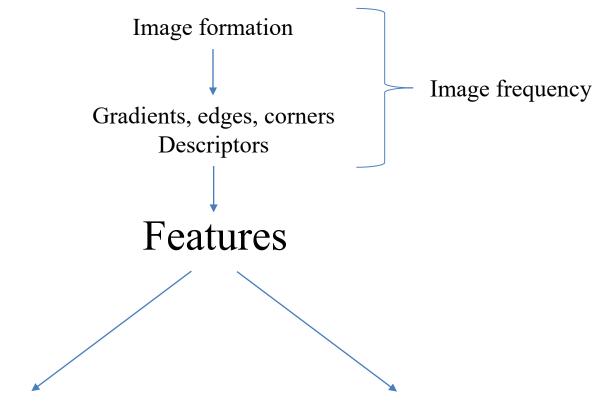


Where to go from our basic building block?



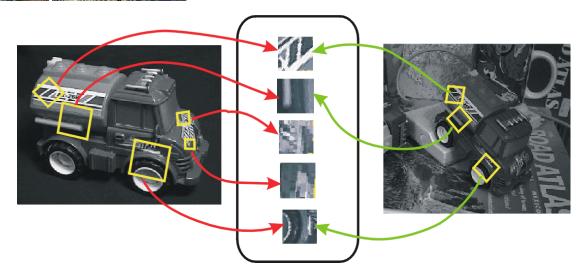
Recognition
Scenes, places, objects,
~ 5 weeks (inc. CNNs)

Reconstruction
Geometric understanding
Last topic in class

Panorama stitching / instance recognition

Needs more geometric understanding...

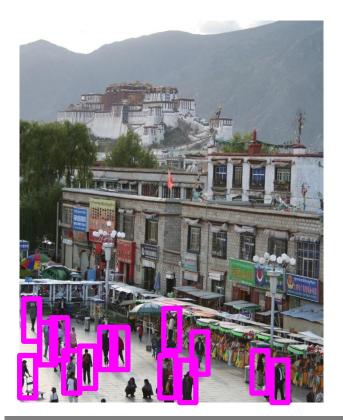
...but we'll see it later on.



Recognition

Often needs machine learning for compact descriptions of the visual world.

Scene recognition - City/forest/factory/...



Find pedestrians

ML CRASH COURSE

Photo: CMU Machine Learning Department Protests G20

Slides: James Hays, Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem

Photo: CMU Machine Learning Department Protests G20

Slides: James Hays, Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem

Our approach

 We will look at ML as a tool. We will not detail the underpinnings of each learning method.

Please take a machine learning course if you want to know more!

Machine Learning

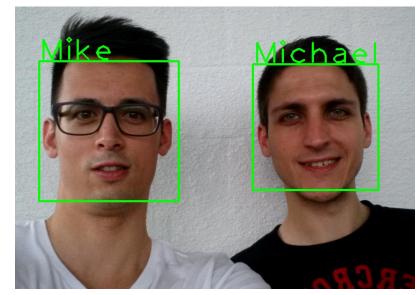
Learn from and make predictions on data.

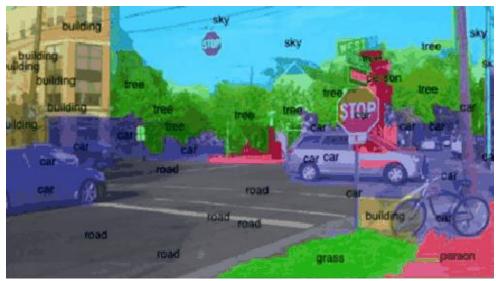
 Arguably the greatest export from computing to other scientific fields.

 Statisticians might disagree with CompScis on the true origins...

ML for Computer Vision

- Face Recognition
- Object Classification
- Scene Segmentation





Data, data!

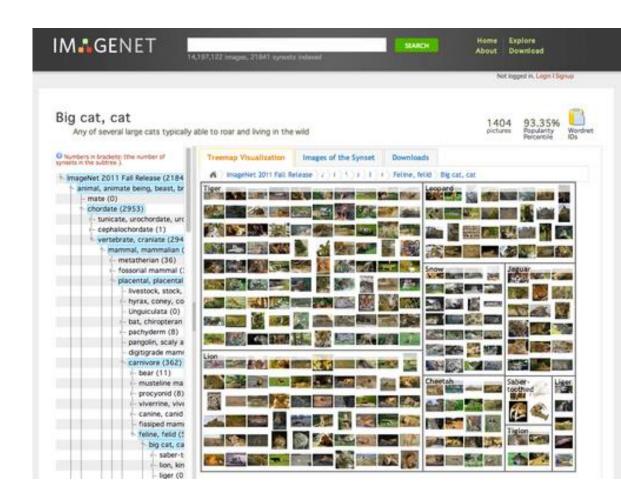
Peter Norvig
"The Unreasonable Effectiveness of Data"
(IEEE Intelligent Systems, 2009)

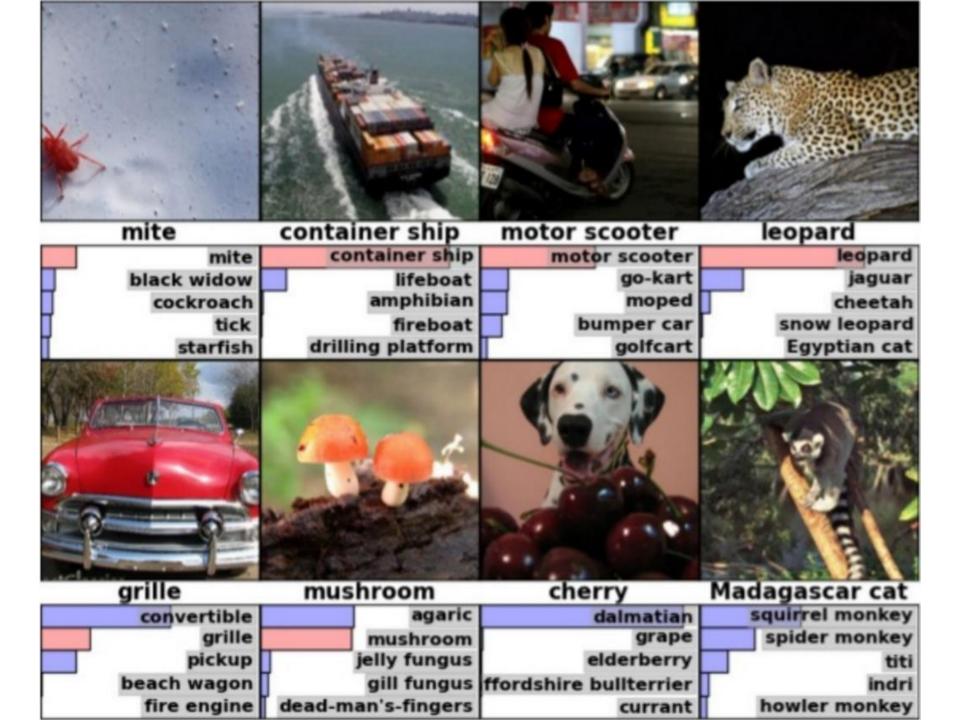
"... invariably, simple models and a lot of data trump more elaborate models based on less data"

