change in input can cause 
large change in binary output 
= problem for composition of functions

Activation function 
for a perceptron:

Heaviside function

Nielsen



Problem 2 with all linear functions

Linear classifiers: small change in input can cause 
large change in binary output.

We want:

Nielsen



Let’s introduce non-linearities

We’re going to introduce non-linear functions to 
transform the features.

Nielsen



Universality

A single-layer of perceptrons can learn any 
univariate function:

• Combination of many step functions

• So long as it is differentiable

• To some approximation;
More perceptrons = a better approximation

Visual proof (Michael Nielson):

http://neuralnetworksanddeeplearning.com/chap4.html

- using non-linear activation functions 

http://neuralnetworksanddeeplearning.com/chap4.html


Perceptron model

• Use is grounded in theory
• Universal approximation theorem (Goodfellow 6.4.1)

• Can represent a NAND circuit, from which any 
binary function can be built by compositions of 
NANDs

• With enough parameters, it can approximate 
any function.



Mark 1 Perceptron
c.1960

20x20 pixel 
camera feed

Wikipedia



If a single-layer network can learn any function…
…given enough parameters…

…then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow 
networks at learning such hierarchies of knowledge.



Multi-layer perceptron (MLP)

• …is a ‘fully connected’ neural network with non-
linear activation functions.

• ‘Feed-forward’ neural network

Nielson



What is the relationship between SVMs 
and perceptrons?

SVMs attempt to learn the support vectors which 
maximize the margin between classes.



What is the relationship between SVMs 
and perceptrons?

SVMs attempt to learn the support vectors which 
maximize the margin between classes.

A perceptron does not. 
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal 
stability’ is used in SVM:

Perceptron
+ optimal stability
+ kernel trick 
= foundations of SVM



Does anyone pass along the weight without an 
activation function?

No – this is linear chaining.

Output vector
Input
vector



Output vector
Input
vector

Does anyone pass along the weight without an 
activation function?

No – this is linear chaining.



Are there other activation functions?

Yes, many.

As long as:

- Activation function s(z) is well-defined 
as z -> -∞ and z -> ∞

- These limits are different

Then we can make a step! [Think visual proof]
It can be shown that it is universal for function 

approximation.



Activation functions:
Rectified Linear Unit
• ReLU



Cyh24 - http://prog3.com/sbdm/blog/cyh_24



Rectified Linear Unit

Ranzato



Goals

Build a classifier which is more powerful at 
representing complex functions and more suited to 
the learning problem.

What does this mean?

1. Assume that the underlying data generating 
function relies on a composition of factors.

2. Learn a feature representation that is specific to 
the dataset.













Why do we need many layers?

- A hierarchical structure is potentially more efficient because we 
can reuse intermediate computations.

- Different representations can be distributed across classes.













Images as input to neural networks



Images as input to neural networks



Images as input to neural networks



Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local 

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.







Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local 

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.

• Parameter sharing
• ‘Tied weights’ – use same weights for more than one 

perceptron in the neural network.

• Leads to equivariant representation
• If input changes (e.g., translates), then output changes similarly
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0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0
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Filtering reminder:
Correlation (rotated convolution) 111

111

111],[ f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk

++=



Perceptron:

This is convolution!



v

v

v v

Shared weights

Convolution

3x3 kernel



Filter = ‘local’ perceptron.
Also called kernel.





n = layer number
K = kernel size
j = # channels (input) 
or # filters (depth)







Stride = 1



Stride = 1



Stride = 3



Stride = 3



Stride = 3



Stride = 3





By pooling responses at different locations, 
we gain robustness to the exact spatial 
location of image features.



Pooling is similar to downsampling

…except sometimes we don’t want to blur,
as other functions might be better for classification.







Wikipedia

Max pooling













N(x,y) = model pixel values in window 
as a normal distribution

m = mean
σ = variance











Yann LeCun’s MNIST CNN architecture



DEMO

http://scs.ryerson.ca/~aharley/vis/conv/

Thanks to Adam Harley for making this.

More here: http://scs.ryerson.ca/~aharley/vis

http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/












Think-Pair-Share

Input size: 96 x 96 x 3

Kernel size: 5 x 5 x 3

Stride: 1 

Max pooling layer: 4 x 4 

Output feature map size?

a) 5 x 5

b) 22 x 22

c) 23 x 23

d) 24 x 24 

e) 25 x 25 

Input size: 96 x 96 x 3

Kernel size: 3 x 3 x 3

Stride: 3

Max pooling layer: 8 x 8

Output feature map size?

a) 2 x 2

b) 3 x 3

c) 4 x 4

d) 5 x 5

e) 12 x 12





Our connectomics diagram

Conv 1
3x3x4
64 filters

Max pooling
2x2 per filter

Conv 2
3x3x64
48 filters

Max pooling
2x2 per filter

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Conv 3
3x3x48
48 filters

Max pooling
2x2 per filter

Conv 4
3x3x48
48 filters

Max pooling
2x2 per filter

Input
75x75x4



Reading 
architecture 
diagrams

Layers
- Kernel sizes
- Strides
- # channels
- # kernels
- Max pooling



AlexNet diagram (simplified)
Input size
227 x 227 x 3

Conv 1
11 x 11 x 3
Stride 4
96 filters

227

227

Conv 2
5 x 5 x 96
Stride 1
256 filters

3x3 
Stride 2

3x3 
Stride 2

[Krizhevsky et al. 2012]

Conv 3
3 x 3 x 256
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
256 filters























Wait, why isn’t it called a correlation neural network?

It could be.

Deep learning libraries actually implement correlation.

Correlation relates to convolution via a 180deg rotation 
of the kernel. When we learn kernels, we could easily 
learn them flipped.

Associative property of convolution ends up not being 
important to our application, so we just ignore it.

[p.323, Goodfellow]



Phew!

Monday:

How to Train your Dragon Network

Project 4: Out Friday

- Questions

- Code part 1

Due 15th.



More ConvNet explanations

• https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

