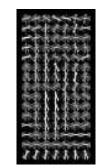
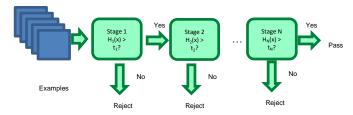


2020 COMPUTER VISION

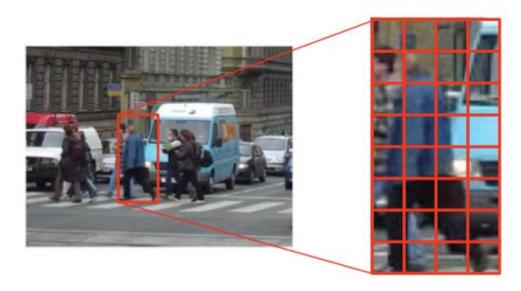
Object detection

- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
- Boosting for feature selection
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples





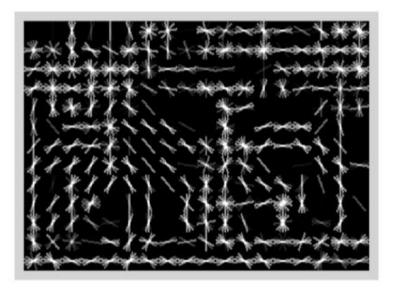
Starting point: sliding window classifiers



Feature vector $x = [\dots, \dots, \dots, \dots]$

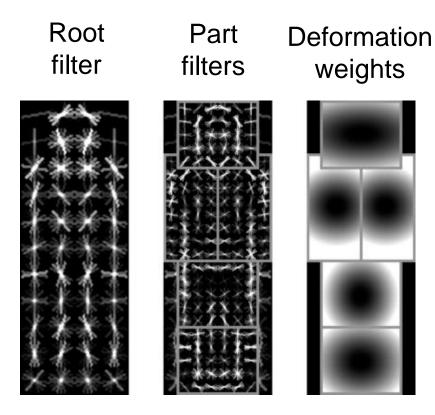
- Detect objects by testing each subwindow
 - Reduces object detection to binary classification
 - Dalal & Triggs: HOG features + linear SVM classifier
 - Previous state of the art for detecting people

Histogram of Gradient (HOG) features



- Image is partitioned into 8x8 pixel blocks
- In each block we compute a histogram of gradient orientations
 - Invariant to changes in lighting, small deformations, etc.
- Compute features at different resolutions (pyramid)

Discriminative part-based models

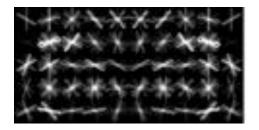


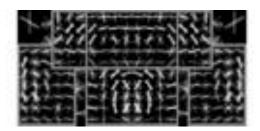
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection</u> with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

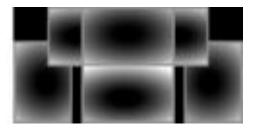
Felzenszwalb

Car model

Component 1

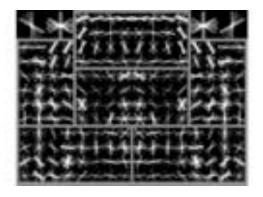


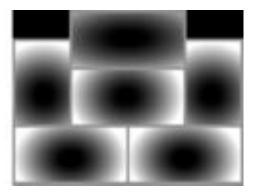




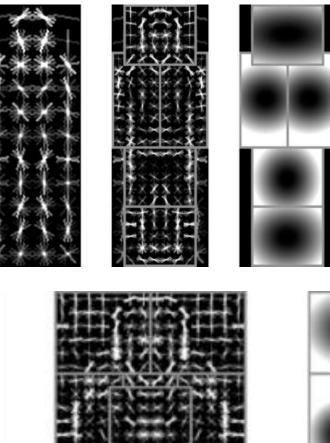
Component 2

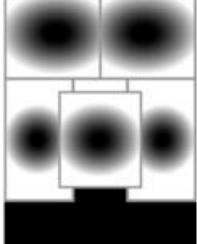




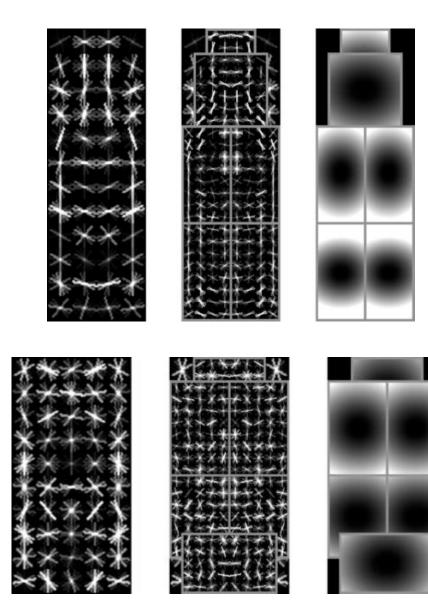


Person model





Bottle model

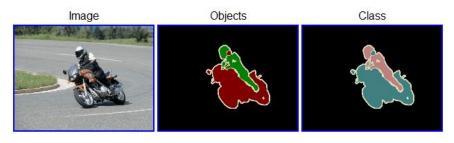


Good detections?

horse

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- Twenty object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge



- Images downloaded from flickr
 - 500,000 images downloaded and random subset selected for annotation

Dataset: Annotation

- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

Dataset: Annotation

- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

20 classes.

- Train / validation data has 11,530 images containing 27,450 ROI annotated objects and 6,929 segmentations.

Examples

Bicycle

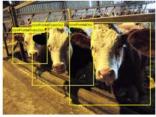
Bird

Boat

Bottle

Bus

Cow

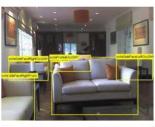


Examples

Dog

Horse

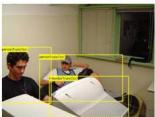
Sofa



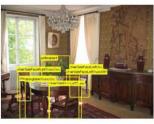
Motorbike

Person

TV/Monitor



Potted Plant





Classification Challenge

Predict whether at least one object of a given class is present in an image

is there a cat?

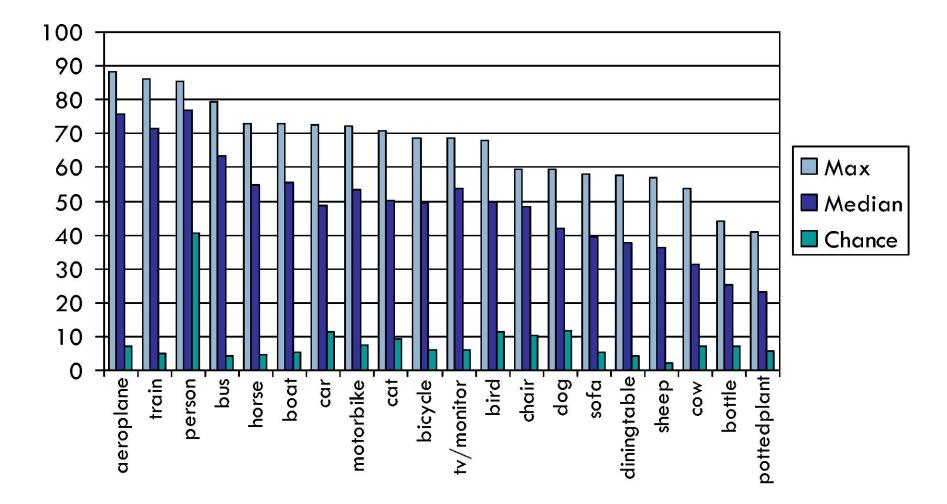
Results: AP by Method and Class

	aero plane	bicycle	bird	boat	bottle	bus	car	cent	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor
CVC_FLAT	85.3	57.8	66.0	66.1	36.2	70.6	60.6	63.5	55.1	44.6	53.4	49.1	64.4	66.8	84.8	37.4	44.1	47.9	81.9	67.5
CVC_FLAT-HOG-ESS	86.3	60.7	66.4	65.3	41.0	71.7	64.7	63.9	55.5	40.1	51.3	45.9	65.2	68.9	85.0	40.8	49.0	49.1	81.8	68.6
CVC_PLUS	86.6	58.4	66.7	67.3	34.8	70.4	60.0	64.2	52.5	43.0	50.8	46.5	64.1	66.8	84.4	37.5	45.1	45.4	82.1	67.0
FIRSTNIKON_AVGSRKDA	83.3	59.3	62.7	65.3	30.2	71.6	58.2	62.2	54.3	40.7	49.2	50.0	66.6	62.9	83.3	34.2	48.2	46.1	83.4	65.5
FIRSTNIKON_AVGSVM	83.8	58.2	62.6	65.2	32.0	69.8	57.7	61.1	54.5	44.0	50.3	49.6	64.6	61.7	83.2	33.4	46.5	48.0	81.6	65.3
FIRSTNIKON_BOOSTSRKDA	83.0	59.2	61.4	64.6	33.2	71.1	57.5	61.0	54.8	40.7	48.3	50.0	65.5	63.4	82.8	32.8	47.0	47.1	83.3	64.6
FIRSTNIKON_BOOSTSVMS	83.5	56.8	61.8	65.5	33.2	69.7	57.3	60.5	54.6	43.1	48.3	50.3	64.3	62.4	82.3	32.9	46.9	48.4	82.0	64.2
LEAR_CHI-SVM-MULT-LOC	79.5	55.5	54.5	63.9	43.7	70.3	66.4	56.5	54.4	38.8	44.1	46.2	58.5	64.2	82.2	39.1	41.3	39.8	73.6	66.2
NECUIUC_CDCV	88.1	68.0	68.0	72.5	41.0	78.9	70.4	70.4	58.1	53.4	55.7	59.3	73.1	71.3	84.5	32.3	53.3	56.7	86.0	66.8
NECUIUC_CLS-DTCT	88.0	68.6	67.9	72.9	44.2	79.5	72.5	70.8	59.5	53.6	57.5	59.0	72.6	72.3	85.3	36.6	56 . 9	57 . 9	85.9	68.0
NECUIUC_LL-CDCV	87.1	67.4	65.8	72.3	40.9	78.3	69.7	69.7	58.5	50.1	55.1	56.3	71.8	70.8	84.1	31.4	51.5	55.1	84.7	65.2
NECUIUC_LN-CDCV	87.7	67.8	68.1	71.1	39.1	78.5	70.6	70.7	57.4	51.7	53.3	59.2	71.6	70.6	84.0	30.9	51.7	55.9	85.9	66.7
UVASURREY_BASELINE	84.1	59.2	62.7	65.4	35.7	70.6	59.8	61.3	56.7	45.3	52.4	50.6	66.1	66.6	83.7	34.8	47.2	47.7	80.8	65.9
UVASURREY_MKFDA+BOW	84.7	63.9	66.1	67.3	37.9	74.1	63.2	64.0	57.1	46.2	54.7	53.5	68.1	70.6	85.2	38.5	47.2	49.3	83.2	68.1
UVASURREY_TUNECOLORKERNELSEL	85.0	62.8	65.1	66.5	37.6	73.5	62.1	62.0	57.4	45.1	54.5	52.5	67.7	69.8	84.8	39.1	46.8	49.9	82.9	68.1
UVASURREY_TUNECOLORSPECKDA	84.6	62.4	65.6	67.2	39.4	74.0	63.4	62.8	56.7	43.8	54.7	52.7	67.3	70.6	85.0	38.8	46.9	50.0	82.2	66.2

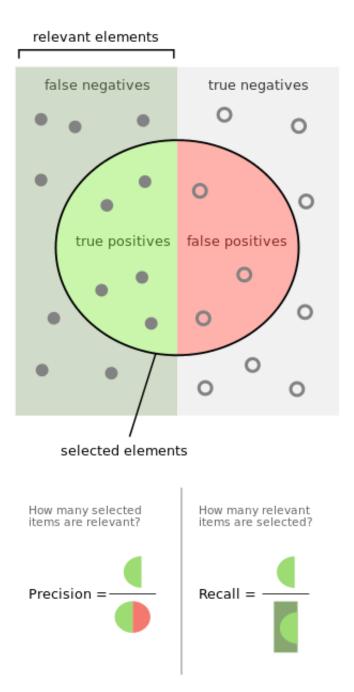
- Only methods in 1st, 2nd or 3rd place by group shown
- Groups: CVC, FIRST/Nikon, NEC/UIUC, UVA/Surrey

AP by Class

AP = average precision

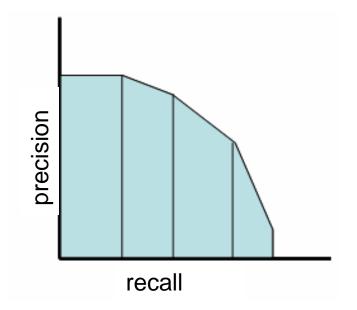


Max AP: 88.1% (aeroplane) ... 40.8% (potted plant)

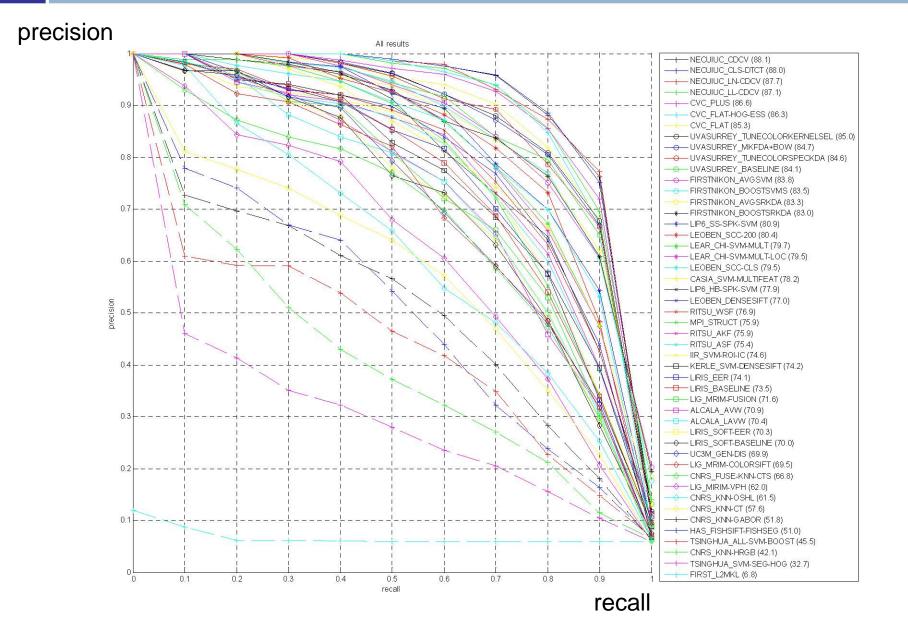


Set threshold on 'detection' to create one pair of precision / recall values.

