

Piazza etiquette with 300 students

- Read the project description
- Check top-level notes post on Piazza
- Search for similar questions on Piazza
- Question number in title
- Description of problem
- Description of how you have tried to debug it
- Code: divide and conquer; minimal non-working example really helps

Gradescope – Late submissions

• Yes, there is a grace period

Gradescope – question PDFs

• Change of plan to help with grading 300 scripts

• No longer asking you to assign pages

Now: please stick to pages
– we give you plenty of space.

Grok

To understand intuitively; completely; [to the point of sharing an existence.]

1961 Robert A. Heinlein book; coined term1980s Took on meaning in computing circles

"There isn't any software! Only different internal states of hardware. It's all hardware! It's a shame programmers don't grok that better."

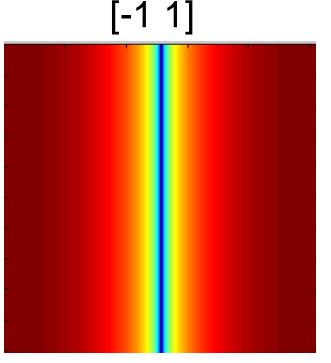
Review of Filtering

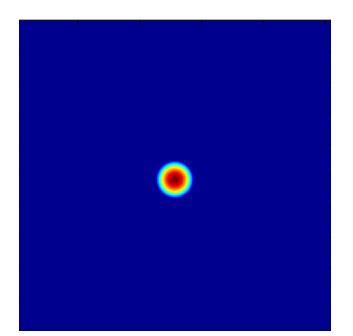
- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to Fourier domain (e.g., numpy.fft.fft2())
 - 2. Element-wise multiply their decompositions
 - 3. Convert result to spatial domain with inverse Fourier transform (e.g., numpy.fft.ifft2())

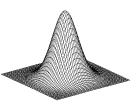
You will play with code in Proj2 questions

Review of Filtering

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)





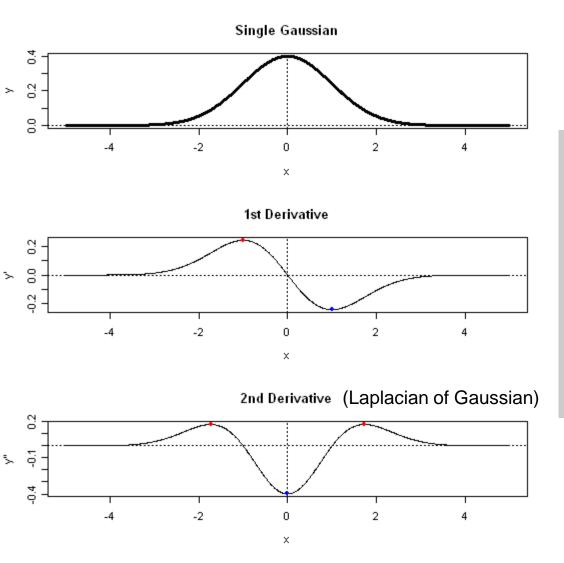


Gaussian

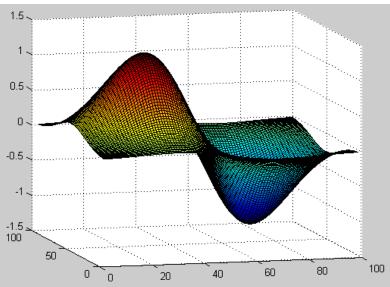
FFT of Gradient Filter

FFT of Gaussian

More Useful Filters



1st Derivative of Gaussian



Things to Remember

Sometimes it helps to think of images and filtering in the frequency domain

Fourier analysis

Can be faster to filter using FFT for large images

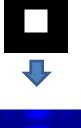
- N logN vs. N² for convolution/correlation

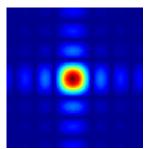
Images are mostly smooth

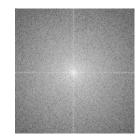
Basis for compression

Remember to low-pass before sampling

• Otherwise you create aliasing







EDGE / BOUNDARY DETECTION Szeliski 4.2

Many slides from James Hays, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