ImageNet

- Images for each category of WordNet
- 1000 classes
- 1.2mil images
- 100k test

Top 5 error

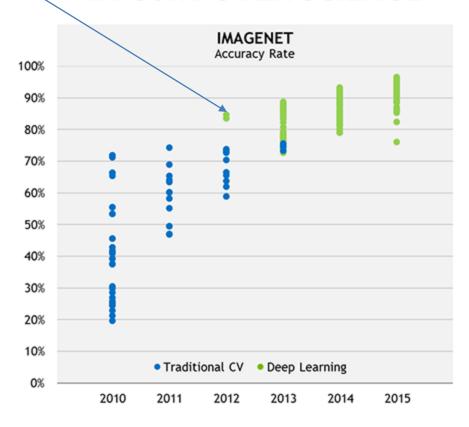




ImageNet Competition

- Krizhevsky, 2012
- Google,
 Microsoft 2015
 - Beat the best human score in the ImageNet challenge.

2015: A MILESTONE YEAR IN COMPUTER SCIENCE



Machine Learning Problems

Supervised Learning

Unsupervised Learning

classification or categorization

clustering

regression

dimensionality reduction

Discrete

Sontinuous

Machine Learning Problems

Supervised Learning

Unsupervised Learning

classification or categorization

clustering

regression

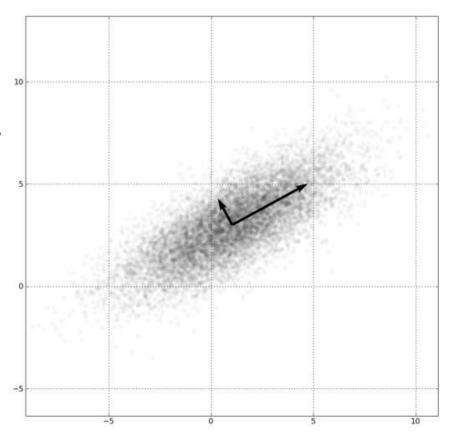
dimensionality reduction

Discrete

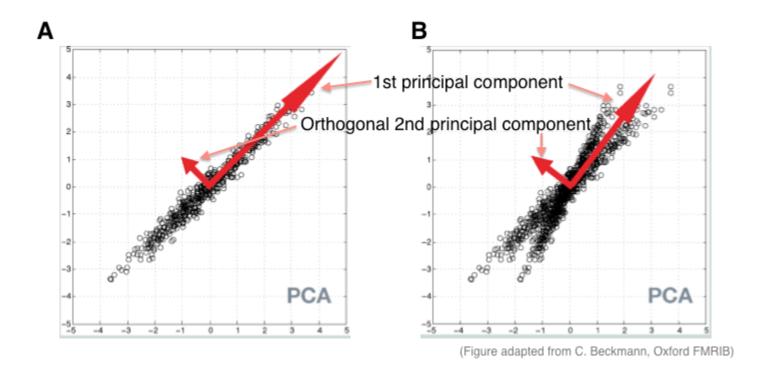
Continuous

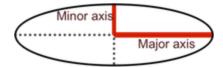
Dimensionality Reduction

- PCA, ICA, LLE, Isomap
- Principal component analysis
 - Creates a basis where the axes represent the dimensions of variance, from high to low.
 - Finds correlations in data dimensions to produce best possible lowerdimensional representation based on linear projections.
 - Subtract mean of data, compute eigendecomposition.
 - Eigenvectors are directions of variance; eigenvalues are magnitudes of variance.



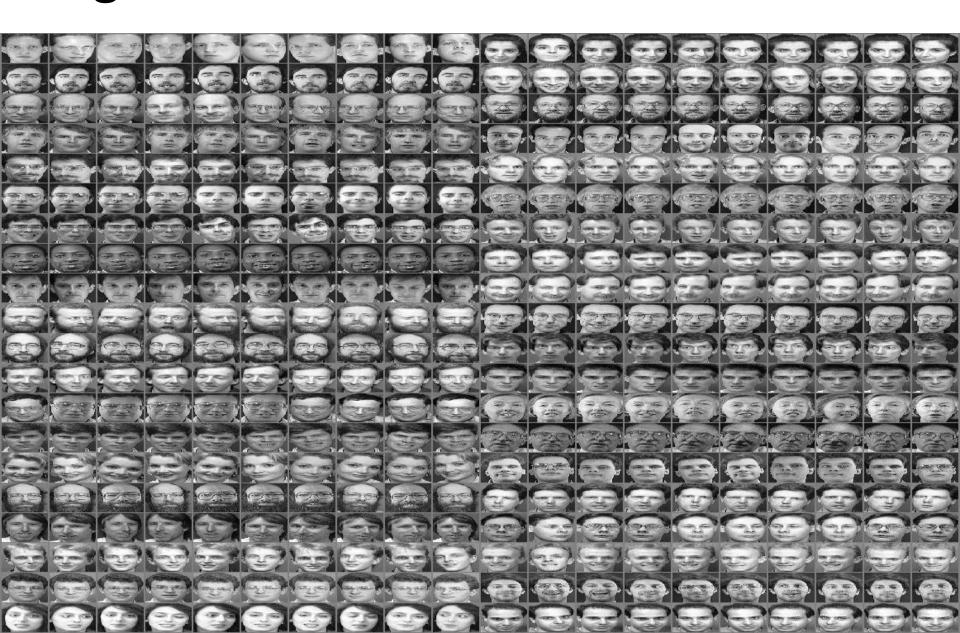
PCA





Eigenfaces

The ATT face database (formerly the ORL database), 10 pictures of 40 subjects each



Eigenfaces

Mean face (not Jack)



Basis of variance (eigenvectors)