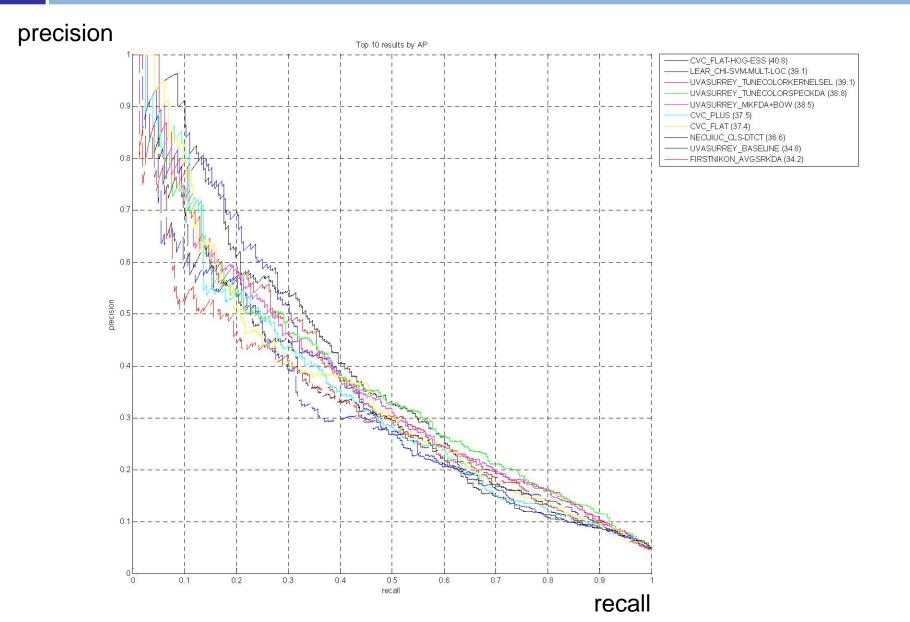
Vary threshold across all values to generate precision / recall curves:



Precision/Recall: Aeroplane (All)



Precision/Recall: Potted plant (Top 10 by AP)

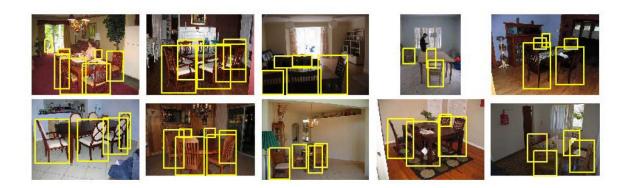


Ranked Images: Aeroplane

Class images:
 Highest ranked

Ranked Images: Chair

Class images:
 Highest ranked

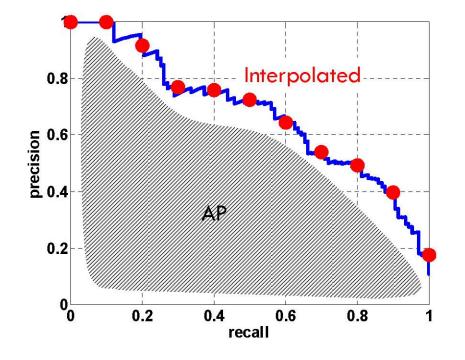


Detection Challenge

 Predict the bounding boxes of all objects of a given class in an image (if any)

Evaluation

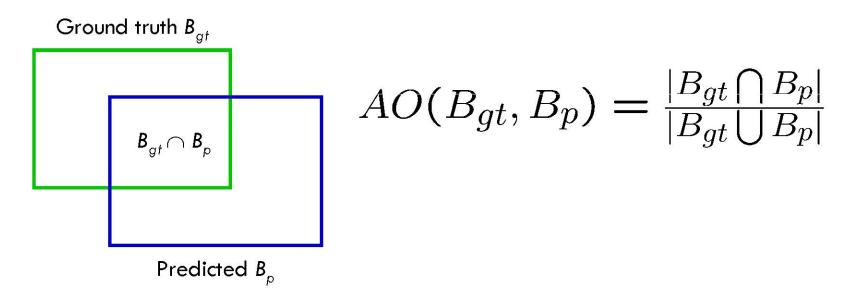
- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"



- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

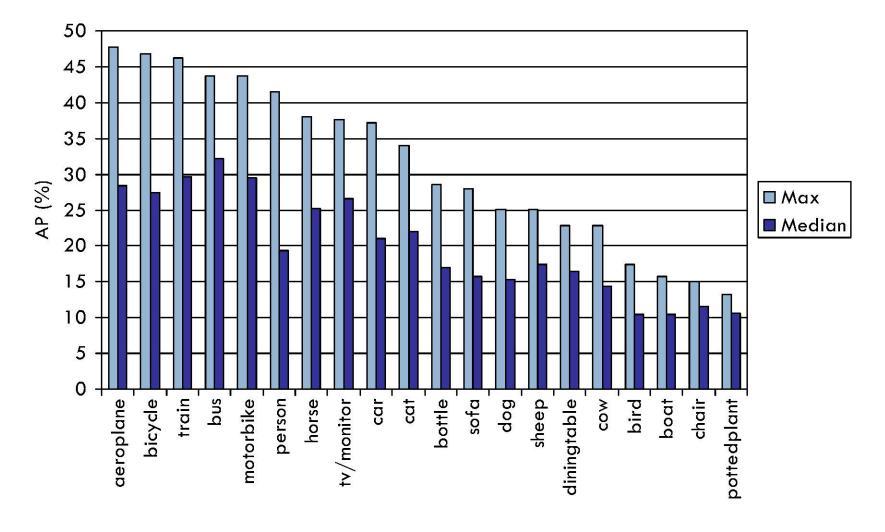
Evaluating Bounding Boxes

Area of Overlap (AO) Measure



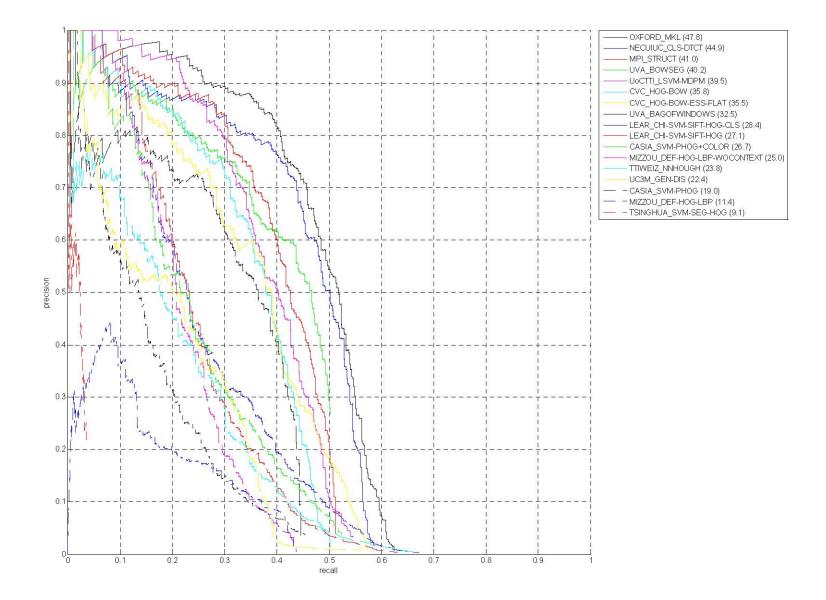
• Need to define a threshold *t* such that $AO(B_{gt}, B_p)$ implies a correct detection: 50%

AP by Class

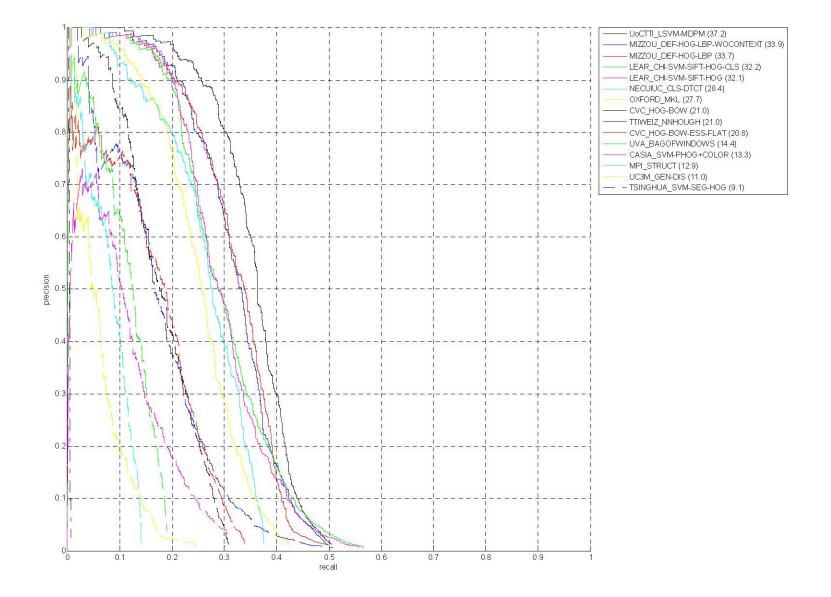


Chance essentially 0

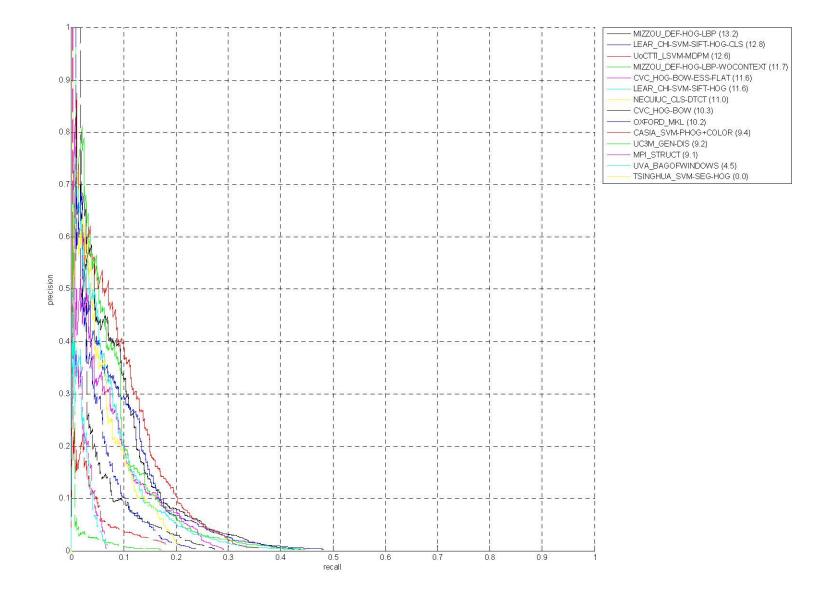
Precision/Recall - Aeroplane



Precision/Recall - Car



Precision/Recall – Potted plant



True Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

False Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

"Near Misses" - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

True Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

False Positives - Bicycle

UoCTTI_LSVM-MDPM

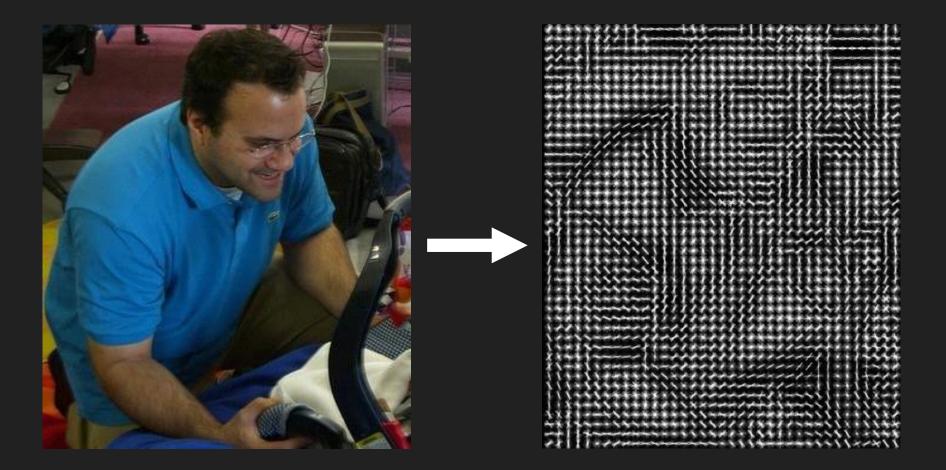
OXFORD_MKL

HOGgles (Vondrick et al. ICCV 2013)

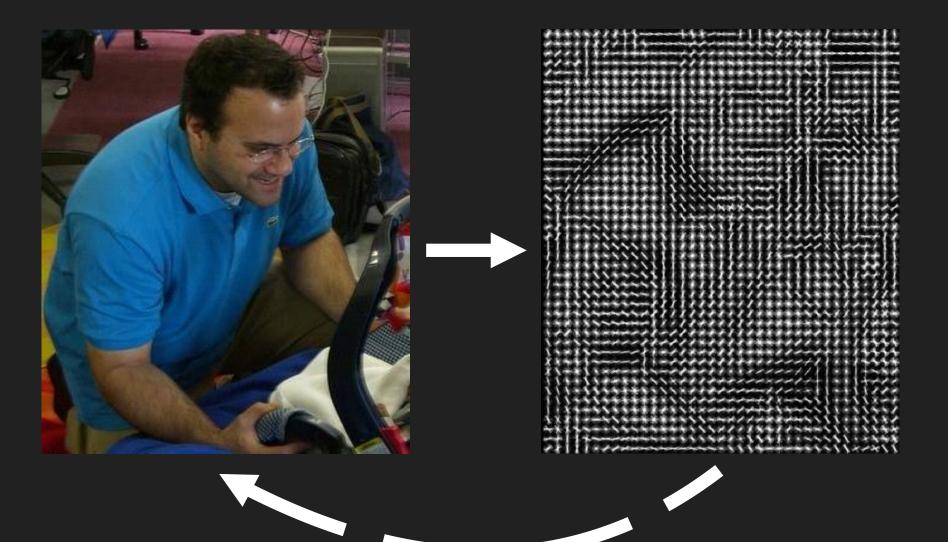


			10	ent to a conservation		
					an a	
						بلدمد مدومد مدرسه
-				() () () () () () () () () () () () () (1/mm	
and the second second second	, 0 0 0 0 0 0 0 0 0		to the second second	entre or	(****	
	**************************************		-0	en an	(1)	
		لا میدر به وزیروزمید میدوشید مید			1 Anno	ومستواسية مستراسية مسترابعات
	وسودسود بالمراجع المراسود سودس	-		and and a second se		
			the comolect activity of	manager 1		-+-+
• •0• •0• •0• •0• •0• •0•					****	at the same
, 101-101-101-101-1 0	and the second second second		COLUMN TO STORY OF STORY OF STORY	and the state of the state of the state	And the set of the second	and man and and and and and and and and and a
a lite in our and he all in				A. A. B. B. C. C.		
	and services	app of a constrained and	a de la desta d	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		- marine -
		and the second of	ugen og en gen gen gen gen gen gen ngen gen gen gen gen gen gen gen			and the second
,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ኯቘኯቘኯቘኯቘኯቘኯቘኯ ዀዀቘኯቘኯቘኯቘኯቘኯ ዸቘኯቘኯፙኯቘኯቘኯቘኯ			
			an a			
			2012 2012 2012 2012 2012 2012 2012 2012			
Car						
Car						
Car						
Car						
Car						
Car						
Car						
Car						
Car						
Car						

What information is lost?



What information is lost?



How can we 'invert' lossy HOG?

- Gradient computation
 - Without width or 'edge blur', i.e., not edges from Eldar 1999
- Oriented magnitude sum (via bins)
 - Loss of precision
 - Loss of specificity any number of values can sum to the same total
- Normalization
 - No way to unnormalize without knowing normalization factors

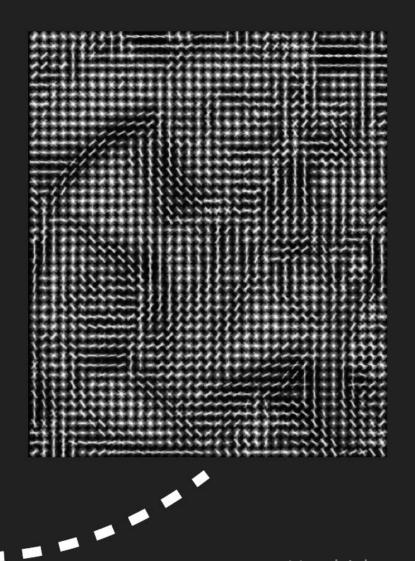
Many different image patches translate to the same HOG feature : (

What information is lost?

