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Where to go from our
basic building block?

Image formation
l — Image frequency
Gradients, edges, corners
Descriptors
Features
Recognition Reconstruction
Scenes, places, objects, Geometric understanding

~ 5 weeks (inc. CNNs) Last topic 1n class



Panorama stitching / instance recognition

Needs more geometric understanding...
...but we'll see it later on.




Recognition

Often needs machine learning
for compact descriptions of the visual world.

Scene recognltlon Flnd pedestrlans

- City/forest/factoryl/...




ML CRASH COURSE



o







Our approach

 We will look at ML as a tool. We will not detail
the underpinnings of each learning method.

* Please take a machine learning course if you
want to know more!



Machine Learning

* Learn from and make predictions on data.

e Arguably the greatest export from computing
to other scientific fields.

 Statisticians might disagree with CompScis on
the true origins...



ML for Computer Vision

* Face Recognition
e Object Classification

* Scene Segmentation



Data, data, data!

Peter Norvig
“The Unreasonable Effectiveness of Data”
(IEEE Intelligent Systems, 2009)

“... invariably, simple models and a lot of data
trump more elaborate models based on less data”

[Norvig is Director of Research @ Google, and a Brown APMA alum!]
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ImageNet Competition

* Krizhevsky, 2012

* Google,
Microsoft 2015 oo
— Beat the best ™

2015: A MILESTONE YEAR
IN COMPUTER SCIENCE

IMAGENET

Accuracy Rate

80%

human score in e '
the ImageNet e v

50% a
challenge. o |

30%

20% I

10%

® Traditional CV  » Deep Learning
0%
2010 2011 2012 2013 2014 2015

NVIDIA



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

- clustering
categorization

dimensionality
reduction

regression




Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

- clustering
categorization

regression dlmensm_nallty
reduction




Dimensionality Reduction

* PCA, ICA, LLE, Isomap

* Principal component analysis

— Creates a basis where the axes
represent the dimensions of variance,
from high to low.

— Finds correlations in data dimensions
to produce best possible lower-
dimensional representation based on
linear projections.

— Subtract mean of data, compute
eigendecomposition.

— Eigenvectors are directions of
variance; eigenvalues are magnitudes
of variance.



5

Major axis

1st prir

cipal component

Drincipal component,

PCA

i L i i i r F

5 M5 8 -3 a2 =1 0 1 2 3 £ 5

(Figure adapted from C. Beckmann, Oxford FMRIE)
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Eigenfaces

Mean face
(not Jack)

Basis of variance (eigenvectors)

M. Turk; A. Pentland (1991). "Face recognition using eigenfaces" (PDF). .
Proc. IEEE Conference on Computer Vision and Pattern Recognition. pp. 586—591. R.P.W. Duin



http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
http://rduin.nl/prtools.html

Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning
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categorization

dimensionality

regression .
J reduction







Clustered by similar populations

http://fakeisthenewreal.org/reform/
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Clustering: color image segmentation

Goal: Break up the image into meaningful or
perceptually similar regions

' d—

w
-

-



Segmentation for feature support or efficiency

[Felzenszwalb and Huttenlocher 2004]

Superpixels!

[Hoiem et al. 2005, Mori 2005]



AN

Oversegmentation Undersegmentation

Hierarchical Segmentations



Clustering

Group together similar ‘points” and represent
them with a single token.

Key Challenges:
1) What makes two points/images/patches similar?

2) How do we compute an overall grouping from
pairwise similarities?



Why do we cluster?

Summarizing data
— Look at large amounts of data
— Patch-based compression or denoising
— Represent a large continuous vector with the cluster number

Counting
— Histograms of texture, color, SIFT vectors

Segmentation
— Separate the image into different regions

Prediction
— Images in the same cluster may have the same labels



How do we cluster?

* K-means
— lteratively re-assign points to the nearest cluster center

* Agglomerative clustering

— Start with each point as its own cluster and iteratively
merge the closest clusters

* Mean-shift clustering
— Estimate modes of pdf

* Spectral clustering

— Split the nodes in a graph based on assigned links with
similarity weights



K-means algorithm

L
1. Randomly E §
select K centers 2 o°
EDD
-
2. Assign each °
point to nearest - -
center ° | @
[m| L]
|:II:I I:l_.
-
3.Compute new g o
]
center (mean) & p‘
for each cluster [N
N

lllustration: http://en.wikipedia.org/wiki/K-means clustering



http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

(o]
o o
1. Randomly s E
select K centers = E..
o
om

2. Assign each
point to nearest
center

Back to 2
3. Compute new d

center (mean) R {j

for each cluster .\:
(]

lllustration: http://en.wikipedia.org/wiki/K-means clustering



http://en.wikipedia.org/wiki/K-means_clustering

K-means

1.

