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ImageNet

• Images for each 
category of 
WordNet

• 1000 classes

• 1.2mil images

• 100k test

• Top 5 error



Dataset split

Training 

Images

Testing 

Images

Validation 

Images

- Secret labels
- Measure error

- Train classifier - Measure error
- Tune model 
hyperparameters

Random train/validate splits = cross validation
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Slide credit: D. Hoiem and L. Lazebnik



Features

• Raw pixels

• Histograms

• Templates

• SIFT descriptors

– GIST

– ORB

– HOG….

L. Lazebnik
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Think-Pair-Share

What are all the possible supervision (‘label’) types to consider?

Recognition task and supervision

L. Lazebnik



• Images in the training set must be annotated with the 

“correct answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision

L. Lazebnik



Unsupervised “Weakly” supervised Fully supervised

Fuzzy; definition depends on task

Lazebnik

Spectrum of supervision

Less More

E.G., MS CocoE.G., ImageNet

‘Semi-supervised’: small partial labeling



Good training 

example?



Good labels?

http://mscoco.org/explore/?id=134918



Google guesses from the 1st caption



An elephant standing on top of a basket being held by a woman

MS COCO wordseye.com

Thank you Trent Green
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The machine learning framework

• Apply a prediction function to a feature representation of 

the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



The machine learning framework

f(x) = y

Training: Given a training set of labeled examples:

{(x1,y1), …, (xN,yN)}

Estimate the prediction function f by minimizing the 

prediction error on the training set.

Testing: Apply f to a unseen test example xu and output the 

predicted value yu = f(xu) to classify xu.

Output (label)Prediction function

or classifier

Image 

feature

Slide credit: L. Lazebnik



Classification
Assign x to one of two (or more) classes.

A decision rule divides input space into decision 

regions separated by decision boundaries – literally 

boundaries in the space of the features.

L. Lazebnik



Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test 

example
Training 

examples 

from class 1

Training 

examples 

from class 2

Slide credit: L. Lazebnik

Quickie Think-Pair-Share: What does the decision boundary look like?



Classification
Assign x to one of two (or more) classes.

A decision rule divides input space into decision 

regions separated by decision boundaries – literally 

boundaries in the space of the features.

L. Lazebnik



Decision boundary for Nearest 
Neighbor Classifier

Divides input space into decision regions separated by decision 
boundaries – Voronoi.

Voronoi partitioning 
of feature space 
for two-category 
2D and 3D data

from Duda et al. Source: D. Lowe
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Classifiers: Linear

Find a linear function to separate the classes

Slide credit: L. Lazebnik
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Classifiers: Linear SVM
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Find a linear function 
to separate the 
classes:

f(x) = sgn(w  x + b)



Classifiers: Linear SVM
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Find a linear function 
to separate the 
classes:

f(x) = sgn(w  x + b)

How?

X = all data points

Define hyperplane tX-b = 0, where t is tangent to hyperplane.

Minimize ||t|| s.t. tX-b produces correct label for all X



Classifiers: Linear SVM
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Find a linear function 
to separate the 
classes:

f(x) = sgn(w  x + b)

What if my data are not linearly separable?

Introduce flexible ‘hinge’ loss (or ‘soft-margin’)



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Andrew Moore



Φ:  x→ φ(x)

Nonlinear SVMs

Map the original input space to some higher-

dimensional feature space where the training set 

is separable:

Slide credit: Andrew Moore



Nonlinear SVMs

The kernel trick: instead of explicitly computing the lifting 

transformation φ(x), define a kernel function K such that:

K(xi,xj) = φ(xi ) · φ(xj)

This gives a non-linear decision boundary in the original 

feature space:
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition

Data Mining and Knowledge Discovery, 1998 

Common kernel function: Radial basis function kernel

But…we only transformed the distance function K!

[Additional info]

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Nonlinear kernel: Example
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Kernels for bags of features

• Histogram intersection kernel:

• Generalized Gaussian kernel:

D can be (inverse) L1 distance, Euclidean distance, χ2 distance, etc.


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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, IJCV 2007

Local Features and Kernels for Classifcation of Texture and Object Categories: A Comprehensive Study

[Additional info]

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf


What about multi-class SVMs?