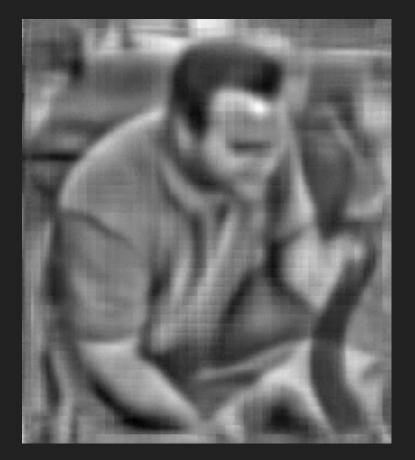
x = input patch y = HOG descriptor $\phi(x) = HOG transform$

$$\min_{x \in \mathbb{R}^d} ||\phi(x) - y||_2^2$$

Hard to optimize! Many-to-one = unconstrained!



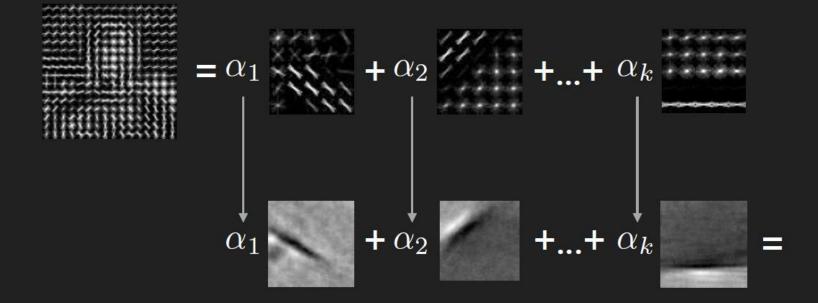
What information is lost?



20000	100000	100000
	11	122
2001	11222	11
2000	1111	
Times	101	
		12222
10.00	200	
1123		25511

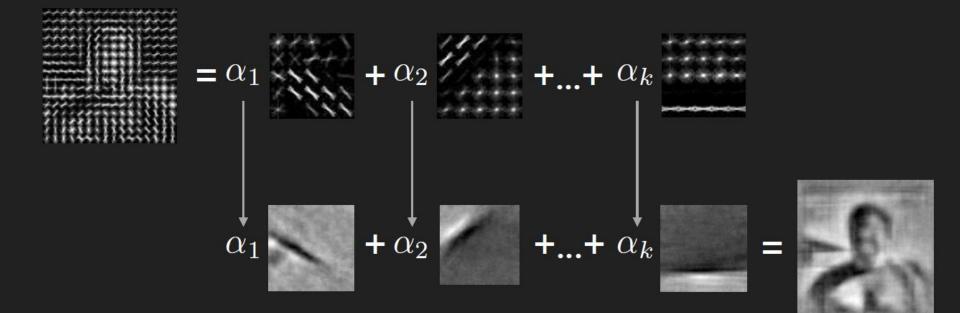
How to constrain (two parts):

1. Learn a basis over HOG windows



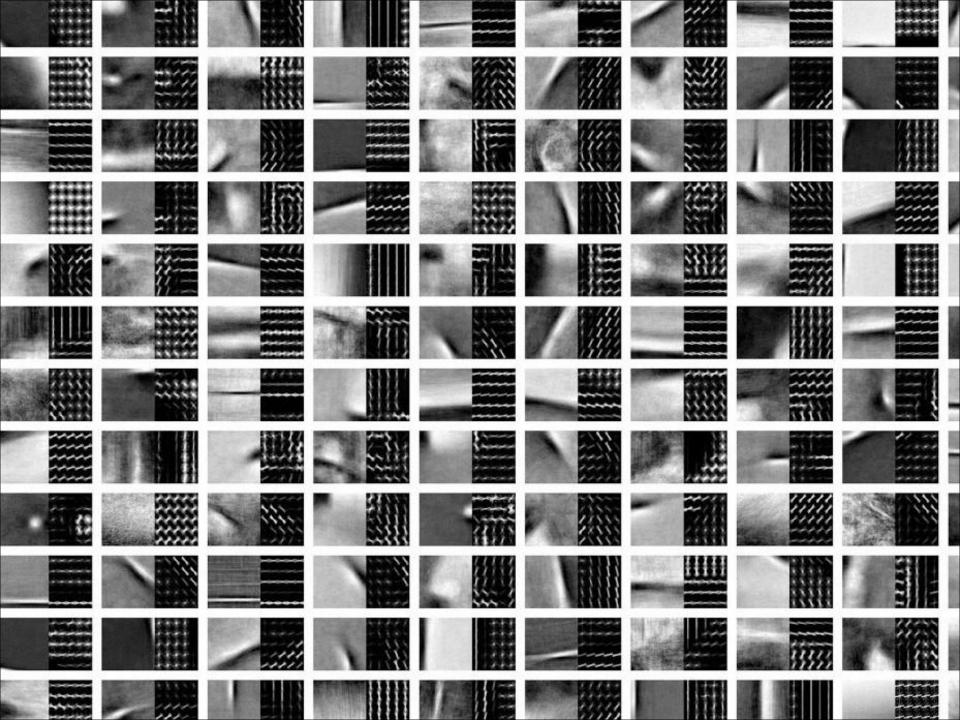
How to constrain (two parts):

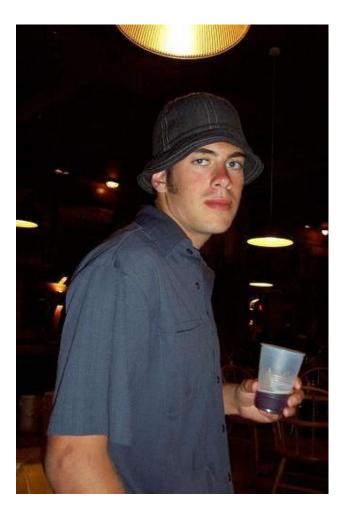
- 1. Learn a basis over HOG windows
- 2. Simultaneously learn a basis over input windows, and share the weights $\alpha_1 \dots \alpha_k$ over the training data



Inference to invert HOG:

- 1. Transform HOG patch into basis vectors
- 2. Take weights and apply to input basis





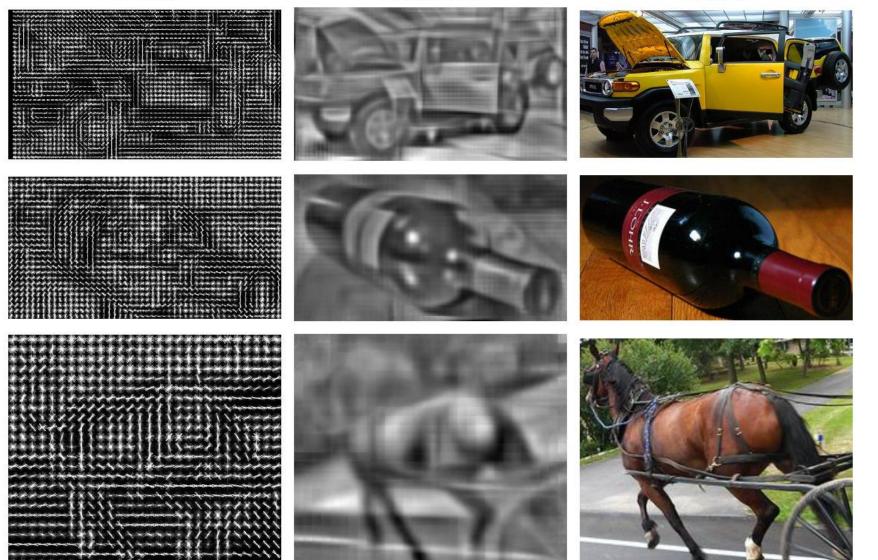
HumanVision

HOGgles (Vondrick et al. ICCV 2013)

HOG [1]

Inverse (Us)

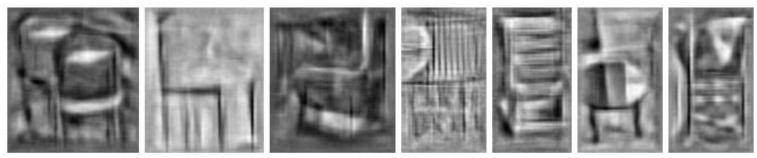
Original



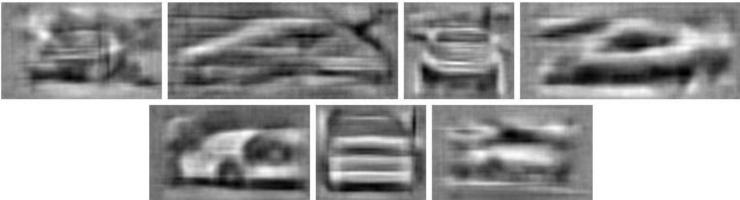
Visualizing Top Detections

We have visualized some high scoring detections from the deformable parts model. Can you guess which are false alarms? Click on the images below to reveal the corresponding RGB patch. You might be surprised!

Person



Chair

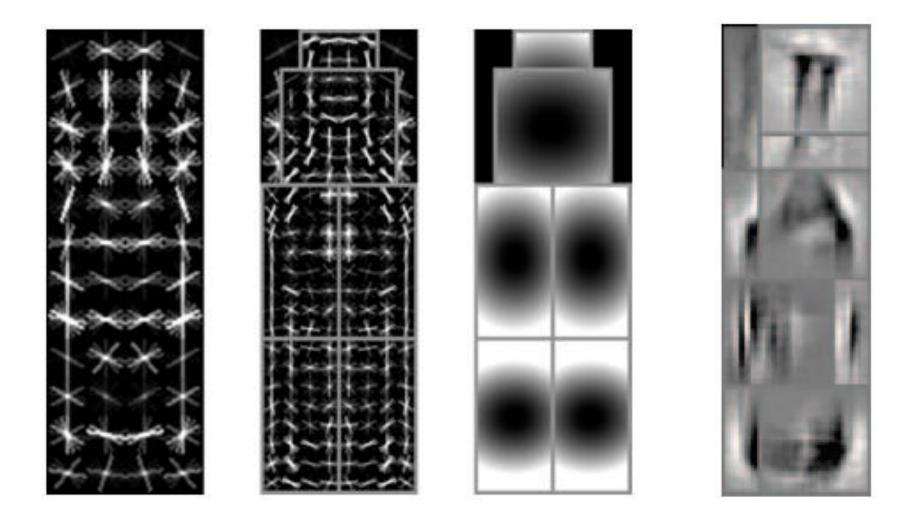


Recursive HOG!

Original x

Figure 11: We recursively compute HOG and invert it with a paired dictionary. While there is some information loss, our visualizations still do a good job at accurately representing HOG features. $\phi(\cdot)$ is HOG, and $\phi^{-1}(\cdot)$ is the inverse.

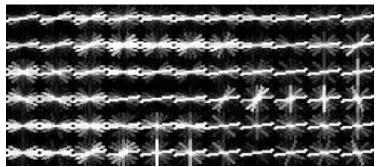
Bottle Deformable Parts Models + HOGgles



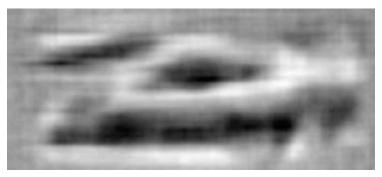
Why did the detector fail?



Why did the detector fail?



Why did the detector fail?



Code Available

Try it on your projects!

http://web.mit.edu/vondrick/ihog/

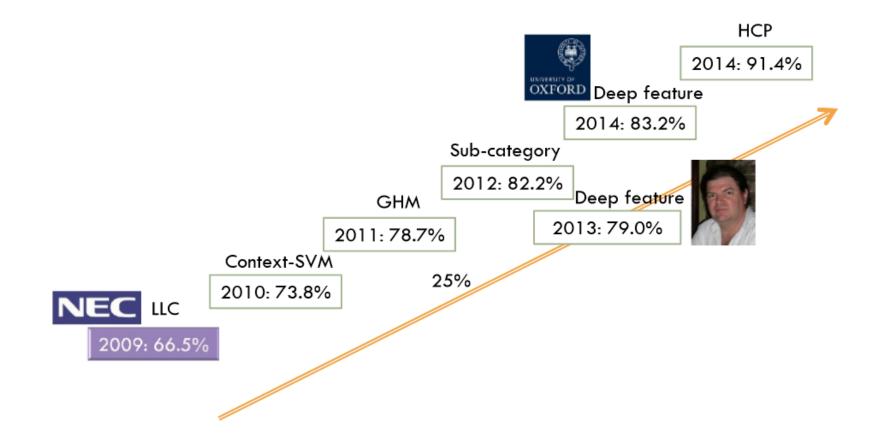
ihog = invertHOG(feat);

Opportunities of Scale

Many slides from James Hays, Alyosha Efros, and Derek Hoiem

Graphic from Antonio Torralba

PASCAL VOC: 2010-2014



Shuicheng Yan

Computer Vision so far

- The geometry of image formation
 Ancient / Renaissance
- Signal processing / Convolution
 1800, but really the 50's and 60's
- Hand-designed Features for recognition, either instance-level or categorical
 - 1999 (SIFT), 2003 (Video Google), 2005 (Dalal-Triggs), 2006 (spatial pyramid)
- Learning from Data
 - 1991 (EigenFaces) but late 90's to now especially

What has changed in the last decade?

- The Internet
- Crowdsourcing
- Learning representations from the data these sources provide (deep learning)

Google and massive data-driven algorithms

A.I. for the postmodern world:

- all questions have already been answered...many times, in many ways
- Google is dumb, the "intelligence" is in the data

💥 Google S	arch: clime stairs - Netscape	
File Edit V	💥 Google Search: clime punishment - Netscape	
Back	File Edit View Go Communicator Help	
Back	I 🗳 🔉 🤁 🐴 🧟 🛍 📥 💕 🚳 🏨	N
🧃 🦋 Bo	Back Forward Reload Home Search Netscape Print Security Shop Stop	
🥈 🖳 Web	👔 🦋 Bookmarks 🙏 Location: http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=clime+punishment	💽 🍘 What's Related
	👔 🖳 WebMail 🖳 Calendar 🖳 Radio 🖳 People 🖳 Yellow Pages 🖳 Download 🖳 Customize	
G	Advanced Search Preferences Language Tools	Search Tips
	Clime punishment	
	Google Search	
Web		
Searche	Web Images Groups Directory News	
Obdronk	Searched the web for <u>clime</u> <u>punishment</u> . Results 1 - 10 of about 4,250 . Search	took 0.06 cocord
Didyo		LUUK U.UO SECUNU
Did yo		
	Did you mean: <u>crime punishment</u>	

Big Idea

- Do we need computer vision systems to have strong AI-like reasoning about our world?
- What if invariance / generalization isn't actually the core difficulty of computer vision?
- What if we can perform high level reasoning with brute-force, data-driven algorithms?

