


Wikipedia - Mysid











[Akiyoshi Kitaoka, Ritsumeikan University, Kyoto]







Erik Brynjolfsson, MIT

https://twitter.com/erikbryn


Project 1 Feedback

Thank you all.

- There are no late days on proj0

- Numpy gearup beyond proj0 tutorial – OK

- Short time frame [my fault]

- Axes3D - OK

- Improvements to code description – OK



Project 1 Convolution Speeds
Convolution speed (seconds)

Jake Chanan 0.91

Alice Marbach 0.94

Andrew Cooke 1.07

Albert Webson 1.2

Reza Esfandiarpoor 1.2

Andrew Levy 1.22

James White 1.23

Da Huo 1.24

Troy Moo Penn 1.27

Michael T Lincoln 1.29

FFT convolution (seconds)

James Wang 0.45

Matthew Kovoor 0.75

Isaiah Liu 0.85



Hybrid images





















Corners

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 4.1

Also called interest points, key points, etc.

Often described as ‘local’ features.

Filtering Edges

Feature 
points



Correspondence across views

Matching points, patches, edges, 
or regions across images.

Sparse or local correspondence vs.

dense correspondence (at every pixel).

≈

Hays



Fundamental to Applications  

• Image alignment 

• 3D reconstruction

• Motion tracking (robots, drones, AR)

• Indexing and database retrieval

• Object recognition

Hays



Example application: Panorama stitching

We have two images –

how do we estimate how to overlay them?



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around 

each interest point as vector.

3) Matching: 
Compute distance between feature 

vectors to find correspondence.

],,[ )1()1(

11 dxx =x

],,[ )2()2(

12 dxx =x

Td )x,x( 21

1x

2x

K. Grauman, B. Leibe



Goal: Distinctiveness

We want to be able to reliably determine which 

point goes with which.

?

Kristen Grauman

May be difficult in structured environments

with repeated elements



Goal: Repeatability

We want to detect (at least some of) 

the same points in both images.

With these points, there’s no chance to find true matches!

Kristen Grauman

Under geometric and 

photometric variations.



Example: Object Detection

Finding distinctive and repeatable feature points can be difficult when 

we want our features to be invariant to large transformations:

- geometric variation (translation, rotation, scale, perspective)

- appearance variation (reflectance, illumination) 

Keypoint Descriptors James Hays



Goal: Compactness and Efficiency

We want the representation to be as small and 

as fast as possible

– Much smaller than a whole image

We’d like to be able to run the detection 

procedure independently per image

- Match just the compact descriptors for speed.

- Difficult! We don’t get to see ‘the other image’ at 

match time, e.g., object detection.

Kristen Grauman



Characteristics of good features

Distinctiveness
Each feature can be uniquely identified

Repeatability
The same feature can be found in several images despite differences: 

- geometrically (translation, rotation, scale, perspective)

- photometrically (reflectance, illumination)

Compactness and efficiency
Many fewer features than image pixels; run independently per image

Kristen Grauman



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around 

each interest point as vector.

3) Matching:
Compute distance between feature 

vectors to find correspondence.



Detection: Basic Idea

We do not know which other image 

locations the feature will end up being 

matched against.

But we can compute how stable a location 

is in appearance with respect to small 

variations in its position.

Strategy: Compare image patch 

against local neighbors.

A. Efros



Corner Detection: Basic Idea

Recognize corners by looking at small window.

We want a window shift in any direction to give 
a large change in intensity.

“Edge”:

no change 

along the edge 

direction

“Corner”:

significant 

change in all 

directions

“Flat” region:

no change in 

all directions

A. Efros



Corner Detection by Auto-correlation

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) for shift [u,v]:



 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) for shift [u,v]:

Corner Detection by Auto-correlation



 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

Change in appearance of window w(x,y) for shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)

Corner Detection by Auto-correlation



As a surface

Think-Pair-Share:

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

Correspond the three 

red crosses to (b,c,d).



Corner Detection by Auto-correlation

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

We want to discover how E behaves for small shifts

Change in appearance of window w(x,y) for shift [u,v]:

But this is very slow to compute naively.

O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 

14.6k ops per image pixel



Corner Detection by Auto-correlation

 
2

,

( , ) ( , ) ( , ) ( , )
x y

E u v w x y I x u y v I x y= + + −

But we know the response in E that we are looking 

for – strong peak.

Change in appearance of window w(x,y) for shift [u,v]:

We want to discover how E behaves for small shifts



Strategy:

Approximate E(u,v) locally by a quadratic surface, 

and look for that instead.

≈



Recall: Taylor series expansion

A function f can be represented by an infinite series 

of its derivatives at a single point a:

Approximation of 

f(x) = ex 

centered at f(0)

Wikipedia

As we care about window 

centered, we set a = 0

(MacLaurin series)



Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the 

second-order Taylor expansion:

















+








+

v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

Notation: partial derivative



Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the 

second-order Taylor expansion:

















+








+

v

u

EE

EE
vu

E

E
vuEvuE

vvuv

uvuu

v

u

)0,0()0,0(

)0,0()0,0(
][

2

1

)0,0(

)0,0(
][)0,0(),(

Ignore function 

value; set to 0 Ignore first 

derivative, 

set to 0

Just look at shape of 

second derivative

(2D quadratic surface)



Corner Detection: Mathematics

The quadratic approximation simplifies to

2

2
,

( , )
x x y

x y x y y

I I I
M w x y

I I I

 
=  

  


where M is a second moment matrix computed from image 

derivatives:











v

u
MvuvuE ][),(

M



















v

u

EE

EE
vuvuE

vvuv

uvuu

)0,0()0,0(

)0,0()0,0(
][),(











= 

yyyx

yxxx

IIII

IIII
yxwM ),(

x

I
I x






y

I
I y






y

I

x

I
II yx










Corners as distinctive interest points

2 x 2 matrix of image derivatives 

(averaged in neighborhood of a point)

Notation:

James Hays



E(u,v) is locally approximated by a quadratic 

surface. Let’s try to understand how its shape 

relates to M.