Unfortunately, there is no “definitive” multi-class SVM.

In practice, we combine multiple two-class SVMs 

One vs. others

– Training: learn an SVM for each class vs. the others

– Testing: apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value

One vs. one

– Training: learn an SVM for each pair of classes

– Testing: each learned SVM “votes” for a class to assign to the 

test example

Slide credit: L. Lazebnik



SVMs: Pros and cons

• Pros

– Many publicly available SVM packages:

http://www.kernel-machines.org/software

– Kernel-based framework is very powerful, flexible

– SVMs work very well in practice, even with very small 

training sample sizes

• Cons

– No “direct” multi-class SVM, must combine two-class SVMs

– Computation, memory 

• During training time, must compute matrix of kernel 

values for every pair of examples

• Learning can take a very long time for large-scale 

problems

http://www.kernel-machines.org/software
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Slide credit: D. Hoiem and L. Lazebnik



Features and distance measures

define visual similarity.

Training labels 

dictate that examples are the same or different.

Classifiers 

learn weights (or parameters) of features and 

distance measures…

so that visual similarity predicts label similarity.



Generalization

How well does a learned model generalize from the 

data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



Generalization Error

Bias:

• Difference between the expected (or average) prediction 

of our model and the correct value. 

• Error due to inaccurate assumptions/simplifications.

Variance:

- Amount that the estimate of the target function will 

change if different training data was used.

Slide credit: L. Lazebnik



Bias/variance trade-off

[Scott Fortmann-Roe]

Bias = accuracy

Variance = precision



Generalization Error Effects
Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

Slide credit: L. Lazebnik

Green line = true data-generating function without noise

Blue line = data model which underfits



Generalization Error Effects
Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Green line = true data-generating function without noise

Blue line = data model which overfits



Bias-Variance Trade-off

Models with too few parameters are 
inaccurate because of a large bias.

• Not enough flexibility!

• Too many assumptions

Models with too many parameters are 
inaccurate because of a large variance. 

• Too much sensitivity to the sample.

• Slightly different data -> 
very different function.

Slide credit: D. Hoiem



Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Model complexity
Low Bias

High Variance

High Bias

Low Variance

E
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o
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Slide credit: D. Hoiem

Generalization Error

Fixed number of training examples



Bias-variance tradeoff

Many training examples

Few training examples
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Slide credit: D. Hoiem

Overfitting

Underfitting

Model complexity



Effect of Training Size

Testing

Training

Number of Training Examples

E
rr

o
r

Fixed complexity prediction model

Slide credit: D. Hoiem



[evolvingai.org]

“Learn the data boundary” “Represent the data and then 
define boundary”

Given: 
Observations X
Targets Y

Learn conditional distribution:
𝑃(𝑌|𝑋 = 𝑥)

Given: 
Observations X
Targets Y

Learn joint distribution:
𝑃(𝑋, 𝑌)

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiBtuP4wszSAhVr3IMKHbIkBw4QjRwIBw&url=https://duphan.wordpress.com/tag/generative-model/&psig=AFQjCNFVu4g8QBMtI0MjXQHNXMQK-7Lfgg&ust=1489255421586991


Slides:  James Hays, Isabelle Guyon, Erik Sudderth, 

Mark Johnson, Derek Hoiem

Photo: CMU Machine Learning Department Protests G20



Many classifiers to choose from…

• K-nearest neighbor

• SVM

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• Restricted Boltzmann Machines

• Neural networks

• Deep Convolutional Network

• …

Which is 

the best?



Claim:

The decision to use machine learning 
is more important than the choice of a 
particular learning method.

*Deep learning seems to be an exception to this, 
currently, because it learns the feature representation.



*Again, deep learning may be an exception here for the 
same reason, but deep learning _needs_ a lot of 
labeled data in the first place.

“The Unreasonable Effectiveness of Data” - Norvig

Claim:

It is more important to have more or 
better labeled data than to use a 
different supervised learning 
technique.



What to remember about classifiers

• No free lunch: machine learning algorithms are 
tools, not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers 
than simple features and smart classifiers

• Use increasingly powerful classifiers with more 
training data (bias-variance tradeoff)

Slide credit: D. Hoiem