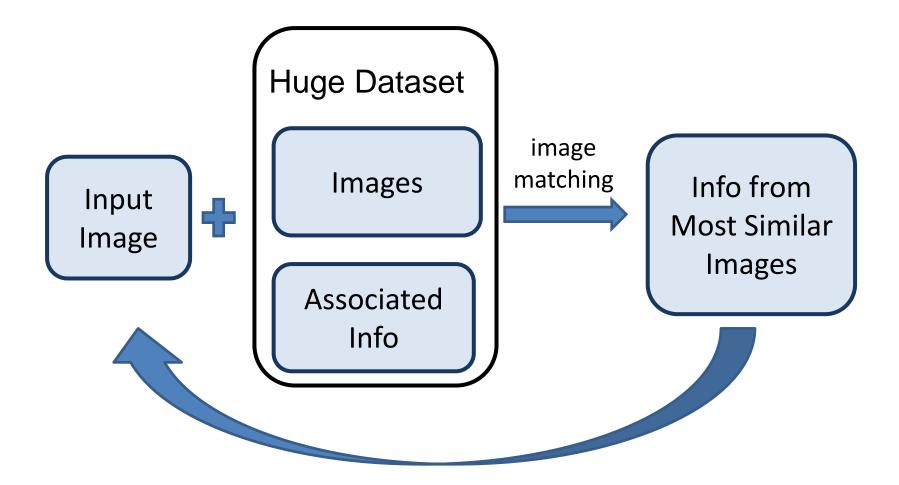
The Unreasonable Effectiveness of Data

Peter Norvig Google

Peter Norvig

The Unreasonable Effectiveness of Data

General Principal



Hopefully, If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

Powers of 10

Number of images on my hard drive:

Number of images seen during my first 10 years: (3 images/second * 60 * 60 * 16 * 365 * 10 = 630,720,000)

Number of images seen by all humanity: 106,456,367,669 humans¹ * 60 years * 3 images/second * 60 * 60 * 16 * 365 = 1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx

Number of photons in the universe:

Number of all 32x32 images: 256 32*32*3~ 107373

107373

1088

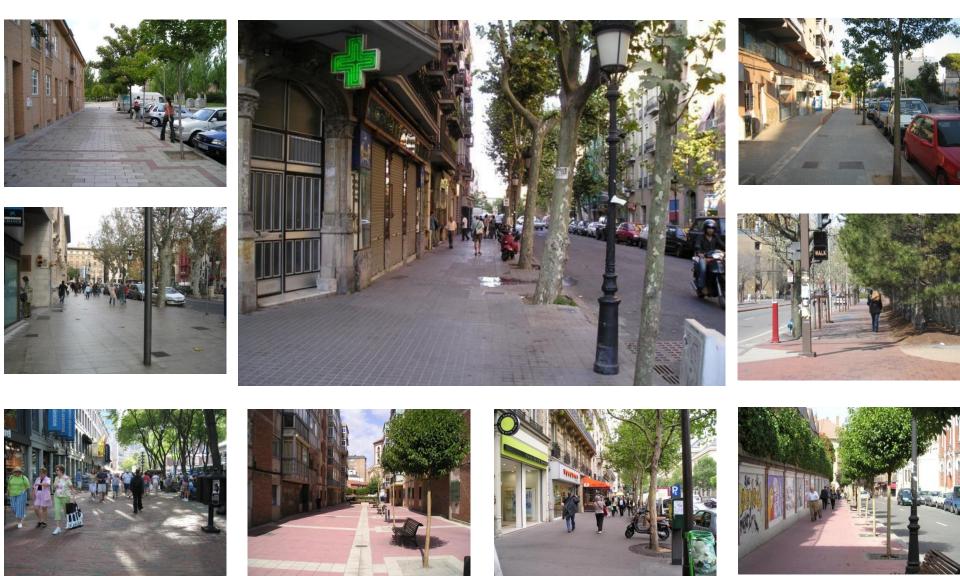
 10^{6}

 10^{8}

10²⁰

Understanding scenes encompasses all kinds of knowledge

But not all scenes are so original

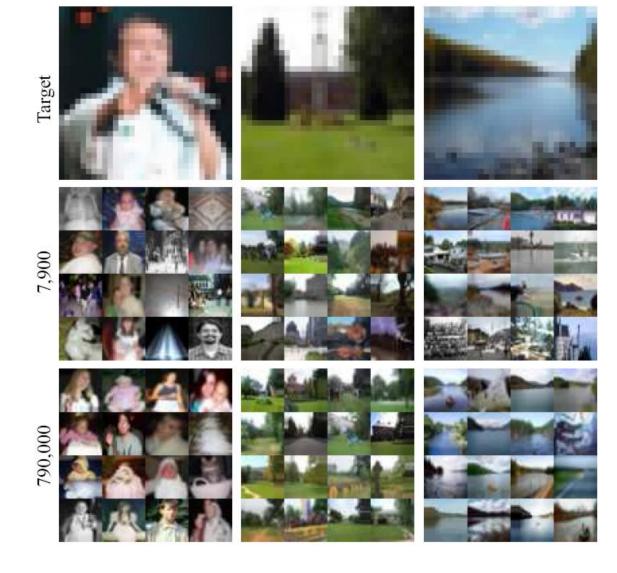


Lots Of

Images

Lots Of

Images

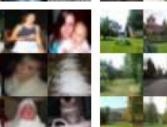


Lots

Of Images

79,000,000

7,900



Application: Automatic Colorization

Input

Color Transfer

Color Transfer

Matches (gray)

Matches (w/ color)

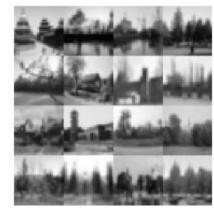
Avg Color of Match

Application: Automatic Colorization

Input

Color Transfer

Color Transfer

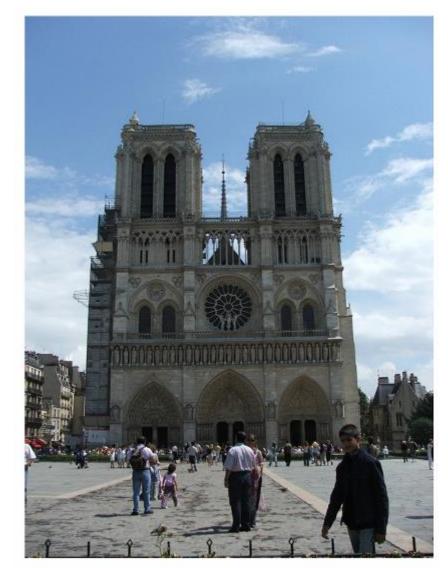


Matches (gray)

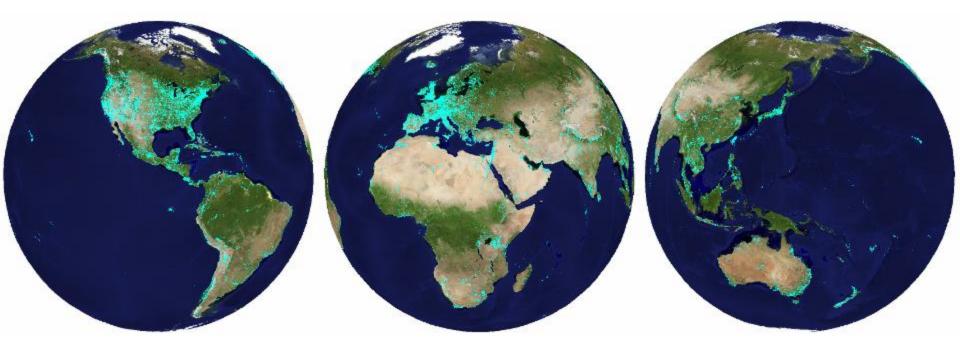
Matches (w/ color)

Avg Color of Match

How much can an image tell about its geographic location?



How much can an image tell about its geographic location?

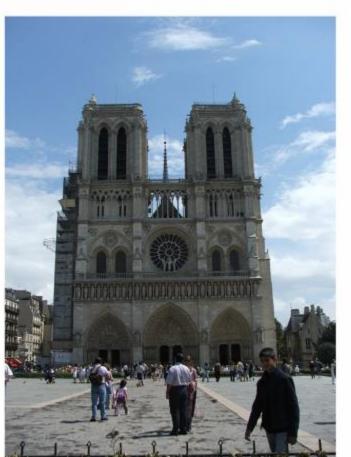


6 million geo-tagged Flickr images

http://graphics.cs.cmu.edu/projects/im2gps/

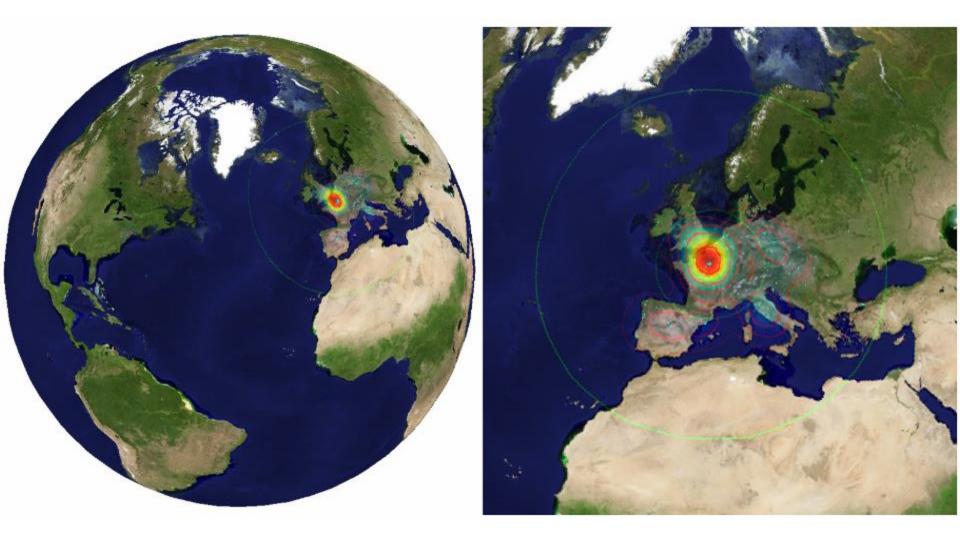
im2gps (Hays & Efros, CVPR 2008)

Nearest Neighbors according to gist + bag of SIFT + color histogram + a few others



Paris

Paris



Im2gps

Example Scene Matches

england

heidelberg

Italy

europe

France

Macau

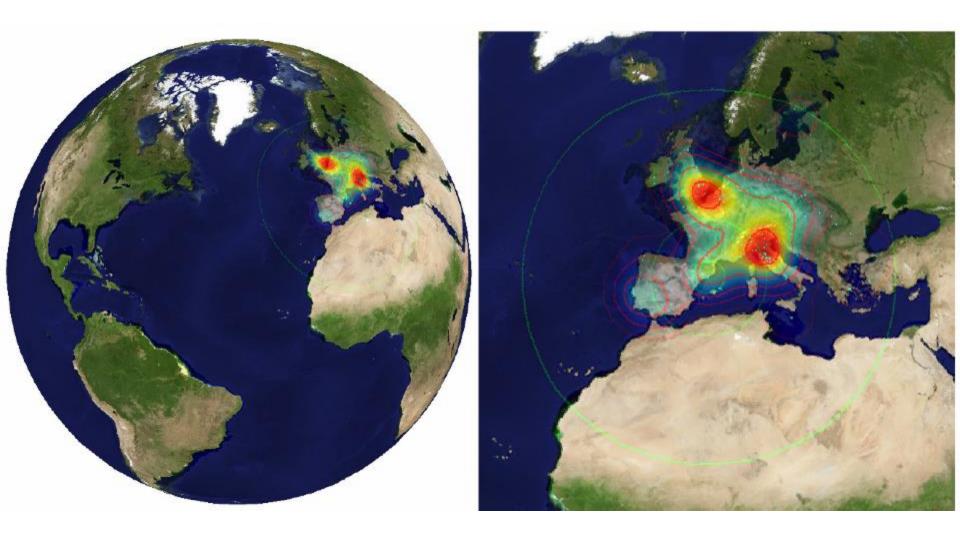
Barcelona

Malta

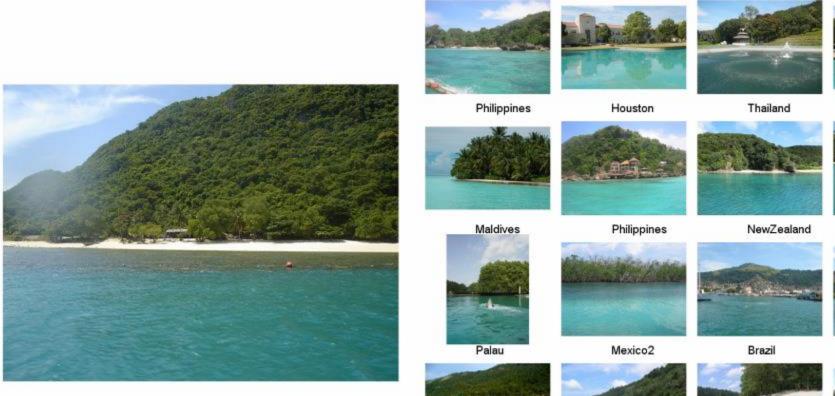
Latvia

Cairo

Voting Scheme



im2gps



Houston

Bermuda

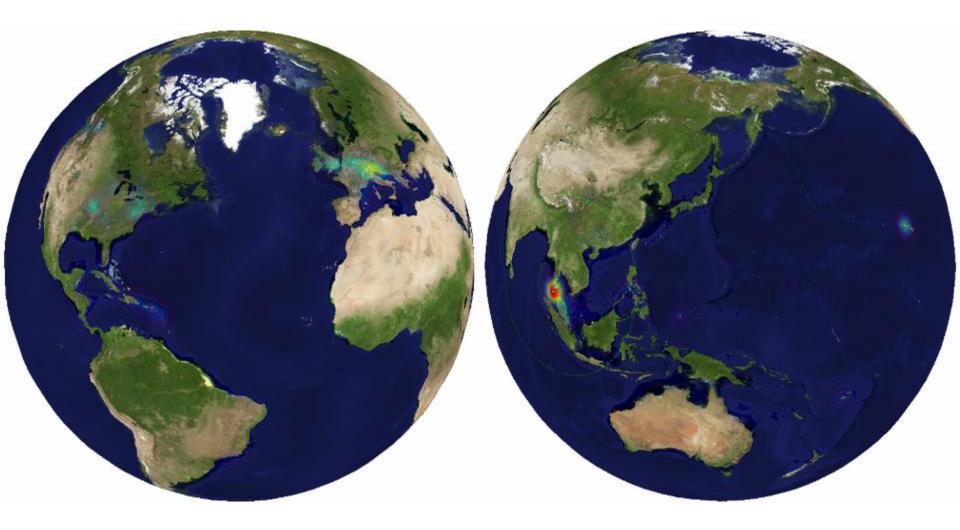
Mendoza

Brazil

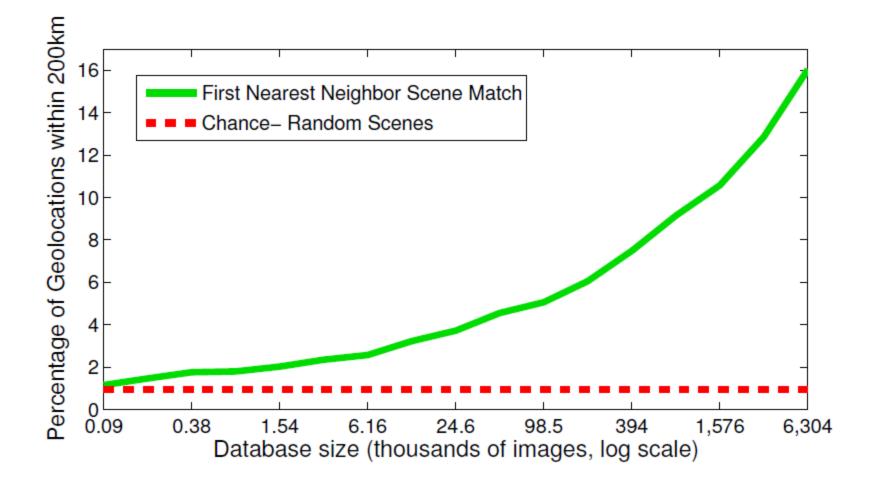
Thailand

Arkansas

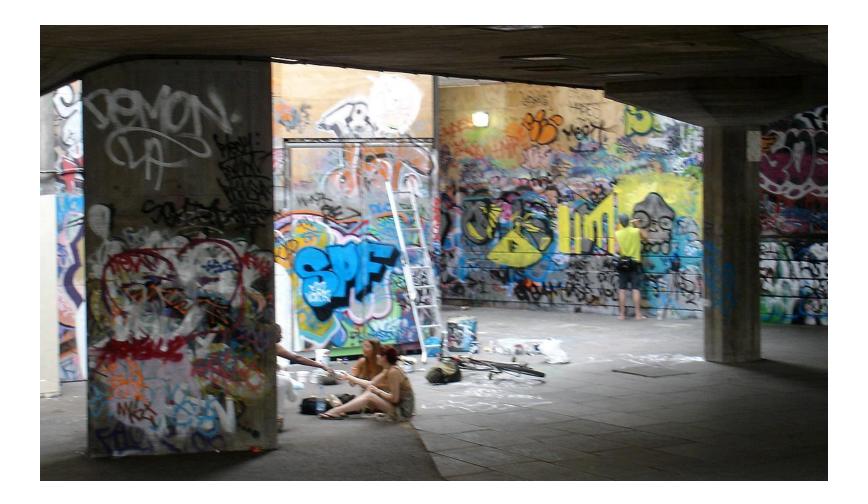
Hawaii



Effect of Dataset Size



Where is This?



