

2020 COMPUTER VISION

Escher's Circle Limit III

Escher's Circle Limit III

Machine Learning Problems

ImageNet

- Images for each category of WordNet
- 1000 classes
- 1.2mil images
- 100k test

• Top 5 error

Dataset split

- Train classifier

Measure errorTune modelhyperparameters

- Secret labels
- Measure error

Random train/validate splits = cross validation

Features

- Raw pixels
- Histograms
- Templates
- SIFT descriptors
 - GIST
 - ORB
 - HOG....

Testing Image Apply Image Prediction Features classifier not in training set

Slide credit: D. Hoiem and L. Lazebnik

Recognition task and supervision

Think-Pair-Share

What are all the possible supervision ('label') types to consider?

L. Lazebnik

Recognition task and supervision

 Images in the training set must be annotated with the "correct answer" that the model is expected to produce

Contains a motorbike

L. Lazebnik

Good training example?

http://mscoco.org/explore/?id=134918

Good labels?

an elephant standing on top of a basket being held by a woman. a woman standing holding a basket with an elephant in it. a lady holding an elephant in a small basket. a lady holds an elephant in a basket. an elephant inside a basket lifted by a woman.

Google guesses from the 1st caption

An elephant standing on top of a basket being held by a woman

MS COCO

wordseye.com

Thank you Trent Green

Testing Image Apply Image Prediction classifier **Features** not in training set

Slide credit: D. Hoiem and L. Lazebnik

The machine learning framework

• Apply a prediction function to a feature representation of the image to get the desired output:

The machine learning framework f(x) = y f(x) = y

feature

Training: Given a *training set* of labeled examples:

 $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

or classifier

Estimate the prediction function **f** by minimizing the prediction error on the training set.

Testing: Apply f to a unseen *test example* \mathbf{x}_u and output the predicted value $y_u = f(\mathbf{x}_u)$ to *classify* \mathbf{x}_u .

Classification

Assign **x** to one of two (or more) classes.

A decision rule divides input space into *decision regions* separated by *decision boundaries* – literally boundaries in the space of the features.

Classifiers: Nearest neighbor

$f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

Quickie Think-Pair-Share: What does the decision boundary look like?

Classification

Assign **x** to one of two (or more) classes.

A decision rule divides input space into *decision regions* separated by *decision boundaries* – literally boundaries in the space of the features.

Lazebnik

Decision boundary for Nearest Neighbor Classifier

Divides input space into *decision regions* separated by *decision boundaries* – *Voronoi*.

Voronoi partitioning of feature space for two-category 2D and 3D data

from Duda et al.

k-nearest neighbor

Find a *linear function* to separate the classes

Classifiers: Linear SVM

Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

Classifiers: Linear SVM

$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

How?

X = all data points

Define *hyperplane* tX-b = 0, where t is tangent to hyperplane.

Minimize ||t|| s.t. tX-b produces correct label for all X

Classifiers: Linear SVM

Find a *linear function* to separate the classes:

 $f(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b)$

What if my data are not linearly separable? Introduce flexible 'hinge' loss (or 'soft-margin')

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

Andrew Moore

Nonlinear SVMs

Map the original input space to some higherdimensional feature space where the training set is separable:

Nonlinear SVMs

The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that:

$$K(\mathbf{x}_i,\mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

This gives a *non-linear* decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} \varphi(\boldsymbol{x}_{i}) \cdot \varphi(\boldsymbol{x}) + b = \sum_{i} \alpha_{i} y_{i} K(\boldsymbol{x}_{i}, \boldsymbol{x}) + b$$

But...we only transformed the distance function *K*!

Common kernel function: Radial basis function kernel

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u> Data Mining and Knowledge Discovery, 1998 [Additional info]

Nonlinear kernel: Example

Consider the mapping $\varphi(x) = (x, x^2)$

$$\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2$$
$$K(x, y) = xy + x^2 y^2$$

Kernels for bags of features

• Histogram intersection kernel:

$$I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$$

Generalized Gaussian kernel:

$$K(h_1, h_2) = \exp\left(-\frac{1}{A}D(h_1, h_2)^2\right)$$

D can be (inverse) L1 distance, Euclidean distance, χ^2 distance, etc.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, IJCV 2007 Local Features and Kernels for Classifcation of Texture and Object Categories: A Comprehensive Study

What about multi-class SVMs?

Unfortunately, there is no "definitive" multi-class SVM.

In practice, we combine multiple two-class SVMs

One vs. others

- Training: learn an SVM for each class vs. the others
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

SVMs: Pros and cons

- Pros
 - Many publicly available SVM packages: <u>http://www.kernel-machines.org/software</u>
 - Kernel-based framework is very powerful, flexible
 - SVMs work very well in practice, even with very small training sample sizes
- Cons
 - No "direct" multi-class SVM, must combine two-class SVMs
 - Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Features and distance measures

define visual similarity.

Training labels

dictate that examples are the same or different.

Classifiers

learn weights (or parameters) of features and distance measures…

so that visual similarity predicts label similarity.

Generalization

Training set (labels known)

Test set (labels unknown)

How well does a learned model generalize from the data it was trained on to a new test set?

Generalization Error

Bias:

- Difference between the expected (or average) prediction of our model and the correct value.
- Error due to inaccurate assumptions/simplifications.

Variance:

- Amount that the estimate of the target function will change if different training data was used.

Bias/variance trade-off

[Scott Fortmann-Roe]

Generalization Error Effects

Underfitting: model is too "simple" to represent all the relevant class characteristics

- High bias (few degrees of freedom) and low variance
- High training error and high test error

Green line = true data-generating function without noise Blue line = data model which underfits

Generalization Error Effects

Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data

- Low bias (many degrees of freedom) and high variance
- Low training error and high test error

Green line = true data-generating function without noise Blue line = data model which overfits

Bias-Variance Trade-off

Models with too few parameters are inaccurate because of a large bias.

- Not enough flexibility!
- Too many assumptions

Models with too many parameters are inaccurate because of a large variance.

- Too much sensitivity to the sample.
- Slightly different data -> very different function.

Bias-variance tradeoff

Fixed number of training examples

Underfitting

Overfitting

Slide credit: D. Hoiem

Bias-variance tradeoff

Overfitting

Effect of Training Size

Fixed complexity prediction model

[evolvingai.org]

"Learn the data boundary"

Given: Observations *X* Targets *Y*

Learn conditional distribution: P(Y|X = x) "Represent the data and then define boundary"

Given: Observations *X* Targets *Y*

Learn joint distribution: P(X, Y)

Photo: CMU Machine Learning Department Protests G20

Slides: James Hays, Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem

Many classifiers to choose from...

- K-nearest neighbor
- SVM
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- Restricted Boltzmann Machines
- Neural networks
- Deep Convolutional Network

Which is the best?

Claim:

The decision to use machine learning is more important than the choice of a particular learning method.

*Deep learning seems to be an exception to this, currently, because it learns the feature representation.

Claim:

It is more important to have more or better labeled data than to use a different supervised learning technique.

*Again, deep learning may be an exception here for the same reason, but deep learning _needs_ a lot of labeled data in the first place.

"The Unreasonable Effectiveness of Data" - Norvig

What to remember about classifiers

- No free lunch: machine learning algorithms are tools, not dogmas
- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data (bias-variance tradeoff)