




Object detection

• Sliding window for search

• Features based on differences of intensity 
(gradient, wavelet, etc.)

• Boosting for feature selection

• Integral images, cascade for speed

• Bootstrapping to deal with many, many 
negative examples Examples
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Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection 

with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
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Felzenszwalb

http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Car model

Component 1

Component 2

Felzenszwalb



Person model

Felzenszwalb



Bottle model

Felzenszwalb



Good detections?



• Twenty object categories (aeroplane to 
TV/monitor) 

• Three challenges:

– Classification challenge (is there an X in this image?)

– Detection challenge (draw a box around every X)

– Segmentation challenge

Snavely
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20 classes. 

- Train / validation data has 11,530 images 

containing 27,450 ROI annotated objects and 

6,929 segmentations. 







is

is there a cat?





AP = average precision



Set threshold on ‘detection’ 

to create one pair of 

precision / recall values.

Vary threshold across all 

values to generate precision 

/ recall curves:
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Chance essentially 0



















Vondrick et al.

HOGgles (Vondrick et al. ICCV 2013)
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What information is lost?

Vondrick et al.
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How can we ‘invert’ lossy HOG?

• Gradient computation 
• Without width or ‘edge blur’, i.e., not edges from Eldar 1999

• Oriented magnitude sum (via bins)
• Loss of precision

• Loss of specificity – any number of values can sum to the same total

• Normalization
• No way to unnormalize without knowing normalization factors

Many different image patches translate to the same HOG feature : (



Vondrick et al.

𝑥 = 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑐ℎ
𝑦 = 𝐻𝑂𝐺 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟
𝜙 𝑥 = 𝐻𝑂𝐺 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚

Hard to optimize!

Many-to-one = unconstrained!



What information is lost?

Vondrick et al.



Method: Paired Dictionary

Vondrick et al.



Vondrick et al.

How to constrain (two parts):

1. Learn a basis over HOG windows



Vondrick et al.

How to constrain (two parts):

1. Learn a basis over HOG windows

2. Simultaneously learn a basis over input windows, 

and share the weights 𝛼1…𝑎𝑘 over the training data



Vondrick et al.

Inference to invert HOG:

1. Transform HOG patch into basis vectors

2. Take weights and apply to input basis





HumanVision HOGVision

vs

Vondrick et al.



HOGgles (Vondrick et al. ICCV 2013)



Vondrick et al.



Recursive HOG!



Bottle Deformable Parts Models + HOGgles



Car

Why did the detector fail?

Vondrick et al.
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Why did the detector fail?
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Car

Why did the detector fail?

Vondrick et al.



CodeAvailable

Try it on your projects!

http://web.mit.edu/vondrick/ihog/

ihog = invertHOG(feat);

http://web.mit.edu/vondrick/ihog/


Opportunities of Scale

Many slides from James Hays, Alyosha Efros, and Derek Hoiem Graphic from Antonio Torralba



Shuicheng Yan



Computer Vision so far

• The geometry of image formation

– Ancient / Renaissance

• Signal processing / Convolution

– 1800, but really the 50’s and 60’s

• Hand-designed Features for recognition, 
either instance-level or categorical

– 1999 (SIFT), 2003 (Video Google), 2005 (Dalal-
Triggs), 2006 (spatial pyramid)

• Learning from Data

– 1991 (EigenFaces) but late 90’s to now especially



What has changed in the last decade?

• The Internet

• Crowdsourcing

• Learning representations from the data these 
sources provide (deep learning)



Google and massive data-driven algorithms

A.I. for the postmodern world:

– all questions have already been answered…many 
times, in many ways

– Google is dumb, the “intelligence” is in the data



Big Idea

• Do we need computer vision systems to have 
strong AI-like reasoning about our world?

• What if invariance / generalization isn’t 
actually the core difficulty of computer vision?

• What if we can perform high level reasoning 
with brute-force, data-driven algorithms?





General Principal

Input 
Image

Images

Associated 
Info

Huge Dataset

Info from 
Most Similar 

Images

image
matching

Hopefully,  If you have enough images, the dataset will contain very 
similar images that you can find with simple matching methods. 