[Vesselova, Kalogerakis, Hertzmann, Hays, Efros. Image Sequence Geolocation. ICCV'09]

Where is This?

Where are These?

15:14, June 18th, 2006 16:31, June 18th, 2006

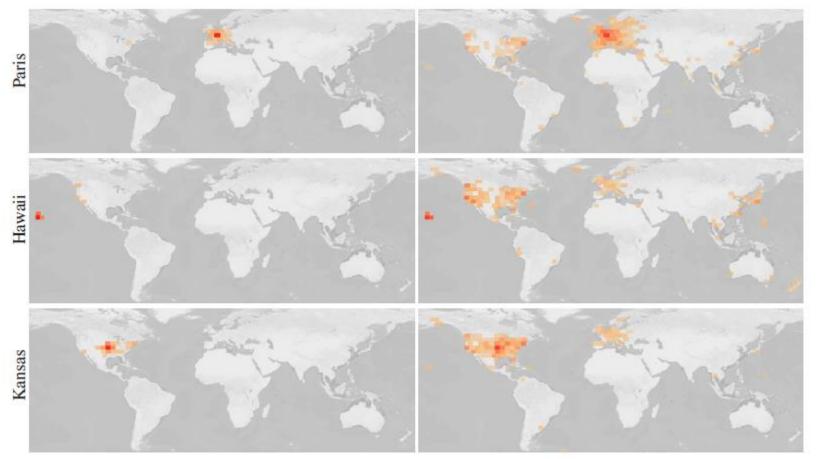
Where are These?

15:14, June 18th, 2006

16:31, 17:24, June 18th, 2006 June 19th, 2006

Results

- im2gps 10% (geo-loc within 400 km)
- temporal im2gps 56%



Tiny Images

80 million tiny images: a large dataset for nonparametric object and scene recognition

Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008. http://groups.csail.mit.edu/vision/TinyImages/

256x256

125-25205

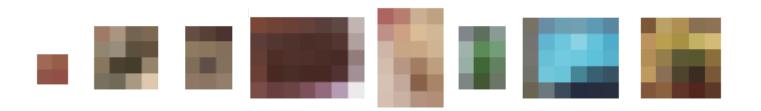
2018 18

200.0

256x256

1

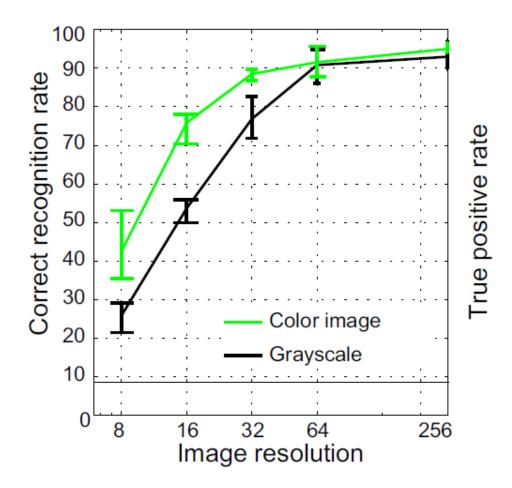
State of the local division in which the local division in the loc



256x256

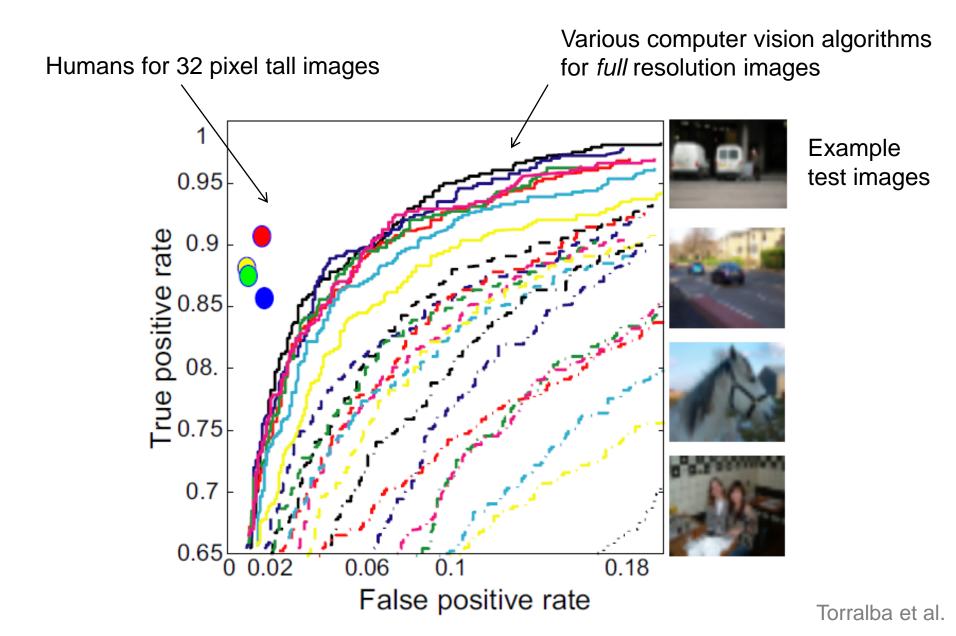
c) Segmentation of 32x32 images

Given a benchmark, resolution and human scene recognition accuracy increase to a limit

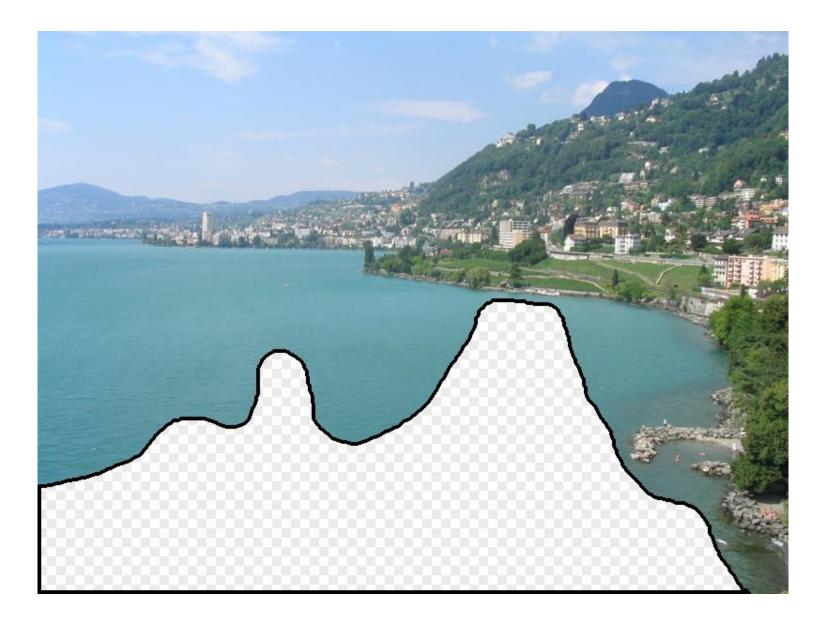


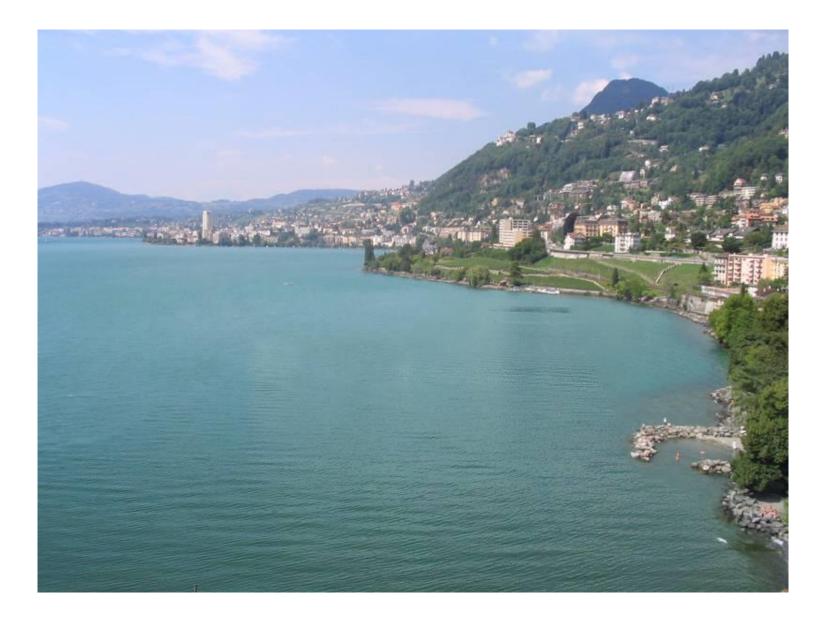
Torralba et al.

Humans vs. Computers: Car Classification



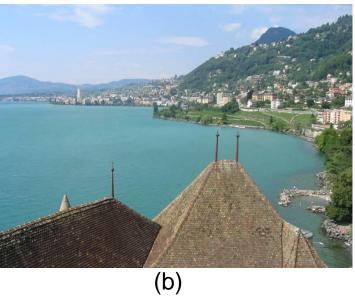
What should the missing region contain?





Which is the original?

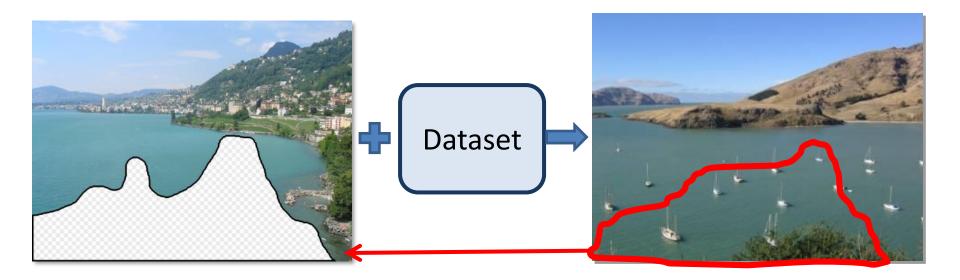
(a)



(C)

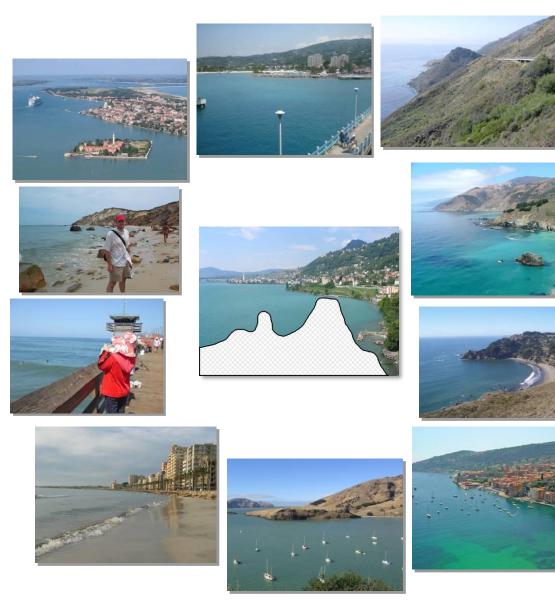
How it works

- Find a similar image from a large dataset
- Blend a region from that image into the hole



How many images is enough?

Nearest neighbors from a collection of 20 thousand images



Nearest neighbors from a collection of 2 million images

Image Data on the Internet

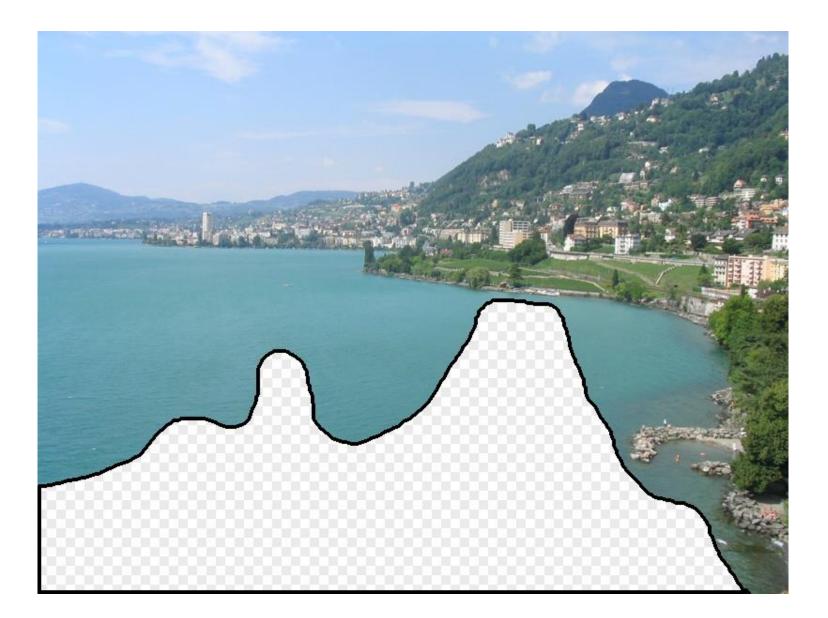
- Flickr (as of Nov 2013)
 - 10 billion photographs
 - 100+ million geotagged images
 - 3.5 million a day
- Facebook (as of Sept 2013)
 - 250 billion+
 - 300 million a day
- Instagram
 - 55 million a day

Image completion: how it works

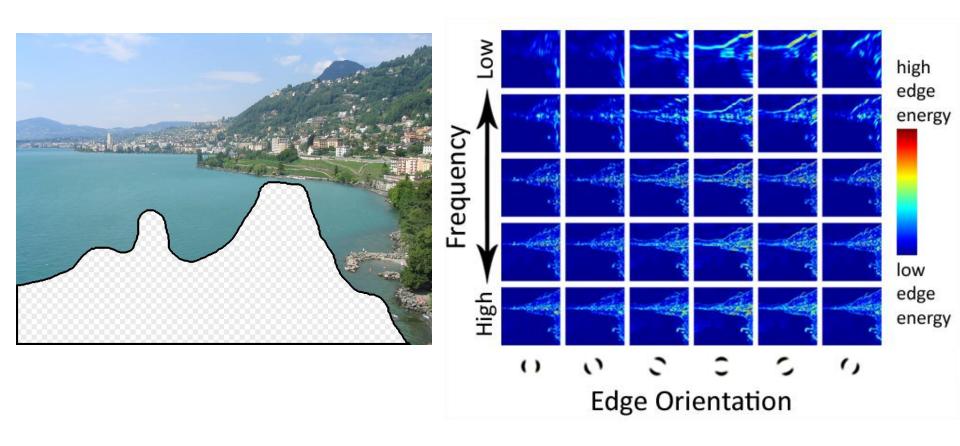
[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