Machine Learning Problems

Supervised Learning

Unsupervised Learning

classification or categorization

clustering

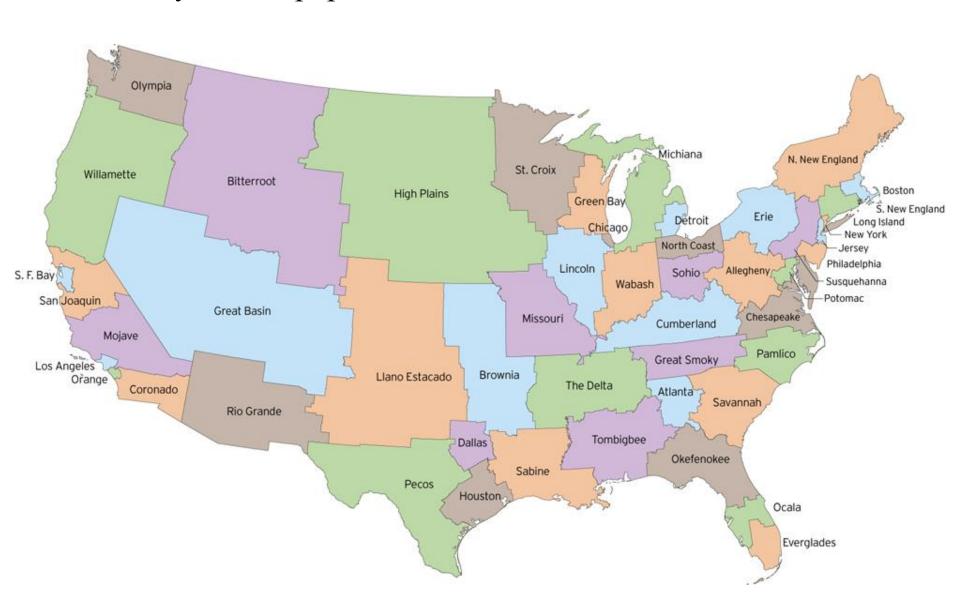
regression

dimensionality reduction

Discrete

Sontinuous

Clustered by similar populations



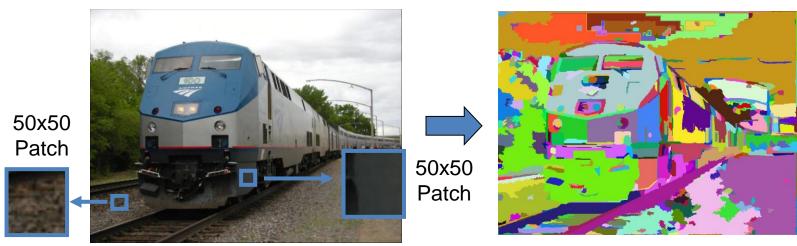
http://fakeisthenewreal.org/reform/

The United States redrawn as Fifty States with Equal Population Seattle RAINIER & spokane Portland # Billings ⊕ MESAB MENOMINEE SHASTA ADIRONDACK SALT LAKE OGALLALA DETROIT **⊗** Sioux Falls POCONO MENDOCINO (Cedar Rapids Salt Lake City Des Moines @ Cheyenne Fort Collins SANGAMON Denver NODAWAY BUENA San Jose WASHINGTON Colorado Springs Fresno " (i) Richmond TULE TIDEWATER Las Vegas MAMMOTH SHIPROC MUSKOGEE Nashville . TEMECULA · Santa Fe LOS ANGELES OZARK COLUMBIA Albuquerque Oklahoma City Amarillo Memphis # Phoenix : ATLANTA PHOENIX @ Lubbock Tucson Ft. Worth Dallas ■ El Paso KING CANAVERAL CHINAT MIAM Hawai'ian Islands Legend part of Shasta undivided highway 0 urbanized area Alaskan Peninsula Neil Freeman kilometers fakeisthenewreal.org part of Rainier Albers Equal Area Conic projection, insets in Alaska & Hawali State Plane

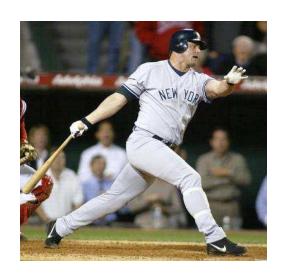
Clustering: color image segmentation

Goal: Break up the image into meaningful or perceptually similar regions

Segmentation for feature support or efficiency



[Felzenszwalb and Huttenlocher 2004]

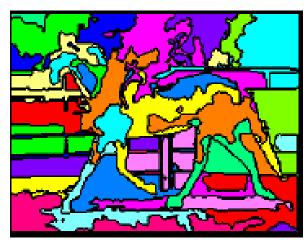


[Shi and Malik 2001]

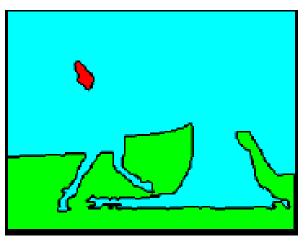
Superpixels!

Derek Hoiem

Types of segmentations

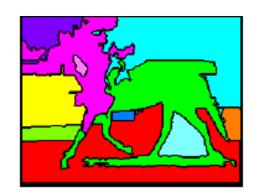


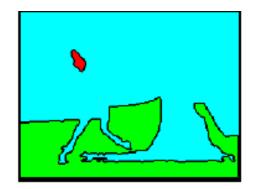
Oversegmentation



Undersegmentation







Hierarchical Segmentations

Clustering

Group together similar 'points' and represent them with a single token.

Key Challenges:

- 1) What makes two points/images/patches similar?
- 2) How do we compute an overall grouping from pairwise similarities?

Why do we cluster?

Summarizing data

- Look at large amounts of data
- Patch-based compression or denoising
- Represent a large continuous vector with the cluster number

Counting

Histograms of texture, color, SIFT vectors

Segmentation

Separate the image into different regions

Prediction

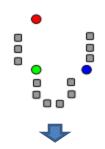
Images in the same cluster may have the same labels

How do we cluster?

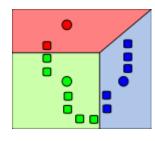
- K-means
 - Iteratively re-assign points to the nearest cluster center
- Agglomerative clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Mean-shift clustering
 - Estimate modes of pdf
- Spectral clustering
 - Split the nodes in a graph based on assigned links with similarity weights

K-means algorithm

1. Randomly select K centers



2. Assign each point to nearest center



3. Compute new center (mean) for each cluster

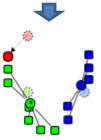
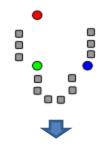


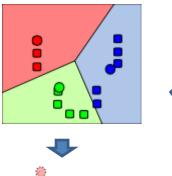
Illustration: http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

1. Randomly select K centers



2. Assign each point to nearest center



Back to 2

3. Compute new center (mean) for each cluster

K-means

- 1. Initialize cluster centers: \mathbf{c}^0 ; t=0
- 2. Assign each point to the closest center