Interpreting the second moment matrix











v

u
MvuvuE ][),(













=

yx yyx

yxx

III

III
yxwM

,
2

2

),(

James Hays



Let’s take horizontal “slices” of our approximation of E(u, v):

Interpreting the second moment matrix

[𝑢 𝑣] 𝑀
𝑢
𝑣

= constant

James Hays

Each coloured line in the diagram below is where



Visualization of second moment matrix

Simple image:

Checkerboard.

1 corner

4 edges

4 flat regions

Note: Edges show ‘wide’ response 

because image derivatives were 

blurred by Gaussian 𝜎 = 1 before 

visualizing.



Visualization of second moment matrices

James Hays



Visualization of second moment matrices

James Hays

For cornerness, 

we only care about 

the ‘steepness’, 

not the rotation.

Can we ignore 

this somehow?



Linear algebra review

𝑀 is symmetric. Symmetric matrices have 

orthogonal eigenvectors (i.e., a basis).

𝑀 is square. Square matrices are 

diagonalizable if some matrix 𝑃 exists s.t.

𝑀 = 𝑃−1𝐴𝑃, where 𝐴 has only diagonal 

entries and 𝑃 represents a change of basis 

(in 2D, a rotation).



Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This defines an ellipse.

RRM 







= −

2

11

0

0





The axis lengths of the ellipse are determined by the eigenvalues,

and the orientation is determined by a rotation matrix 𝑅.

direction of the 

slowest change

direction of the 

fastest change

(max)
-1/2

(min)
-1/2

const][ =








v

u
Mvu

Diagonalization of M:

James Hays

Note inverse relationship: 

larger eigenvalue = 

steeper slope; smaller 

ellipse in visualization

𝐴



Classification of image points using eigenvalues of M

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region



Classification of image points using eigenvalues of M

“Corner”

C > 0

“Edge” 

C < 0

“Edge” 

C < 0

|C| small

1

2
Cornerness score:

α: some constant (~0.04 to 0.06)

“Flat” 

region

𝐶 = 𝜆1𝜆2 − 𝛼(𝜆1 + 𝜆2)
2



Linear algebra review

Determinant of a diagonal matrix is the 

product of all eigenvalues. 𝐴 is diagonal.

Trace of a square matrix is the sum of its 

diagonal entries; and is the sum of its 

eigenvalues.



Classification of image points using eigenvalues of M

“Corner”

C > 0

“Edge” 

C < 0

“Edge” 

C < 0

|C| small

2)(trace)det( MMC −=

Determinant:

Trace:

1

2

Remember your linear algebra:

Cornerness score:

α: some constant (~0.04 to 0.06)

“Flat” 

region

(diagonal matrices)

𝐶 = 𝜆1𝜆2 − 𝛼(𝜆1 + 𝜆2)
2

Avoids explicit eigenvalue computation!



This is the Harris corner detector!

1) Compute M matrix for each window to recover a 

cornerness score 𝐶.
Note: We can find M purely from the per-pixel image derivatives!

2) Threshold to find pixels which give large corner 

response (𝐶 > threshold).

3) Find the local maxima pixels,

i.e., non-maximal suppression.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Corner Detector [Harris88]

1. Compute image derivatives (optionally, blur first).

2. Compute 𝑀 components

as squares of derivatives.

3. Gaussian filter g() with width s

= 𝑔 𝐼𝑥
2 , 𝑔 𝐼𝑦

2 , 𝑔 𝐼𝑥 ∘ 𝐼𝑦

𝐼𝑥 𝐼𝑦

𝑔(𝐼𝑥2) 𝑔(𝐼𝑦2) 𝑔(𝐼𝑥 ∘ 𝐼𝑦)

4. Compute cornerness

𝑅 5. Threshold on 𝐶 to pick high cornerness

6. Non-maximal suppression to pick peaks.

James Hays

0. Input image

We want to compute M at each pixel.
𝐼

𝐼𝑥𝑦𝐼𝑥
2 𝐼𝑦

2

𝐶 = det 𝑀 − 𝛼 trace 𝑀 2

= 𝑔 𝐼𝑥
2 ∘ 𝑔 𝐼𝑦

2 − 𝑔 𝐼𝑥 ∘ 𝐼𝑦
2

−𝛼 𝑔 𝐼𝑥
2 + 𝑔 𝐼𝑦

2 2

Reminder: 𝑎 ∘ 𝑏 is 

Hadamard product 

(element-wise 

multiplication)



Harris Detector: Steps



Harris Detector: Steps

Compute corner response 𝐶



Harris Detector: Steps

Find points with large corner response: 𝐶 > threshold



Harris Detector: Steps

Take only the points of local maxima of 𝐶



Harris Detector: Steps



Live Harris Demo