The Algorithm

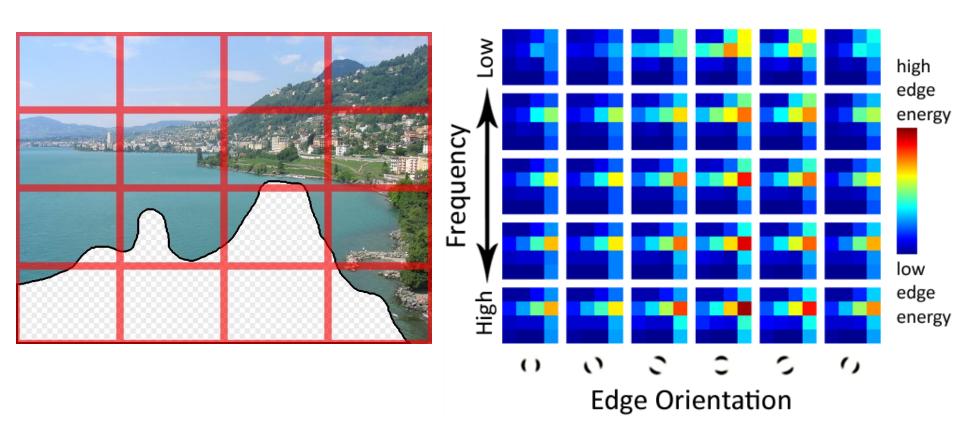
Scene Matching



Scene Descriptor

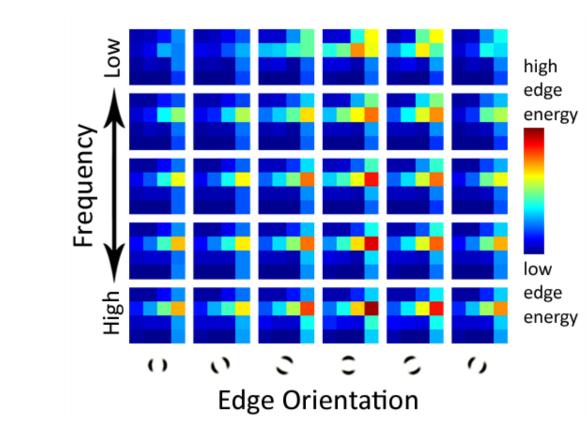


Scene Descriptor

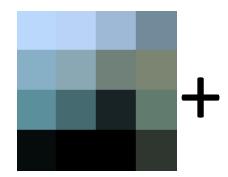


Scene Gist Descriptor (Oliva and Torralba 2001)

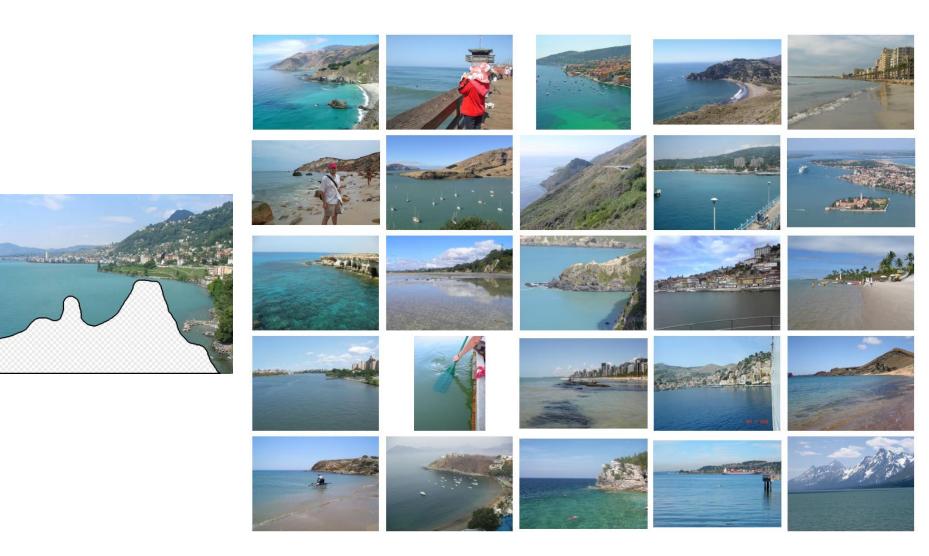
Scene Descriptor



Scene Gist Descriptor (Oliva and Torralba 2001)

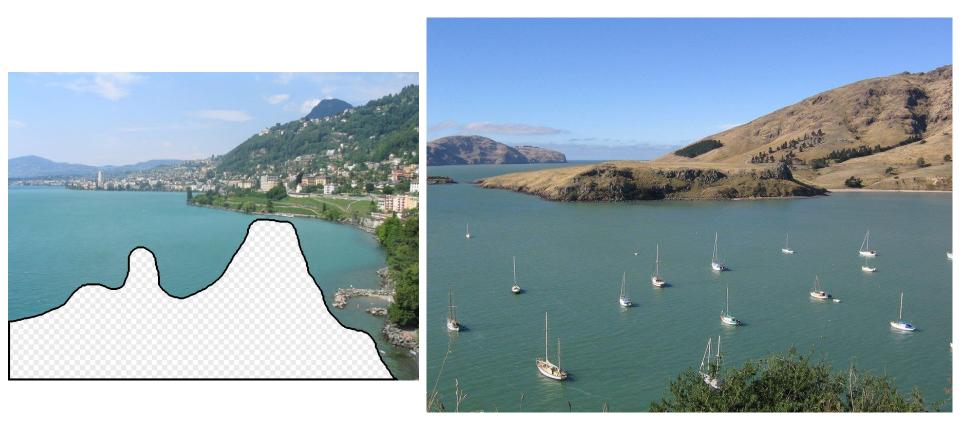


2 Million Flickr Images



... 200 total

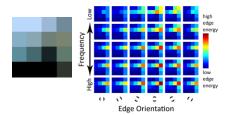
Context Matching



Graph cut + Poisson blending

Result Ranking

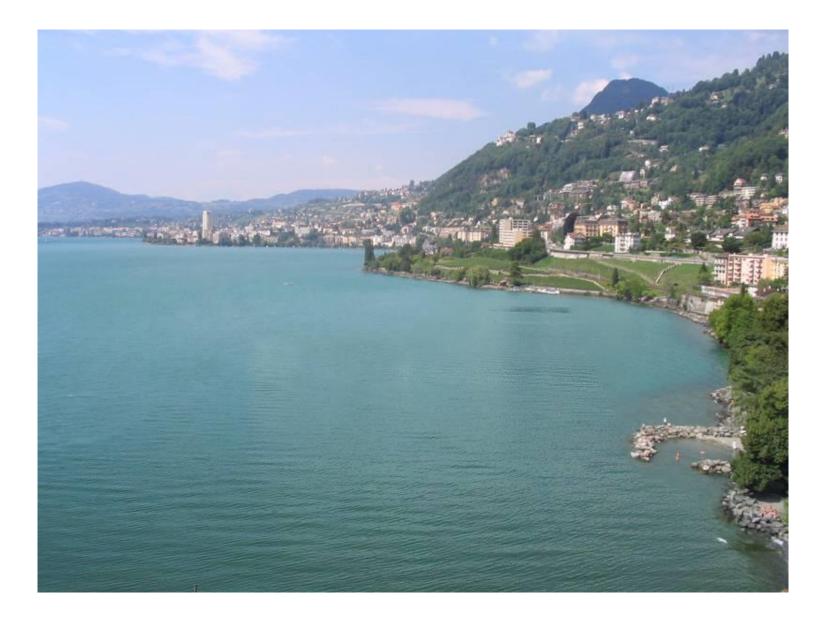
We assign each of the 200 results a score which is the sum of:

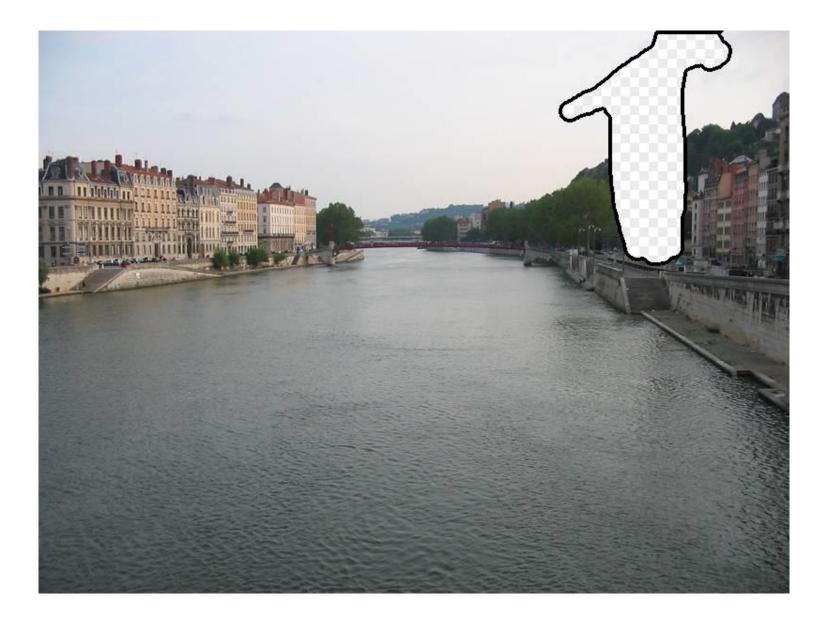


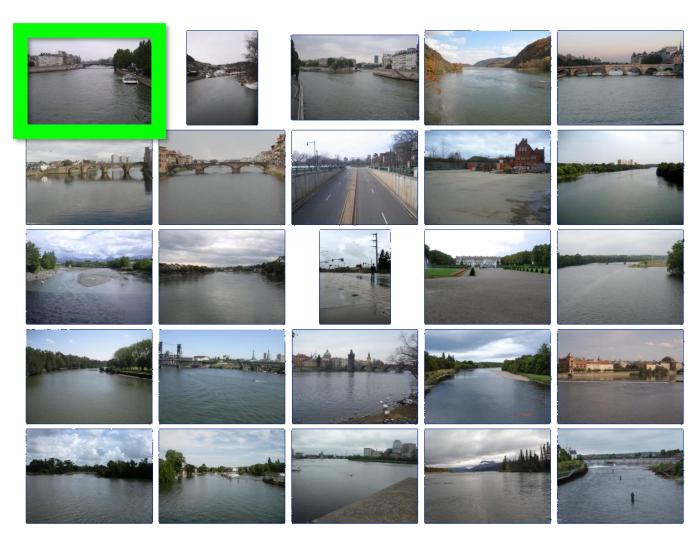
The scene matching distance

The context matching distance (color + texture)

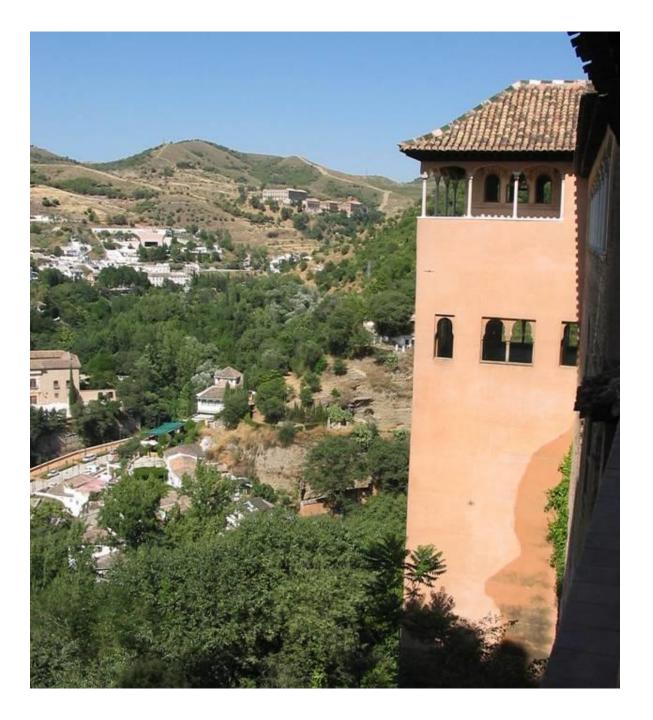
The graph cut cost

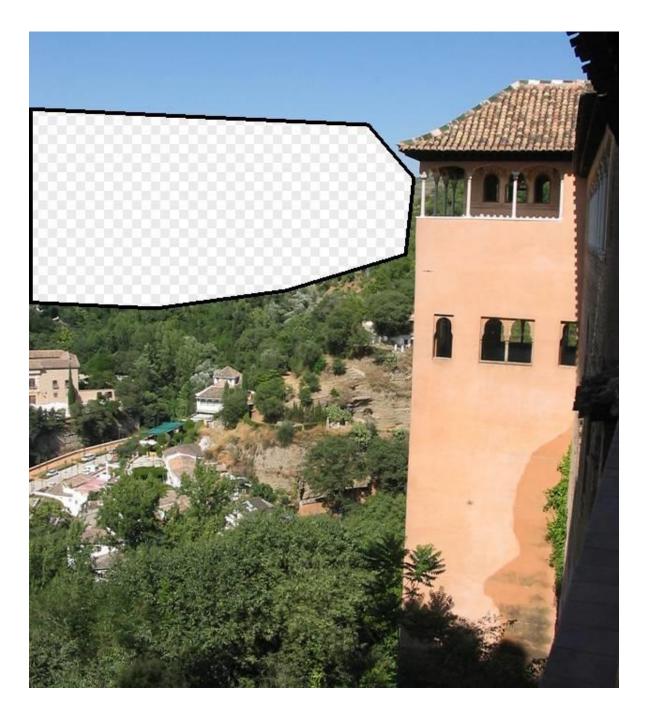


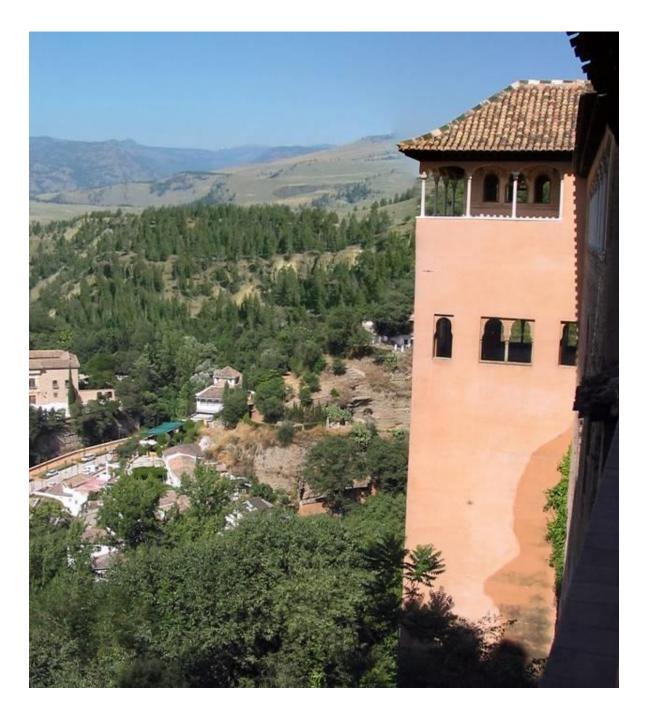








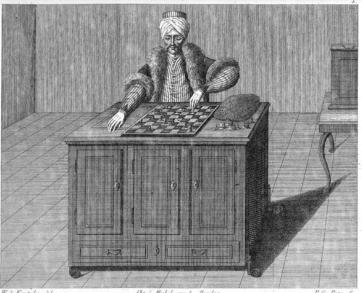




Which is the original?