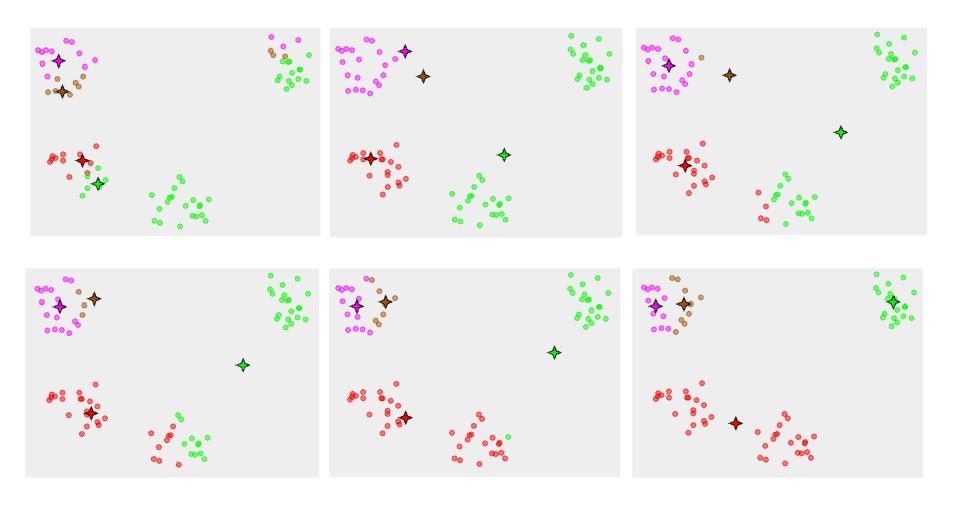
$$\boldsymbol{\delta}^{t} = \operatorname{argmin}_{\boldsymbol{\delta}} \frac{1}{N} \sum_{i}^{N} \sum_{i}^{K} \delta_{ij} (\mathbf{c}_{i}^{t-1} - \mathbf{x}_{j})^{2}$$

3. Update cluster centers as the mean of the points

$$\mathbf{c}^{t} = \underset{\mathbf{c}}{\operatorname{argmin}} \frac{1}{N} \sum_{i}^{N} \sum_{i}^{K} \delta_{ij}^{t} (\mathbf{c}_{i} - \mathbf{x}_{j})^{2}$$

4. Repeat 2-3 until no points are re-assigned (t=t+1)

K-means convergence



Think-Pair-Share

- What is good about k-means?
- What is bad about k-means?
- Where could you apply k-means?

K-means: design choices

- Initialization
 - Randomly select K points as initial cluster center
 - Or greedily choose K points to minimize residual
- Distance measures
 - Traditionally Euclidean, could be others
- Optimization
 - Will converge to a local minimum
 - May want to perform multiple restarts

K-means clustering using intensity or color

Image

Clusters on intensity

Clusters on color

How to choose the number of clusters?

- Validation set
 - Try different numbers of clusters and look at performance
 - When building dictionaries (discussed later), more clusters typically work better.

Slide: Derek Hoiem

How to initialize the clusters?

k-means++ initialization

- Make the initial cluster centers span the space
- 1. Choose one center uniformly at random from all data points.
- 2. For each point x, compute the distance D(x) between x and the nearest center that has already been chosen.
- 3. Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to $D(x)^2$.
- 4. Repeat Steps 2 and 3 until k centers have been chosen.
- Proceed using standard <u>k-means clustering</u>.

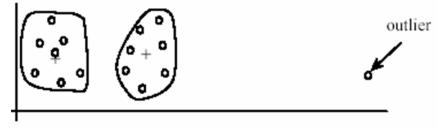
K-Means pros and cons

Pros

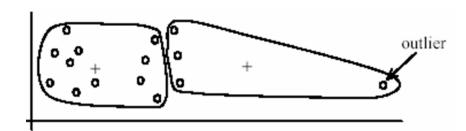
- Finds cluster centers that minimize conditional variance (good representation of data)
- Simple and fast*
- Easy to implement

Cons

- Need to choose K
- Sensitive to outliers
- Prone to local minima
- All clusters have the same parameters (e.g., distance measure is nonadaptive)
- *Can be slow: each iteration is O(KNd) for N d-dimensional points



(B): Ideal clusters

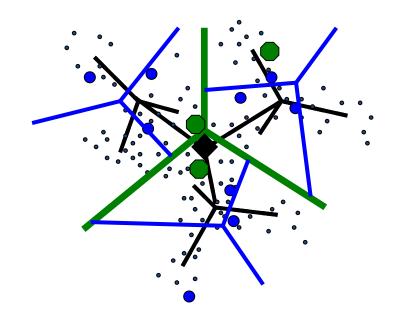


Usage

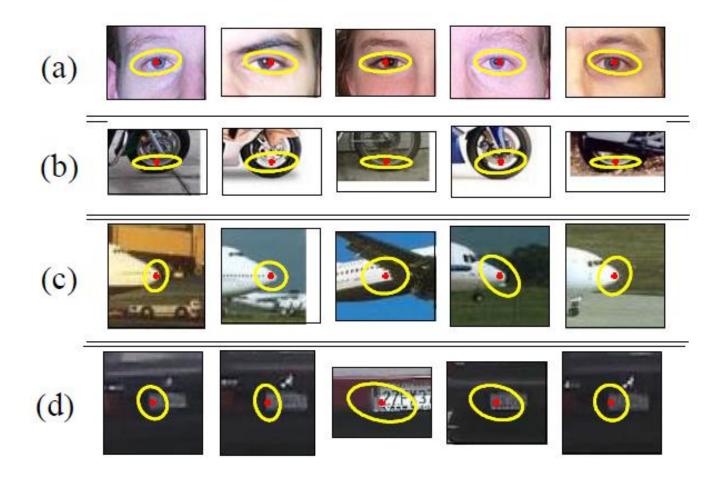
Cluster features to build visual dictionaries

Building Visual Dictionaries

- 1. Sample features from a database
 - E.g., 128 dimensional SIFT vectors
- 2. Cluster to build dictionary
 - Cluster centers are the dictionary words
- 3. To match new features, assign to the nearest cluster to save rebuilding dictionary



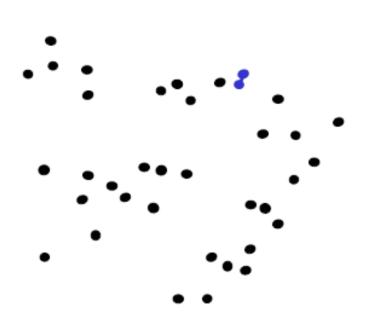
Examples of learned codewords



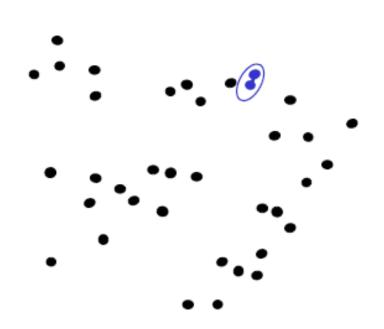
Most likely codewords for 4 learned "topics" EM with multinomial (problem 3) to get topics