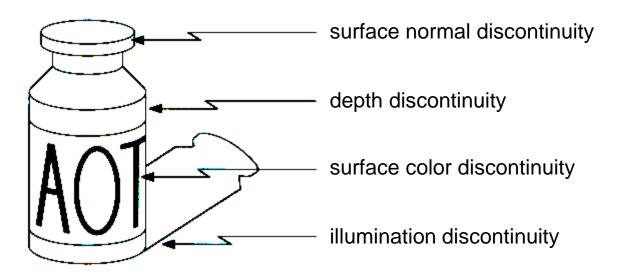
Edge detection

Goal: Identify visual changes (discontinuities) in an image.

Intuitively, semantic information is encoded in edges.

Think-pair-share: What are some 'causes' of visual edges?

Origin of Edges



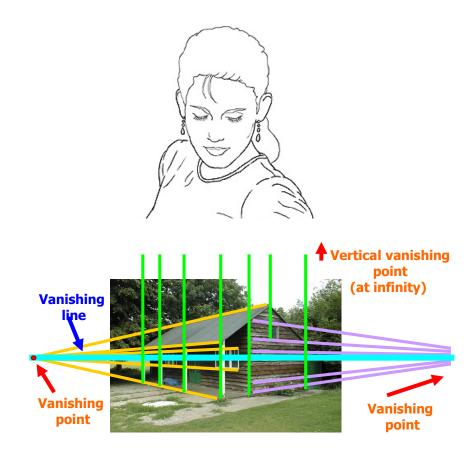
• Edges are caused by a variety of factors

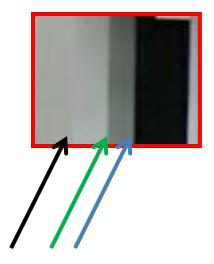
Why do we care about edges?