Mechanical Turk

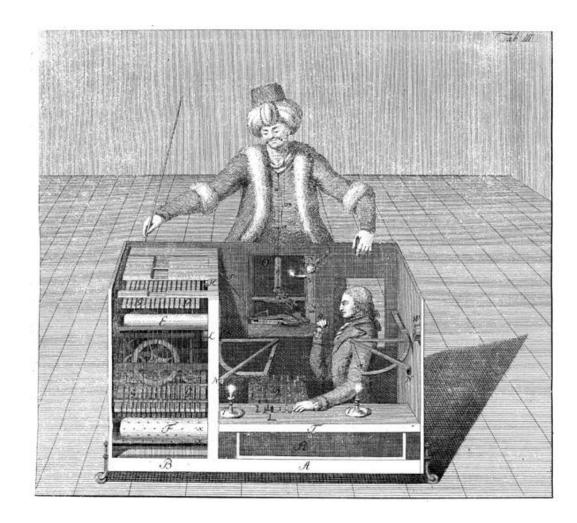
- von Kempelen, 1770.
- Robotic chess player.
- Clockwork routines.
- Magnetic induction (not vision)
- Toured the world; played Napoleon Bonaparte and Benjamin Franklin.



W & Kompolan ed. PO Bats b Der Scharsfinieler im Spiele begriffen Lower Hickory tel qu'en le voit pendant le jeu

Mechanical Turk

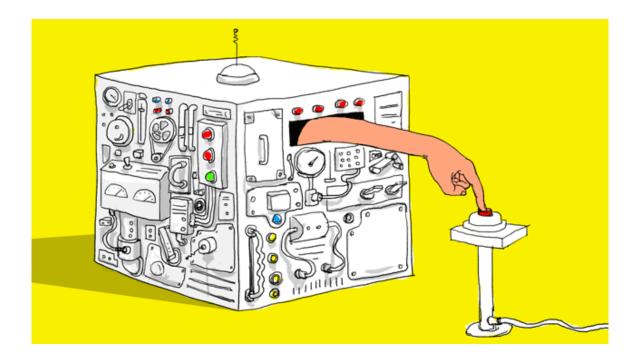
- It was all a ruse!
- Ho ho ho.



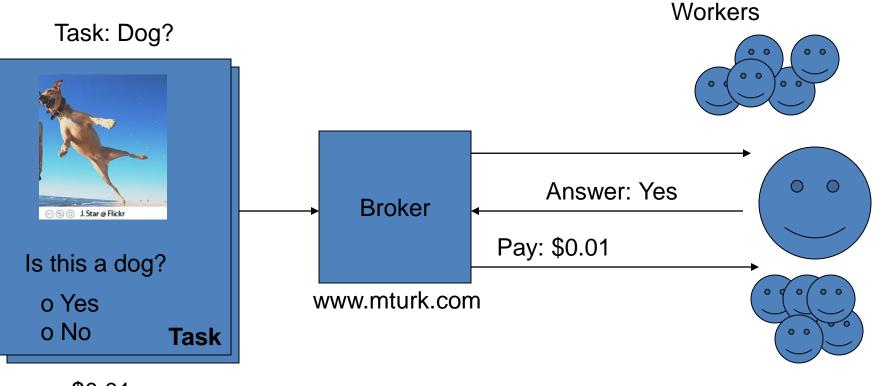
Amazon Mechanical Turk

Artificial artificial intelligence.

Launched 2005. Small tasks, small pay. Used extensively in data collection.

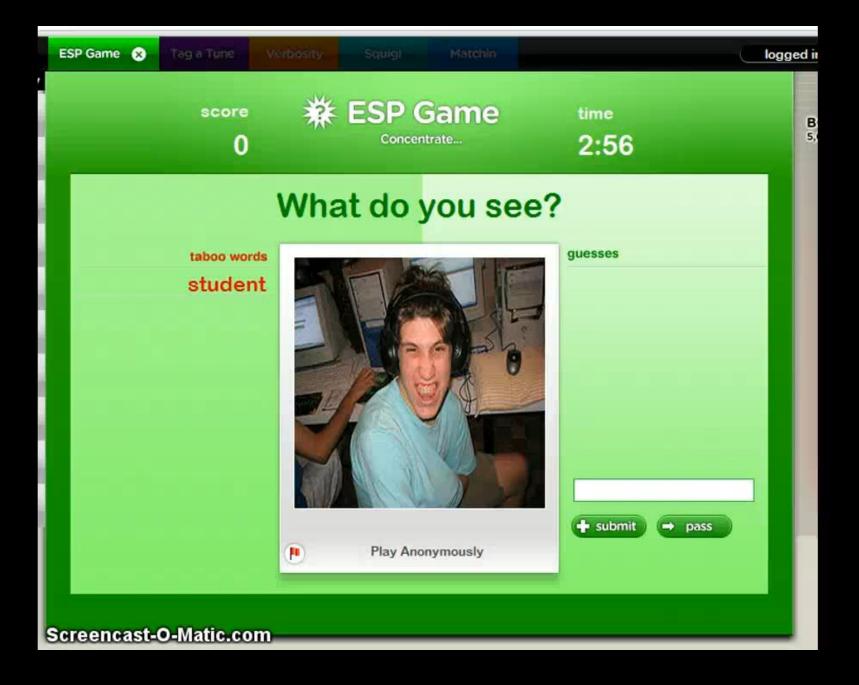


Amazon Mechanical Turk



\$0.01

Luis von Ahn and Laura Dabbish. <u>Labeling Images with a Computer Game</u>. ACM Conf. on Human Factors in Computing Systems, CHI 2004



Vision (Segmentation): LabelMe

http://labelme.csail.mit.edu

"Open world" database annotated by the community*

Notes on Image Annotation, Barriuso and Torralba 2012. http://arxiv.org/abs/1210.3448

Utility data annotation via Amazon Mechanical Turk

$X 100\ 000 = 5000

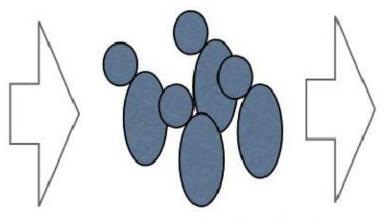
Alexander Sorokin David Forsyth CVPR Workshops 2008

Slides by Alexander Sorokin

6000 images from flickr.com

Building datasets

Annotators



amazonmechanical turk Artificial Artificial Intelligence

Is there an Indigo bunting in the image?

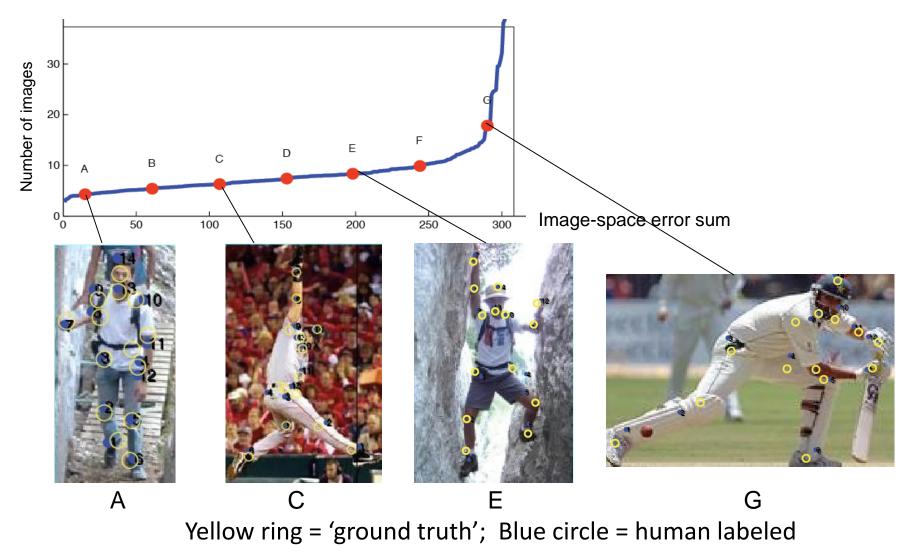
Slide credit: Welinder et al

Issues

- Quality?
 - How good is it?How to be sure?
- Price?
 - Trade off between throughput and cost
 - *NOT* as much of a trade off with quality
 - Higher pay can actually attract scammers

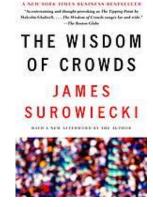
Annotation quality

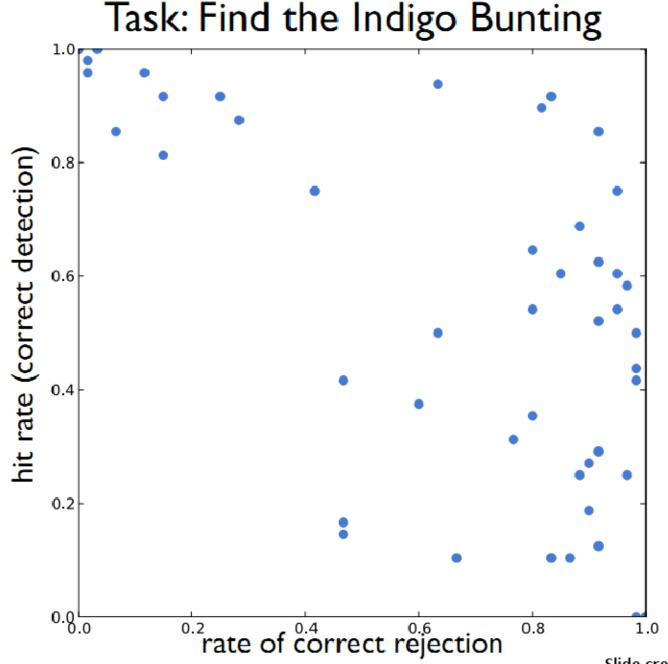
How much agreement is there on 'ground truth' and turker-labeled joint positions? Points must agree within 5-10 pixels on 500x500 image.



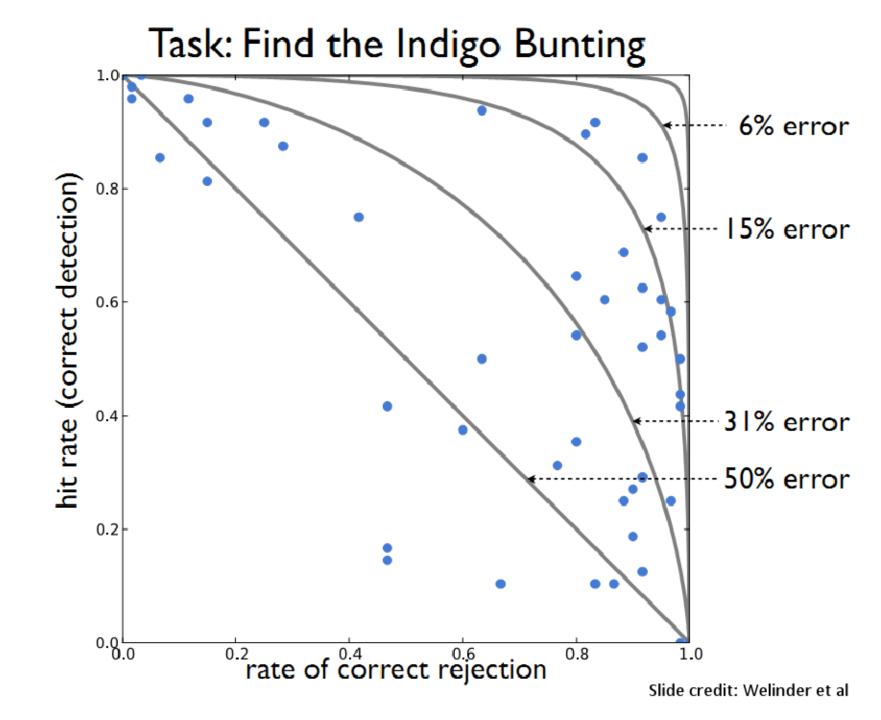
Ensuring Annotation Quality

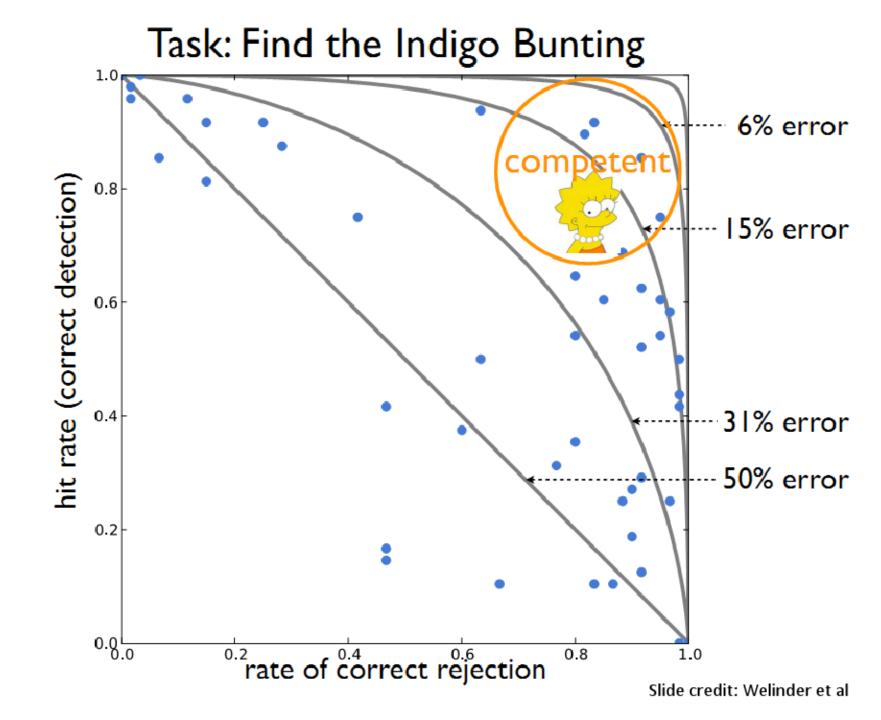
- Consensus in multiple annotations "Wisdom of the Crowds" Not enough on its own, but widely used
- Gold Standard / Sentinel
 - Special case: qualification exam
 Widely used & important. Find good annotators; keep them honest.
- Grading Tasks
 - A second tier of workers who grade others
 Not widely used