Powers of 10
Number of images on my hard drive:  106

Number of images seen during my first 10 years: 108

(3 images/second * 60 * 60 * 16 * 365 * 10 = 630,720,000)

Number of images seen by all humanity:  1020

106,456,367,669 humans1 * 60 years * 3 images/second * 60 * 60 * 16 * 365 = 
1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx

Number of photons in the universe:  1088

Number of all 32x32 images:  107373

256 32*32*3 ~ 107373



Understanding scenes encompasses all kinds of knowledge



But not all scenes are so original



Lots 

Of 

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008
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Application: Automatic Colorization

Input

Matches (gray) Matches (w/ color) Avg Color of Match

Color Transfer Color Transfer
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How much can an image tell about its 
geographic location?



im2gps (Hays & Efros, CVPR 2008)

6 million geo-tagged Flickr images

http://graphics.cs.cmu.edu/projects/im2gps/

How much can an image tell about its 
geographic location?

http://graphics.cs.cmu.edu/projects/im2gps/im2gps.pdf
http://graphics.cs.cmu.edu/projects/im2gps/


Nearest Neighbors according to gist + bag of SIFT + color histogram + a few others





Im2gps



Example Scene Matches



Voting Scheme



im2gps







Effect of Dataset Size



Where is This?

[Vesselova, Kalogerakis, Hertzmann, Hays, Efros. Image Sequence Geolocation. ICCV’09]



Where is This?



Where are These?

15:14, 
June 18th, 2006

16:31, 
June 18th, 2006



Where are These?

15:14, 
June 18th, 2006

16:31, 
June 18th, 2006

17:24, 
June 19th, 2006



Results

• im2gps – 10% (geo-loc within 400 km)

• temporal im2gps – 56% 



Tiny Images

80 million tiny images: a large dataset for non-
parametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008.
http://groups.csail.mit.edu/vision/TinyImages/











Given a benchmark, resolution and human scene 
recognition accuracy increase to a limit

Torralba et al.



Humans vs. Computers: Car Classification

Humans for 32 pixel tall images
Various computer vision algorithms 

for full resolution images

Example 

test images

Torralba et al.



What should the missing region contain?









Which is the original?

(a)

(b)

(c)



How it works

• Find a similar image from a large dataset

• Blend a region from that image into the hole

Dataset



How many images is enough?



Nearest neighbors from a
collection of 20 thousand images



Nearest neighbors from a
collection of 2 million images



Image Data on the Internet

• Flickr (as of Nov 2013)

– 10 billion photographs 

– 100+ million geotagged images

– 3.5 million a day

• Facebook (as of Sept 2013)

– 250 billion+

– 300 million a day

• Instagram

– 55 million a day



Image completion: how it works

[Hays and Efros. Scene Completion Using Millions of Photographs. 
SIGGRAPH 2007 and CACM October 2008.]



The Algorithm



Scene Matching



Scene Descriptor



Scene Descriptor

Scene Gist Descriptor 
(Oliva and Torralba 2001)



Scene Descriptor

+

Scene Gist Descriptor 
(Oliva and Torralba 2001)



2 Million Flickr Images



… 200 total



Context Matching



Graph cut + Poisson blending



Result Ranking

We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
(color + texture)

The graph cut cost

















… 200 scene matches













Which is the original?





Mechanical Turk

• von Kempelen, 1770.

• Robotic chess player.

• Clockwork routines.

• Magnetic induction (not vision)

• Toured the world; played 
Napoleon Bonaparte 
and Benjamin Franklin.



Mechanical Turk

• It was all a ruse!

• Ho ho ho.



Amazon Mechanical Turk

Artificial artificial intelligence.

Launched 2005. 
Small tasks, small pay.
Used extensively in data collection.

Image: Gizmodo



Task

Amazon Mechanical Turk

Is this a dog?

o Yes

o No

Workers

Answer: Yes

Task: Dog?

Pay: $0.01

Broker

www.mturk.com

$0.01



Luis von Ahn and Laura Dabbish. Labeling Images with a Computer Game. 
ACM Conf. on Human Factors in Computing Systems, CHI 2004

http://www.cs.cmu.edu/~biglou/ESP.pdf
http://www.gwap.com/




Vision (Segmentation): LabelMe

http://labelme.csail.mit.edu

“Open world” database annotated by the community*

Notes on Image Annotation, Barriuso and 
Torralba 2012. http://arxiv.org/abs/1210.3448

http://labelme.csail.mit.edu/


Utility data annotation via 
Amazon Mechanical Turk

Alexander Sorokin

David Forsyth

CVPR Workshops 2008

X   100 000   =   $5000   

Slides by Alexander Sorokin





Issues

• Quality?
– How good is it?

– How to be sure?