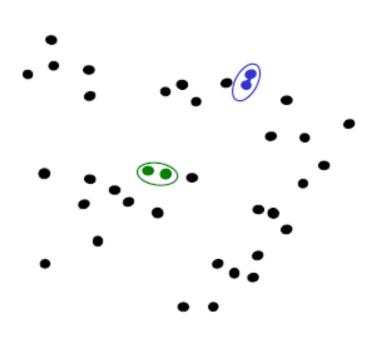
 Say "Every point is its own cluster"



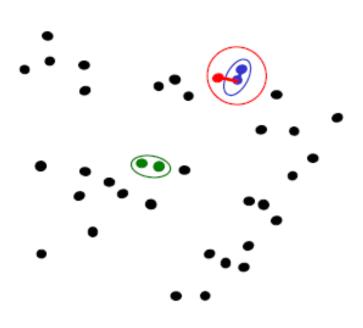
- Say "Every point is its own cluster"
- Find "most similar" pair of clusters



- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster



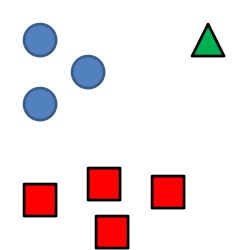
- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- Repeat



- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- Repeat

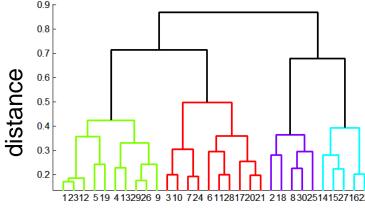
How to define cluster similarity?

- Average distance between points, maximum distance, minimum distance
- Distance between means or medoids



How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges



Conclusions: Agglomerative Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

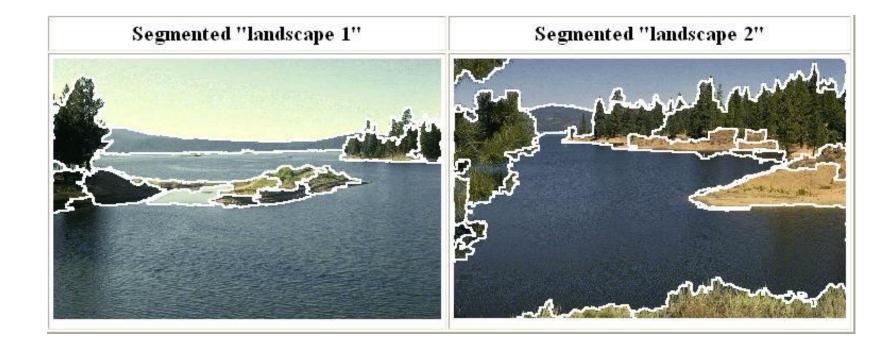
Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an "ultrametric" to get a meaningful hierarchy

Mean shift segmentation

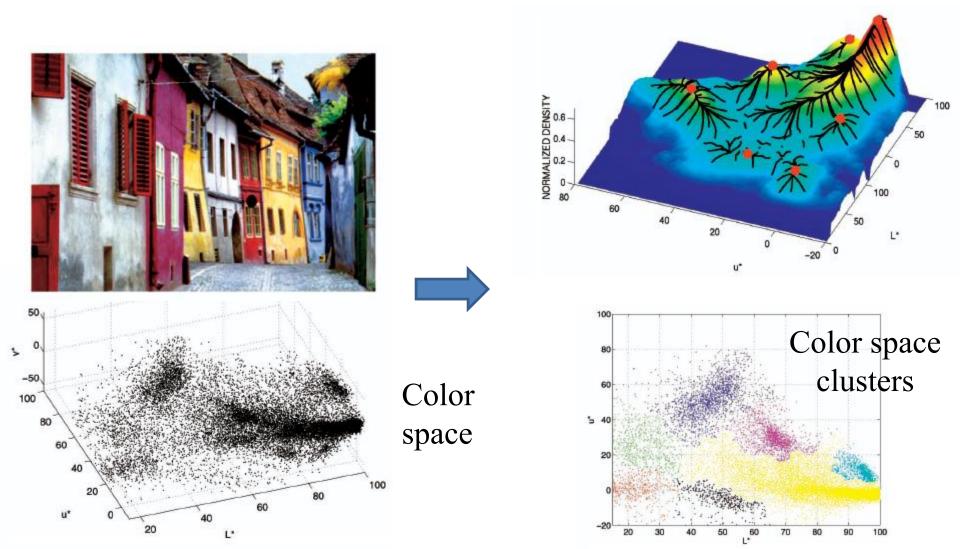
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Versatile technique for clustering-based segmentation



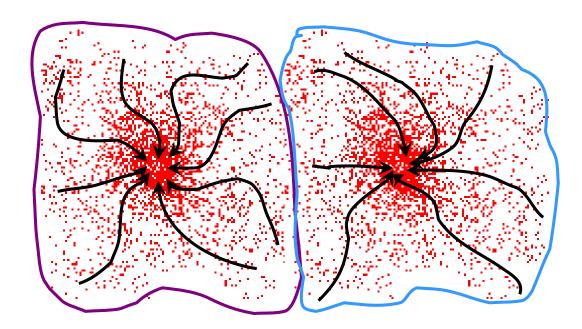
Mean shift algorithm

Try to find *modes* of a non-parametric density.