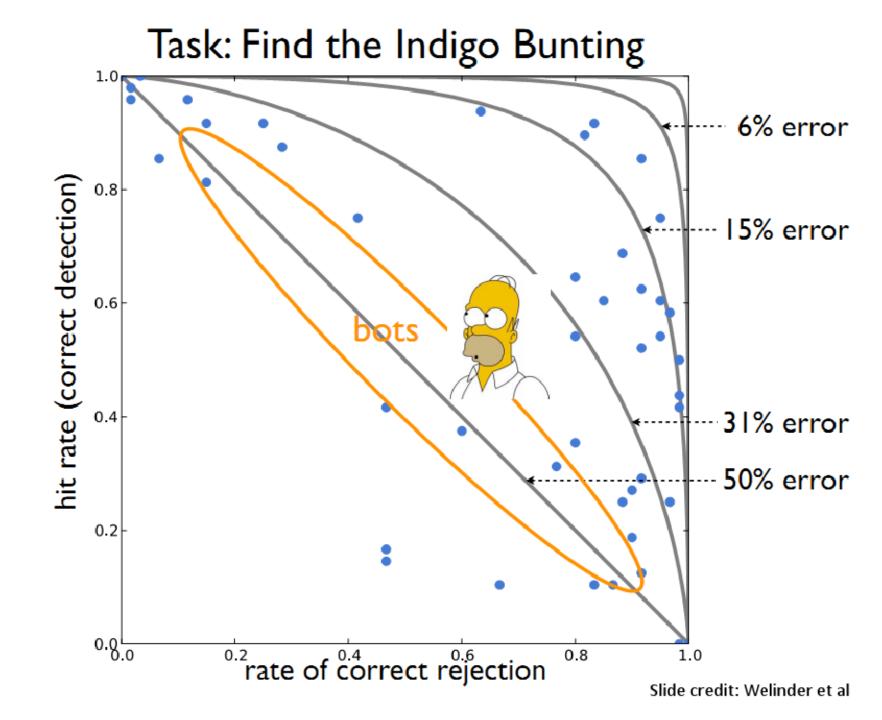


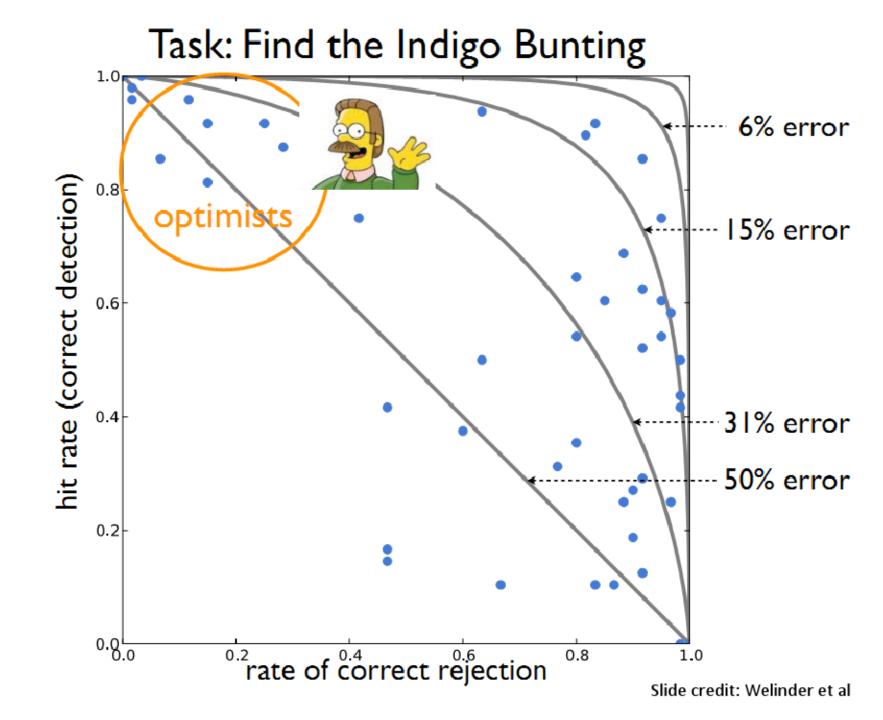


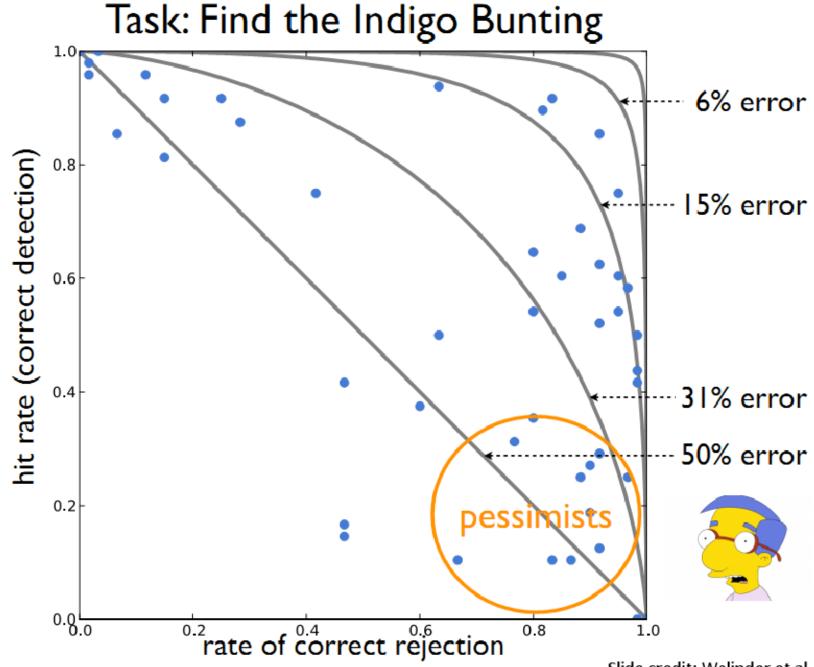
Slide credit: Welinder et al





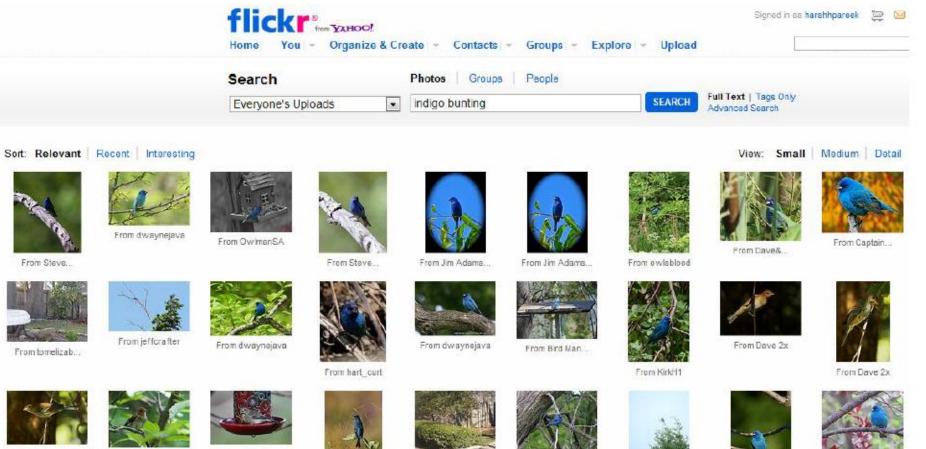






Slide credit: Welinder et al





From Dave 2x

From Bird Man ...

From KirkH1

From Birds&

From Dave8...

From Dave 2x

From Buzzie82

From Christian.

From tomelizab.

From Dan and.

From MomOnTheR.

From iceberg_c

From MoGov

From tanagergirl

From kenh571

From Dan and...

From DansPhotoArt

From dinarshman

Image credit: Flickr.com

Visual Recognition with Humans in the Loop

Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro Perona, Serge Belongie

Part of the Visipedia project

Slides from Brian O'Neil

Introduction:

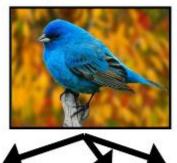
(A) Easy for Humans

Chair? Airplane? ... Computers starting to get good at this.

(B) Hard for Humans

Finch? Bunting?... If it's hard for humans, it's probably too hard for computers.

(C) Easy for Humans



Yellow Belly? Blue Belly? ... Semantic feature extraction difficult for computers.

Combine strengths to solve this problem.

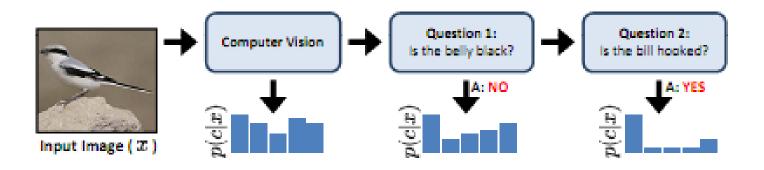
The Approach: What is progress?

- Supplement visual recognition with the human capacity for visual feature extraction to tackle difficult (fine-grained) recognition problems.
- Typical progress is viewed as increasing data difficulty while maintaining full autonomy

• Reduction in human effort on difficult data.

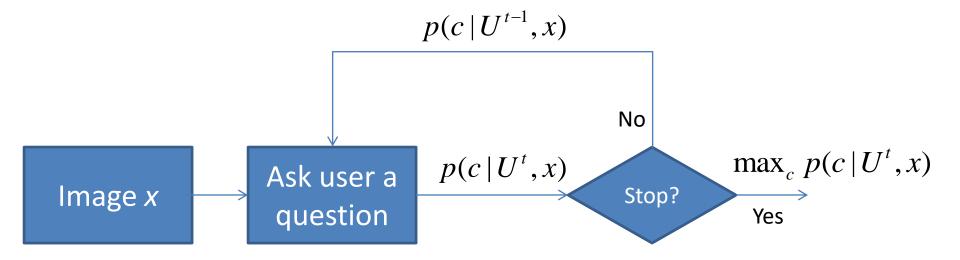
The Approach: 20 Questions

 Ask the user a series of discriminative visual questions to make the classification.



Which 20 questions?

 At each step, exploit the image itself and the user response history to select the most informative question to ask next.



Which question to ask?

 The question that will reduce entropy the most, taking into consideration the computer vision classifier confidences for each category.

Some definitions:

- $Q = \{q_1 ... q_n\}$ Set of possible questions
 - Possible answers to question i
 - Possible confidence in answer *i* (Guessing, Probably, Definitely)

$$u_i = (a_i, r_i)$$
 • User response

 $a_i \in A_i$

 $r_i \in V$

 II^t

• History of user responses at time t

Question selection

 Seek the question that gives the maximum information gain (entropy reduction) given the image and the set of previous user responses.

$$I(c; u_i \mid x, U^{t-1}) = \sum_{u_i \in A_i \times V} p(u_i \mid x, U^{t-1}) \left(H(c \mid x, u_i \cup U^{t-1}) - H(c \mid x, U^{t-1}) \right)$$

Probability of obtaining Response u_i given the image And response history Entropy when response is Added to history

Entropy before response is added.

where
$$H(c | x, U^{t-1}) = -\sum_{c=1}^{C} p(c | x, U^{t-1}) \log p(c | x, U^{t-1})$$

Incorporating vision

- Bayes Rule
- A visual recognition algorithm outputs a probability distribution across all classes that is used as the prior.
- A posterior probability is then computed based on the probability of obtaining a particular response history given each class.

$$p(c \mid x, U) = \eta p(U \mid c, x) p(c \mid x) = \eta p(U \mid c) p(c \mid x)$$

Modeling user responses

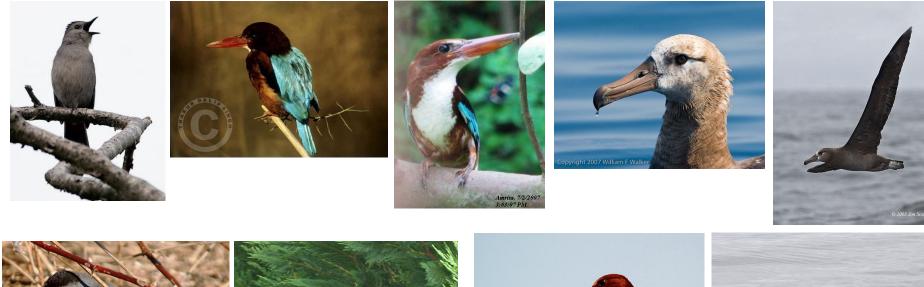
• Assume that the questions are answered independently.

$$p(U^{t-1} | c) = \prod_{i}^{t-1} p(u_i | c) \qquad \text{Required for posterior computation}$$

$$p(u_i | x, U^{t-1}) = \sum_{c=1}^{C} p(u_i | c) p(c | x, U^{t-1}) \qquad \text{Required for information gain computation}$$

The Dataset: Birds-200

• 6033 images of 200 species



Implementation

- Assembled 25 visual questions encompassing 288 visual attributes extracted from <u>www.whatbird.com</u>
- Mechanical Turk users asked to answer questions and provide confidence scores.

User Responses.

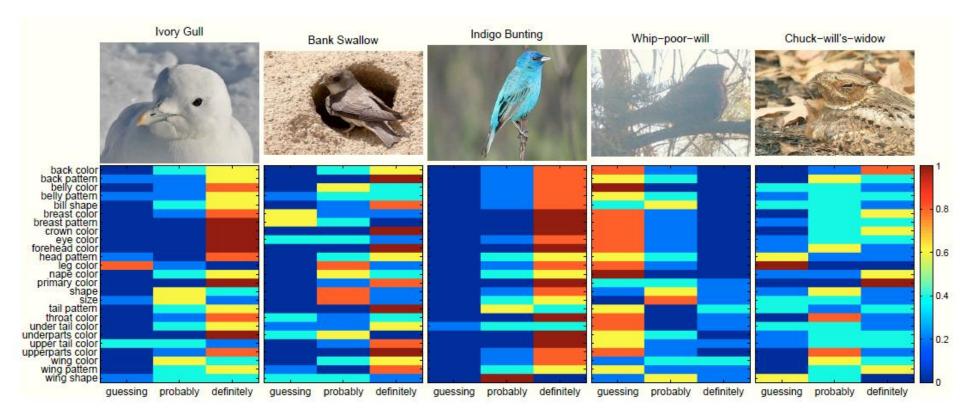
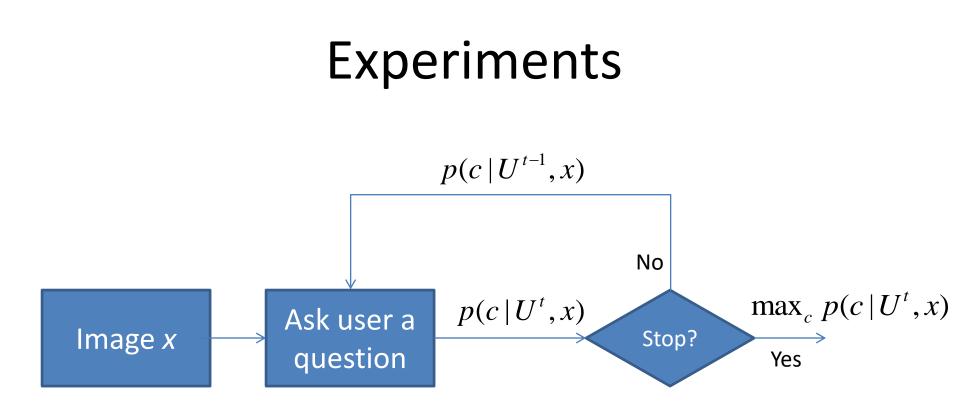


Fig. 4. Examples of user responses for each of the 25 attributes. The distribution over {*Guessing*, *Probably*, *Definitely*} is color coded with blue denoting 0% and red denoting 100% of the five answers per image attribute pair.

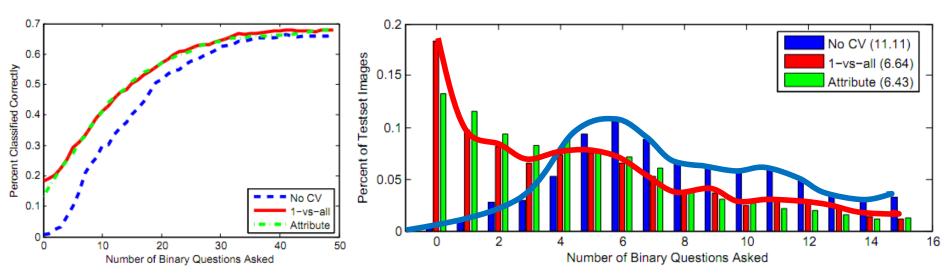
Visual recognition

- Any vision system that can output a probability distribution across classes will work.
- Authors used Andrea Vedaldis's code.
 Color/gray SIFT
 - VQ geometric blur
 - 1 v All SVM
- Authors added full image color histograms and VQ color histograms



- 2 Stop criteria:
 - Fixed number of questions evaluate accuacy
 - User stops when bird identified measure number of questions required.

Results



- Average number of questions to make ID reduced from 11.11 to 6.43
- Method allows CV to handle the easy cases, consulting with users only on the more difficult cases.

Key Observations

- Visual recognition reduces labor over a pure "20 Q" approach.
- Visual recognition improves performance over a pure "20 Q" approach. (69% vs 66%)
- User input dramatically improves recognition results. (66% vs 19%)

Strengths and weaknesses

- Handles very difficult data and yields excellent results.
- Plug-and-play with many recognition algorithms.
- Requires significant user assistance
- Reported results assume humans are perfect verifiers
- Is the reduction from 11 questions to 6 really that significant?