• Price? 
– Trade off between throughput and cost

• NOT as much of a trade off with quality

– Higher pay can actually attract scammers



Annotation quality

Yellow ring = ‘ground truth’;  Blue circle = human labeled
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How much agreement is there on ‘ground truth’ and turker-labeled joint positions? 

Points must agree within 5-10 pixels on 500x500 image.

Image-space error sum



Ensuring Annotation Quality

• Consensus in multiple annotations 
“Wisdom of the Crowds”

• Gold Standard / Sentinel 

– Special case: qualification exam

• Grading Tasks

– A second tier of workers who grade others

Not enough on its own, but widely used

Widely used & important. Find good annotators; keep them honest.

Not widely used



















Visual Recognition with 
Humans in the Loop

Steve Branson, Catherine Wah, Florian Schroff, 
Boris Babenko, Peter Welinder, Pietro Perona, 

Serge Belongie

Part of the Visipedia project

Slides from Brian O’Neil 

http://www.vision.caltech.edu/visipedia/


Introduction:

Computers starting 
to get good at this.

If it’s hard for humans, 
it’s probably too hard 

for computers.

Semantic feature 
extraction difficult for 

computers.

Combine strengths 
to solve this 

problem.



The Approach: What is progress?

• Supplement visual recognition with the 
human capacity for visual feature extraction to 
tackle difficult (fine-grained) recognition 
problems.

• Typical progress is viewed as increasing data 
difficulty while maintaining full autonomy

• Reduction in human effort on difficult data.



The Approach: 20 Questions

• Ask the user a series of discriminative visual 
questions to make the classification.



Which 20 questions?

• At each step, exploit the image itself and the 
user response history to select the most 
informative question to ask next.

Image x
Ask user a 
question

Stop?
( | , )tp c U x max ( | , )t

c p c U x

1( | , )tp c U x−

No

Yes



Which question to ask?

• The question that will reduce entropy the 
most, taking into consideration the computer 
vision classifier confidences for each category.



Some definitions:

• Set of possible questions

• Possible answers to question i

• Possible confidence in answer i 
(Guessing, Probably, Definitely)

• User response 

• History of user responses at time t

1{ ... }
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i i
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Question selection

• Seek the question that gives the maximum 
information gain (entropy reduction) given the 
image and the set of previous user responses.

Probability of obtaining
Response ui given the image
And response history

Entropy when 
response is 
Added to history

Entropy before response
is added.
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Incorporating vision

• Bayes Rule

• A visual recognition algorithm outputs a 
probability distribution across all classes that is 
used as the prior.

• A posterior probability is then computed based 
on the probability of obtaining a particular 
response history given each class.

( ) ( ) ( ) ( ) ( )| , | , | | |p c x U p U c x p c x p U c p c x = =



Modeling user responses

• Assume that the questions are answered 
independently. 

( ) ( )
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Required for posterior computation

Required for information gain
computation



The Dataset: Birds-200

• 6033 images of 200 species



Implementation

• Assembled 25 visual questions encompassing 
288 visual attributes extracted from 
www.whatbird.com

• Mechanical Turk users asked to answer 
questions and provide confidence scores.

http://www.whatbird.com/


User Responses.



Visual recognition 

• Any vision system that can output a 
probability distribution across classes will 
work.

• Authors used Andrea Vedaldis’s code.
– Color/gray SIFT

– VQ geometric blur

– 1 v All SVM

• Authors added full image color histograms and 
VQ color histograms



Experiments

• 2 Stop criteria:

– Fixed number of questions – evaluate accuacy

– User stops when bird identified – measure 
number of questions required.

Image x
Ask user a 
question

Stop?
( | , )tp c U x max ( | , )t

c p c U x

1( | , )tp c U x−

No

Yes



Results

• Average number of questions to make ID reduced 
from 11.11 to 6.43

• Method allows CV to handle the easy cases, 
consulting with users only on the more difficult 
cases.



Key Observations

• Visual recognition reduces labor over a pure 
“20 Q” approach.

• Visual recognition improves performance over 
a pure “20 Q” approach. (69% vs 66%)

• User input dramatically improves recognition 
results. (66% vs 19%)

Hays



Strengths and weaknesses

• Handles very difficult data and yields excellent 
results.

• Plug-and-play with many recognition 
algorithms.

• Requires significant user assistance

• Reported results assume humans are perfect 
verifiers

• Is the reduction from 11 questions to 6 really 
that significant? 

Hays