3.

Initialize cluster centers: ¢ ; t=0
Assign each point to the closest center
N K
t 1 t—1 2
6" = arg;rllnﬁzz 5ij(cl- — xj)
j i

Update cluster centers as the mean of the points

ct = argmm—zz 6} (cl — x

Repeat 2-3 until no points are re-assigned (t=t+1)



K-means convergence
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Think-Pair-Share

 What is good about k-means?
 What is bad about k-means?

* Where could you apply k-means?



K-means: design choices

* |nitialization
— Randomly select K points as initial cluster center
— Or greedily choose K points to minimize residual

* Distance measures
— Traditionally Euclidean, could be others

* Optimization
— Will converge to a local minimum
— May want to perform multiple restarts



K-means clustering using intensity or color

Image Clusters on intensity Clusters on color




How to choose the number of clusters?

e Validation set

— Try different numbers of clusters and look at
performance

 When building dictionaries (discussed later), more
clusters typically work better.



How to initialize the clusters?

k-means++ initialization

— Make the initial cluster centers span the space

Choose one center uniformly at random from all data points.

2. For each point x, compute the distance D(x) between x and the
nearest center that has already been chosen.

3. Choose one new data point at random as a new center, using a
weighted probability distribution where a point x is chosen
with probability proportional to D(x)?.

Repeat Steps 2 and 3 until k centers have been chosen.
5. Proceed using standard k-means clustering.



https://en.wikipedia.org/wiki/K-means_clustering

K-Means pros and cons

Pros

Finds cluster centers that minimize
conditional variance (good
representation of data)

Simple and fast*
Easy to implement

Cons

Need to choose K
Sensitive to outliers
Prone to local minima

All clusters have the same parameters
(e.g., distance measure is non-
adaptive)

*Can be slow: each iteration is O(KNd)
for N d-dimensional points

Usage

Cluster features to build visual
dictionaries

outher

rd

outher




Building Visual Dictionaries

1. Sample features from
a database

— E.g., 128 dimensional
SIFT vectors

2. Cluster to build

dictionary

— Cluster centers are
the dictionary words

3. To match new
features, assign to
the nearest cluster to
save rebuilding
dictionary




Examples of learned codewords

Most likely codewords for 4 learned “topics”
EM with multinomial (problem 3) to get topics

http://www.robots.ox.ac.uk/~vgag/publications/papers/sivicO5b.pdf Sivic et al. ICCV 2005



http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf

Agglomerative clustering

1. Say "Every point is its

-
* o . own cluster”
¢ «® ©®o
e . .
L
* @
. L e o .-
e * . d
° -
L I.:
. @

Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 40



Agglomerative clustering

1. Say "Every pointis its

L
own cluster”
: ) : ..In .: L ] . w - . 7 .
o« 2. Find "most similar” pair
. of clusters
* o . ®e - ®
. . . ol ]
e [
L l.:

]

Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 41



Agglomerative clustering

Copyright @ 2001, 2004, Andrew W. Moore

1. Say "Every pointis its
own cluster”

2. Find "most similar” pair
of clusters

3. Merge it into a parent
cluster

~

K-means and Hierarchical Clustering: Slide 42



Agglomerative clustering

1. Say "Every pointis its

e ® e @ own cluster”
* T ®* 2. Find “most similar” pair
* of clusters
® L ® {ii_.::' e & ® .y
o "o .o 3. Merge it into a parent
° o cluster
) “ee 4. Repeat
R R

Copvriaht © 2001, 2004 Andrew W. Moore K-means and Hierarchical Clustering: Slide 43



Agglomerative clustering

1. Say "Every point is its

. . - 7N own cluster”
° Te NL/e . 2. Find “most similar” pair
° of clusters
® L] {!__i_.-j ® & * .y
o %o .o 3. Merge it into a parent
. . cluster
: “ee 4. Repeat
I
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Copyright © 2001, 2004, Andrew W. Moore K-means and Hierarchical Clustering: Slide 44



Agglomerative clustering

How to define cluster similarity?