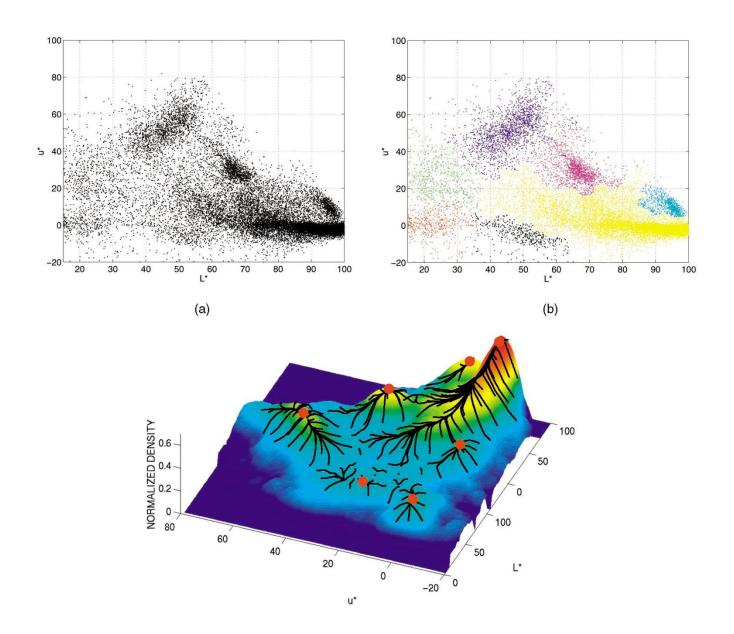


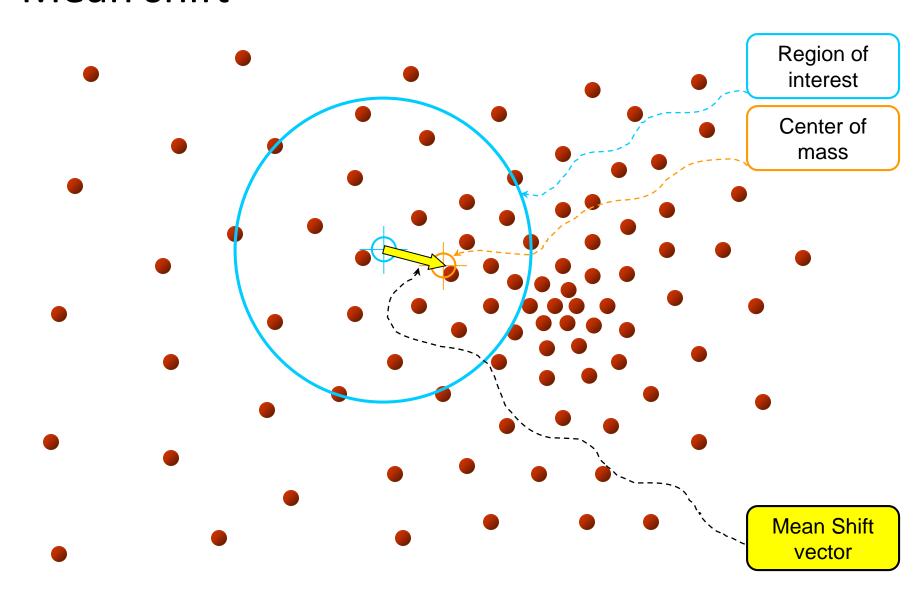
Attraction basin

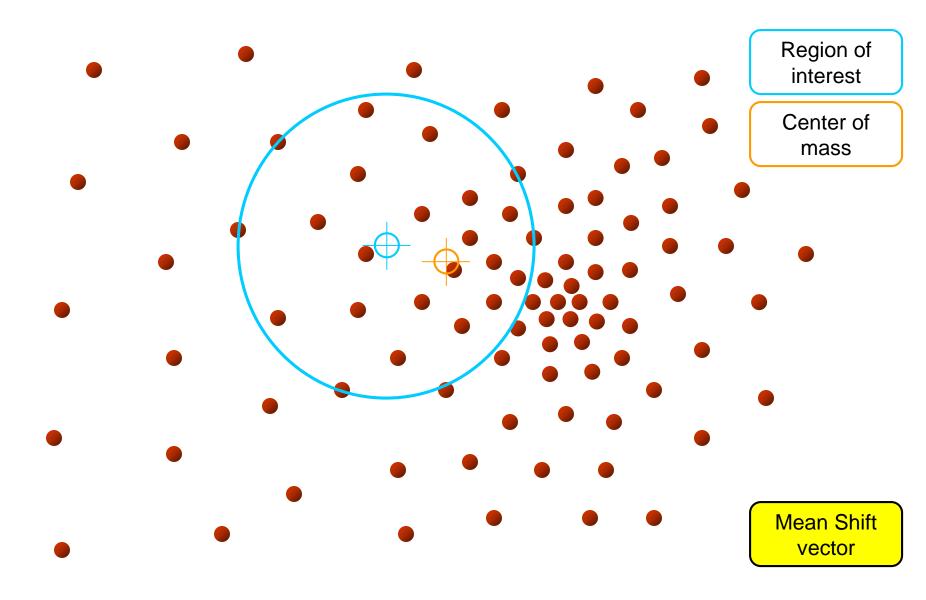
- Attraction basin: the region for which all trajectories lead to the same mode
- Cluster: all data points in the attraction basin of a mode

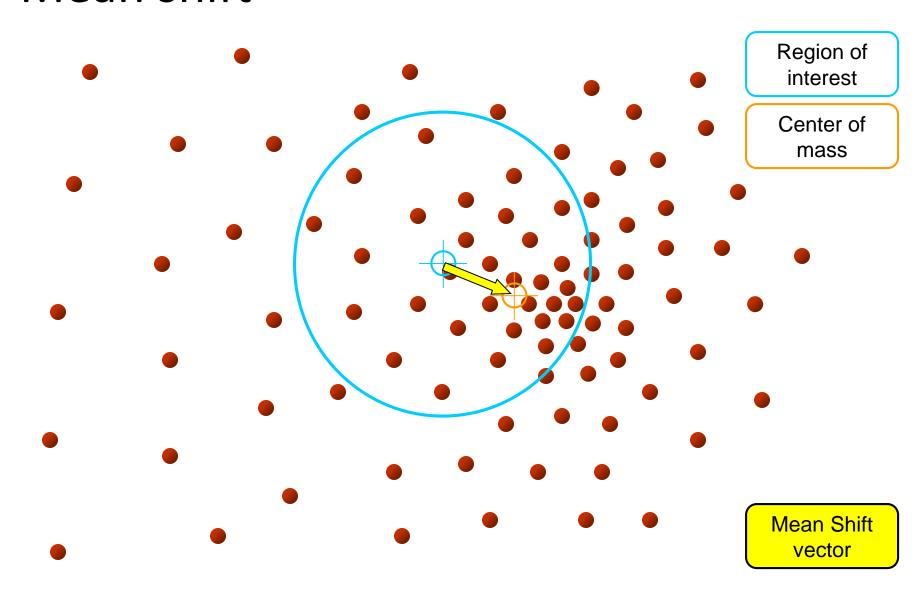


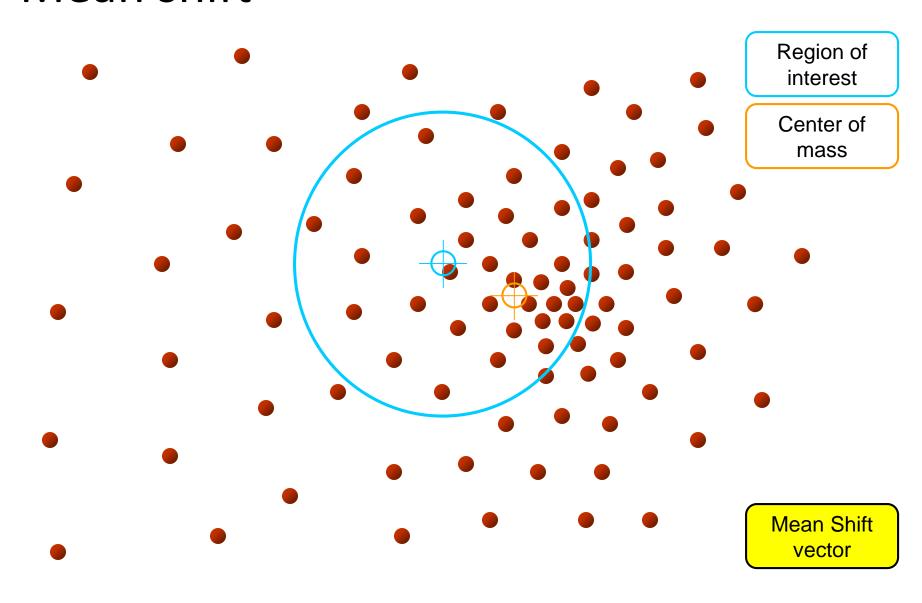
Attraction basin

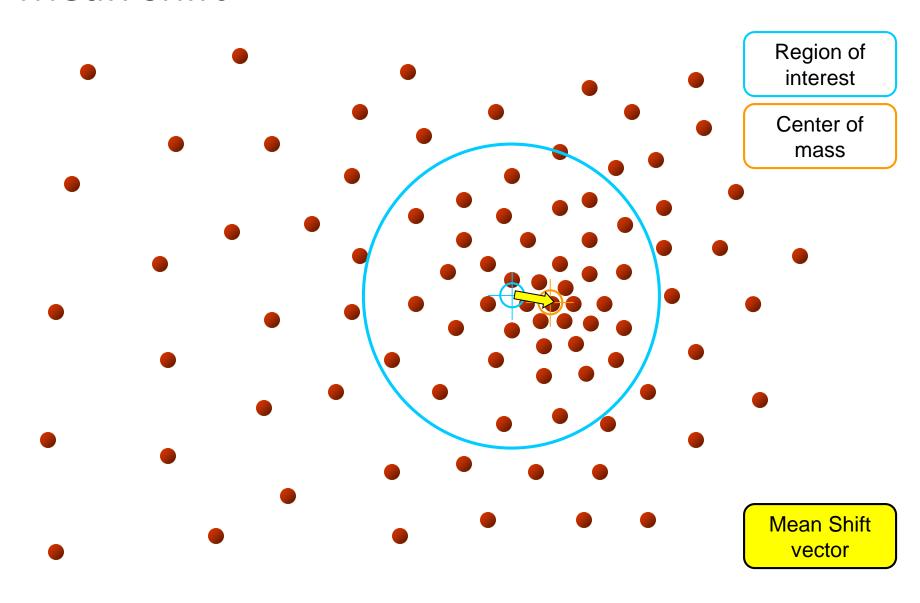


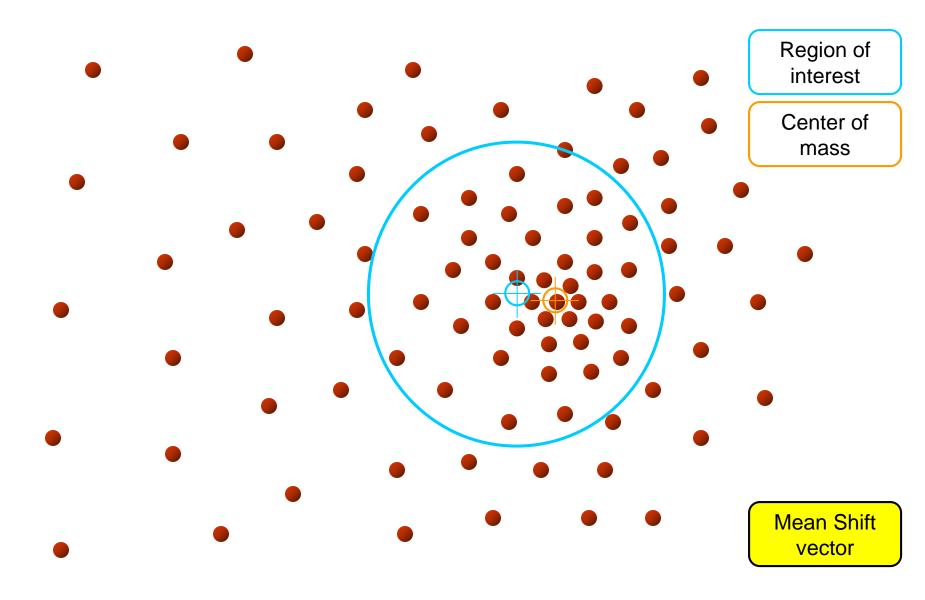


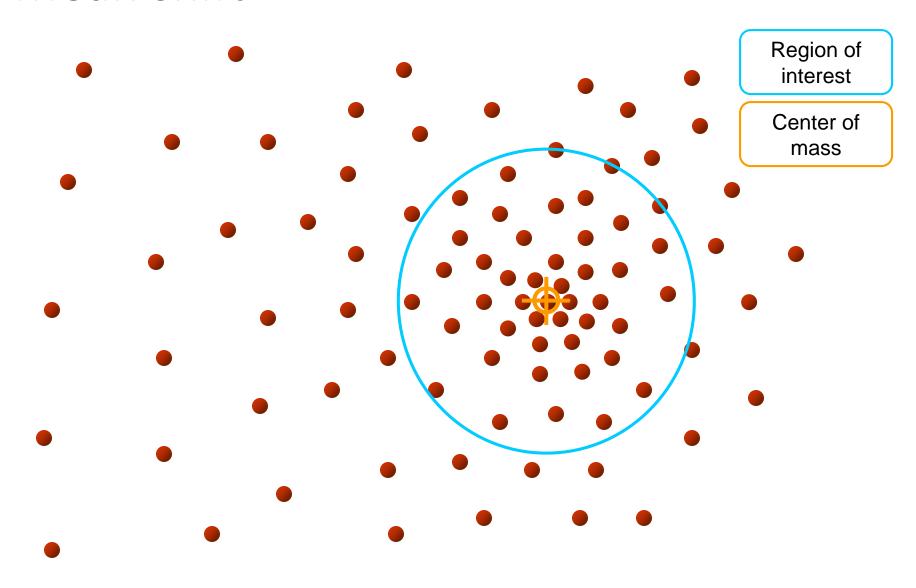












Kernel density estimation

Kernel density estimation function

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

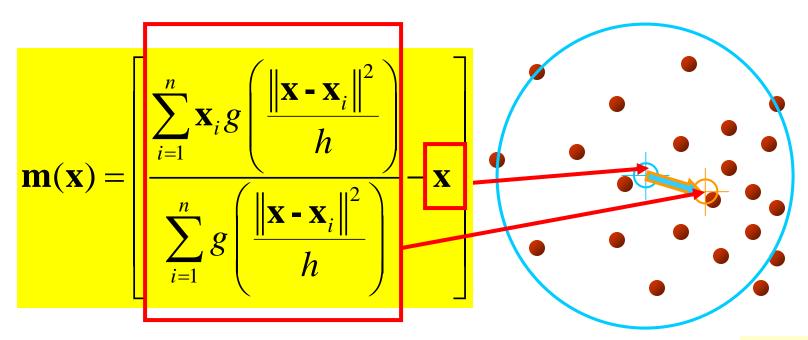
Gaussian kernel

$$K\left(\frac{x-x_i}{h}\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}.$$

Computing the Mean Shift

Simple Mean Shift procedure:

- Compute mean shift vector m(x)
- Iteratively translate the kernel window by m(x) until convergence.