- Average distance between points, maximum .
distance, minimum distance

- Distance between means or medoids

How many clusters?

- Clustering creates a dendrogram (a tree)

- Threshold based on max number of clusters
or based on distance between merges

o

9,

08

071
06
05F

04r

L Rt

12312 519 4132926 9 310 724 61128172021 218 830251415271622

distance




Conclusions: Agglomerative Clustering
Good

* Simple to implement, widespread application
* Clusters have adaptive shapes
* Provides a hierarchy of clusters

Bad

* May have imbalanced clusters

e Still have to choose number of clusters or
threshold

* Need to use an “ultrametric” to get a meaningful
hierarchy



Mean shift segmentation

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

e Versatile technique for clustering-based
segmentation




Mean shift algorithm

Try to find modes of a non-parametric density.
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Attraction basin

e Attraction basin: the region for which all
trajectories lead to the same mode

* Cluster: all data points in the attraction
basin of a mode

Slide by Y. Ukrainitz & B. Sarel



Attraction basin
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Mean shift

® Region of
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® mass
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Slide by Y. Ukrainitz & B. Sarel
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Mean shift
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Kernel density estimation

Kernel density estimation function

) = o5 2K ()

Gaussian kernel

AT — T; 1 (z—zxy?
f‘i( 1)— T

h



Computing the Mean Shift

Simple Mean Shift procedure:

« Compute mean shift vector m(x)
* Iteratively translate the kernel window
by m(x) until convergence.

m(X) =

ng(x J8 |

ana

Slide by Y. Ukrainitz & B. Sarel



Mean shift clustering

The mean shift algorithm seeks modes of the
given set of points

1. Choose kernel and bandwidth

2. For each point:
a) Center a window on that point
b) Compute the mean of the data in the search window
c) Center the search window at the new mean location
d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the
same cluster



Segmentation by Mean Shift

Compute features for each pixel (color, gradients, texture, etc.).
Set kernel size for features K; and position K..

Initialize windows at individual pixel locations.

Perform mean shift for each window until convergence.

Merge windows that are within width of K; and K..
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Mean shift segmentation results

A =

Comaniciu and Meer 2002



Comaniciu and Meer 2002



Mean shift pros and cons

* Pros
— Good general-practice segmentation
— Flexible in number and shape of regions
— Robust to outliers

* Cons
— Have to choose kernel size in advance
— Not suitable for high-dimensional features

e When to use it
— Oversegmentation

— Multiple segmentations
— Tracking, clustering, filtering applications



Spectral clustering

Group points based on graph structure & edge costs.
Captures “neighborhood-ness” or local smoothness.

Image:
Hassan et al.



https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2gsrmv8zSAhXM1IMKHYmqDIgQjRwIBw&url=https://www.researchgate.net/figure/307879813_fig5_Figur-5-Graph-plot-illustrating-normalized-cut-segmentation&bvm=bv.149093890,d.amc&psig=AFQjCNHRJcSBvLAdRvGZ6fsDZA-som683A&ust=1489254583919385

Spectral clustering

Group points based on links in a graph
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Cuts in a graph

Normalized Cut
* acut penalizes large segments
« fix by normalizing for size of segments

cut(A, B) cut(A, B)

Ncut(A, B) =
cut( ) volume(A)  wvolume(B)

« volume(A) = sum of costs of all edges that touch A

Source: Seitz



Normalized cuts for segmentation




Segmentation as a result

GrabCut, Rother et al. 2004



Which algorithm to use?

 Quantization/Summarization: K-means
— Aims to preserve variance of original data
— Can easily assign new point to a cluster

Summary of 20,000 photos of Rome using
“greedy k-means”
http://grail.cs.washington.edu/projects/canonview/

Quantization for
computing histograms



http://grail.cs.washington.edu/projects/canonview/

Which algorithm to use?

* I[mage segmentation: agglomerative clustering

— More flexible with distance measures (e.g., can be
based on boundary prediction)

— Adapts better to specific data
— Hierarchy can be useful

Wy 4

http://www.cs.berkeley.edu/~arbelaez/UCM.html



http://www.cs.berkeley.edu/~arbelaez/UCM.html

Things to remember

 K-means useful for summarization,
building dictionaries of patches,
general clustering

* Agglomerative clustering useful for
segmentation, general clustering

e Spectral clustering useful for
determining relevance,
summarization, segmentation
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