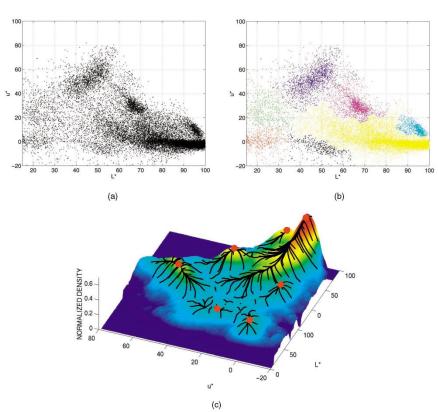
Mean shift clustering

The mean shift algorithm seeks *modes* of the given set of points

- 1. Choose kernel and bandwidth
- 2. For each point:
 - a) Center a window on that point
 - b) Compute the mean of the data in the search window
 - c) Center the search window at the new mean location
 - d) Repeat (b,c) until convergence
- 3. Assign points that lead to nearby modes to the same cluster

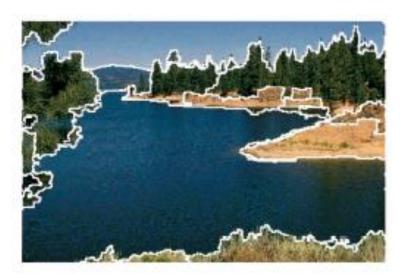
Segmentation by Mean Shift

- Compute features for each pixel (color, gradients, texture, etc.).
- Set kernel size for features K_f and position K_s.
- Initialize windows at individual pixel locations.
- Perform mean shift for each window until convergence.
- Merge windows that are within width of K_f and K_s .



Mean shift segmentation results

Comaniciu and Meer 2002



Mean shift pros and cons

Pros

- Good general-practice segmentation
- Flexible in number and shape of regions
- Robust to outliers

Cons

- Have to choose kernel size in advance
- Not suitable for high-dimensional features

When to use it

- Oversegmentation
- Multiple segmentations
- Tracking, clustering, filtering applications

Spectral clustering

Group points based on graph structure & edge costs. Captures "neighborhood-ness" or local smoothness.

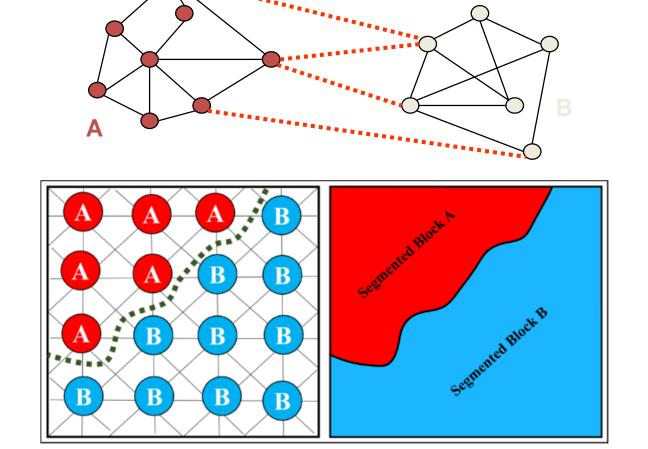
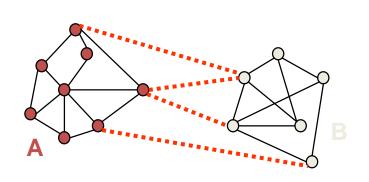
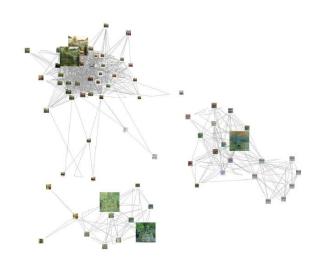


Image: Hassan et al.

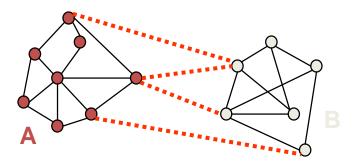
Spectral clustering

Group points based on links in a graph





Cuts in a graph



Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A, B) = \frac{cut(A, B)}{volume(A)} + \frac{cut(A, B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch A

Source: Seitz

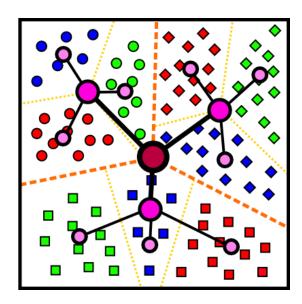
Normalized cuts for segmentation

Segmentation as a result

GrabCut, Rother et al. 2004

Which algorithm to use?

- Quantization/Summarization: K-means
 - Aims to preserve variance of original data
 - Can easily assign new point to a cluster

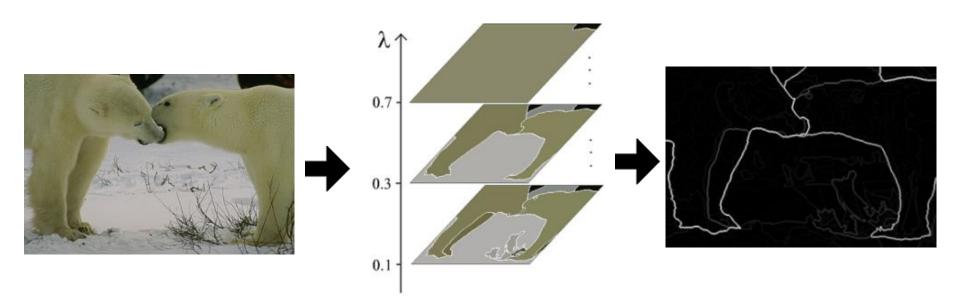


Quantization for computing histograms

Summary of 20,000 photos of Rome using "greedy k-means" http://grail.cs.washington.edu/projects/canonview/

Which algorithm to use?

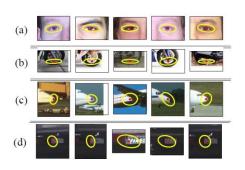
- Image segmentation: agglomerative clustering
 - More flexible with distance measures (e.g., can be based on boundary prediction)
 - Adapts better to specific data
 - Hierarchy can be useful



http://www.cs.berkeley.edu/~arbelaez/UCM.html

Things to remember

 K-means useful for summarization, building dictionaries of patches, general clustering



 Agglomerative clustering useful for segmentation, general clustering

 Spectral clustering useful for determining relevance, summarization, segmentation