Extract information

Recognize objects

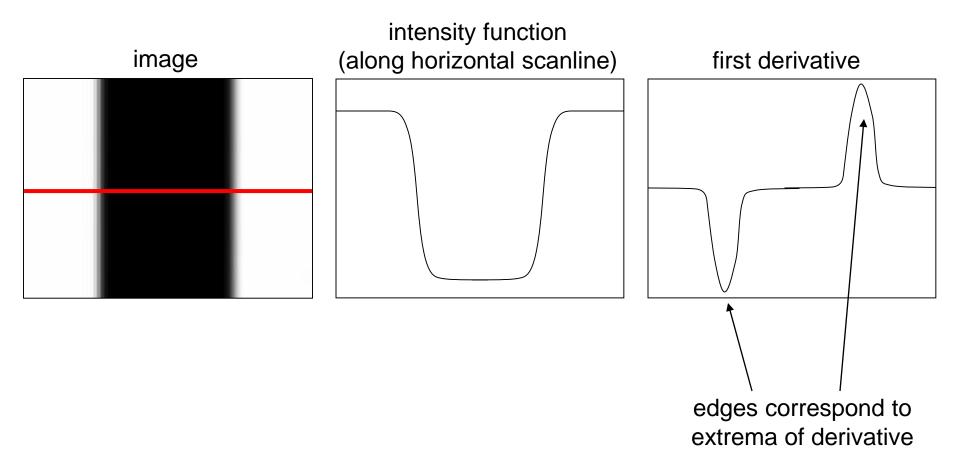
Help recover geometry and viewpoint



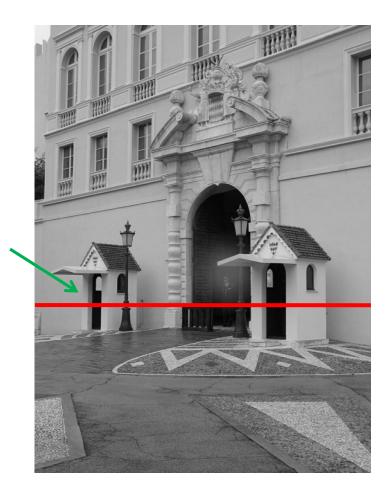


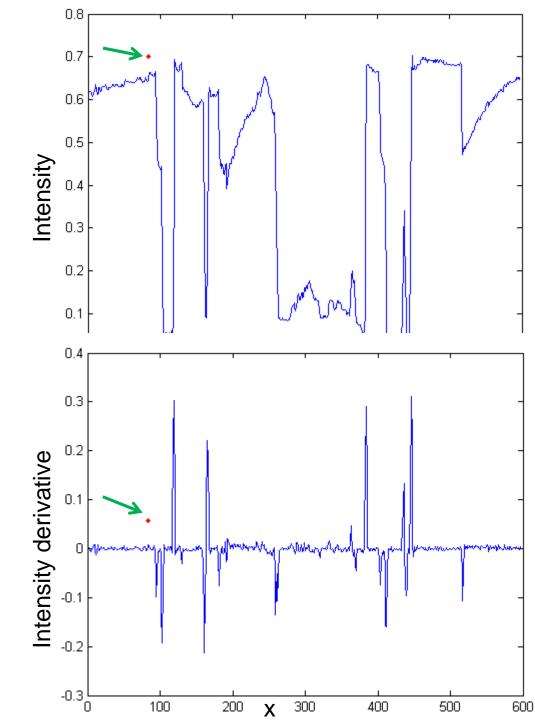
Characterizing edges

• An edge is a place of rapid change in the image intensity function

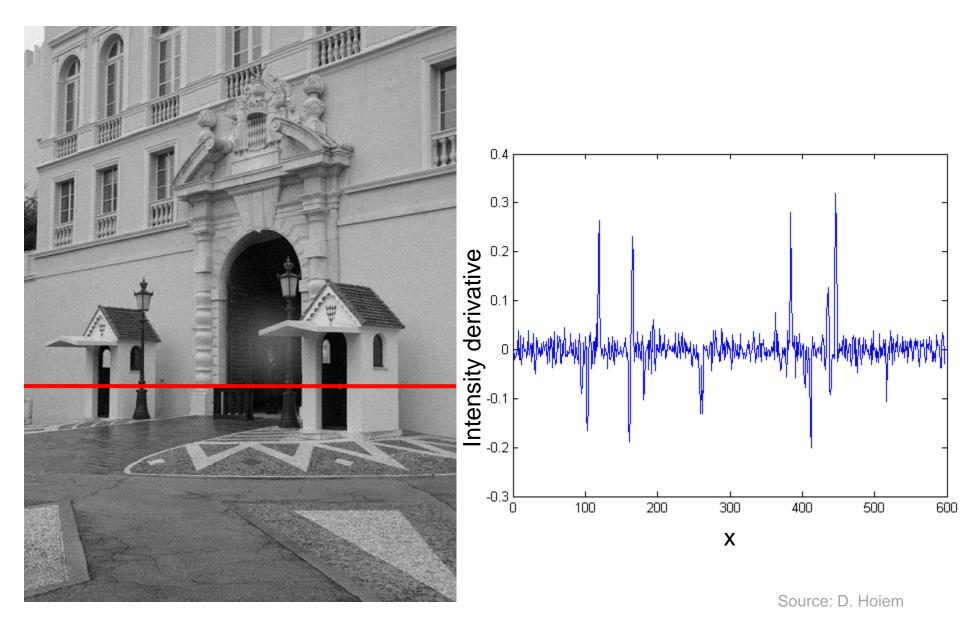


Intensity profile



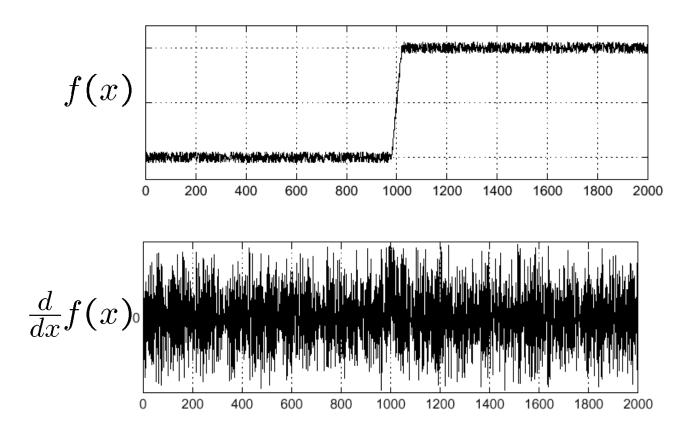


With a little Gaussian noise



Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

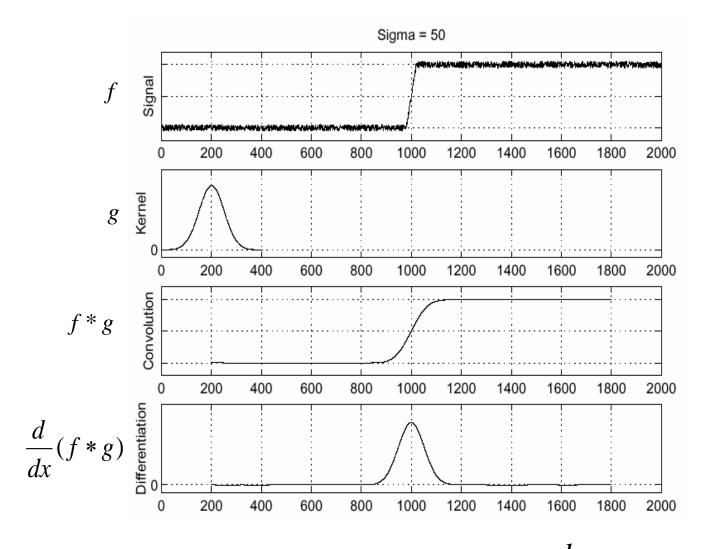


Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first



• To find edges, look for peaks in $\frac{d}{dx}(f * g)$

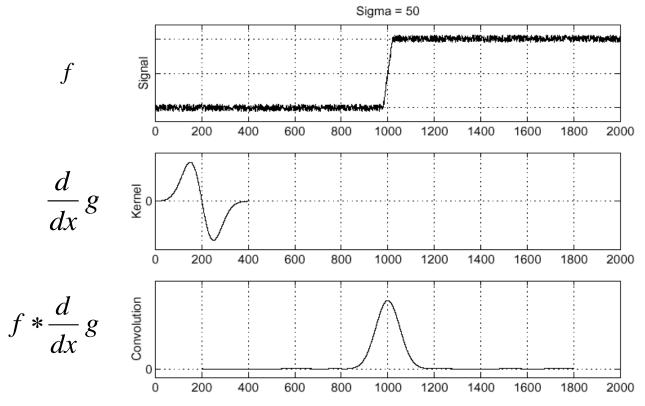
Source: S. Seitz

Derivative theorem of convolution

• Convolution is differentiable:

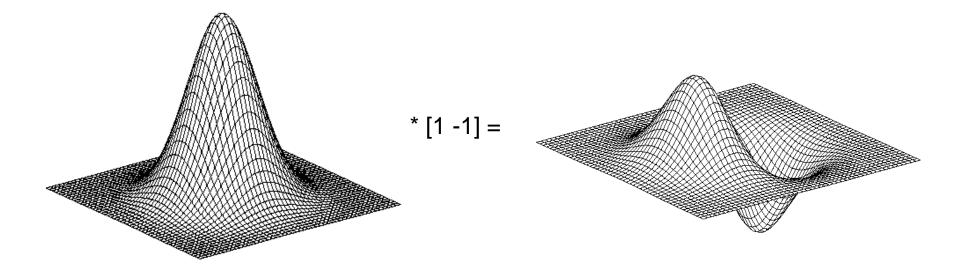
$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

• This saves us one operation:

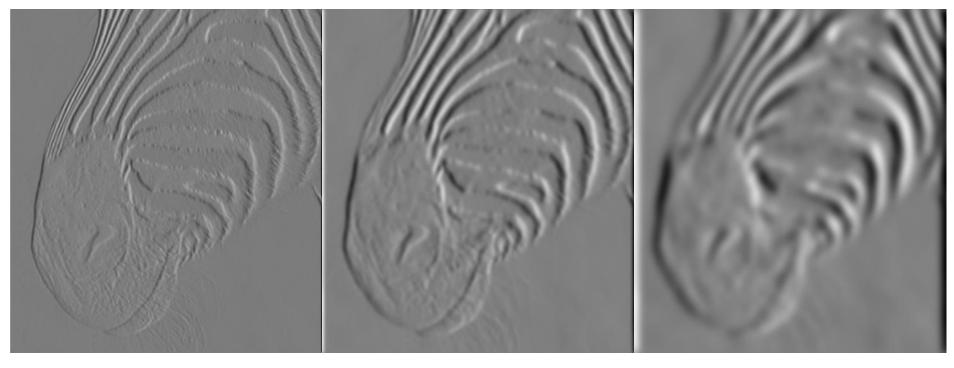


Source: S. Seitz

Derivative of 2D Gaussian filter



Tradeoff between smoothing and localization



1 pixel

3 pixels

7 pixels

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Think-Pair-Share

What is a good edge detector?

Do we lose information when we look at edges?

Are edges 'complete' as a representation of images?

Designing an edge detector

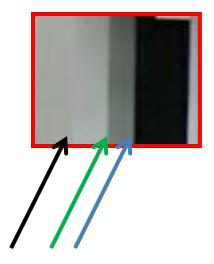
- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point

Cues of edge detection

- Differences in color, intensity, or texture across the boundary
- Continuity and closure
- High-level knowledge

Designing an edge detector

- "All real edges"
 - We can aim to differentiate later which edges are 'useful' for our applications.
 - If we can't find all things which *could* be called an edge, we don't have that choice.
- Is this possible?



Elder – Are Edges Incomplete? 1999

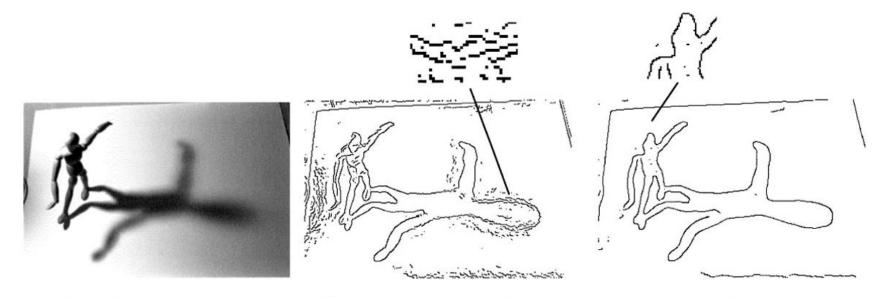


Figure 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. The original image contains edges over a broad range of contrasts and blur scales. In the middle are shown the edges detected with a Canny/Deriche operator tuned to detect structure in the mannequin. On the right is shown the edges detected with a Canny/Deriche operator tuned to detect the smooth contour of the shadow. Parameters are ($\alpha = 1.25$, $\omega = 0.02$) and ($\alpha = 0.5$, $\omega = 0.02$), respectively. See (Deriche, 1987) for details of the Deriche detector.

What information would we need to 'invert' the edge detection process?

Elder – Are Edges Incomplete? 1999

Edge 'code':

- position,
- gradient magnitude,
- gradient direction,
- blur size.

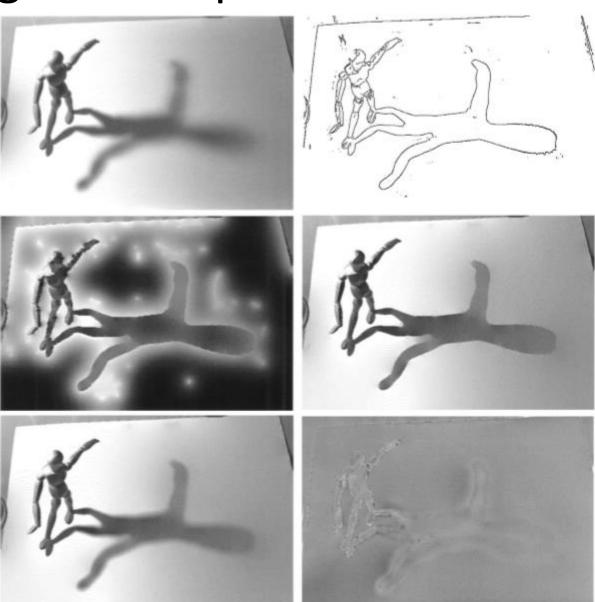
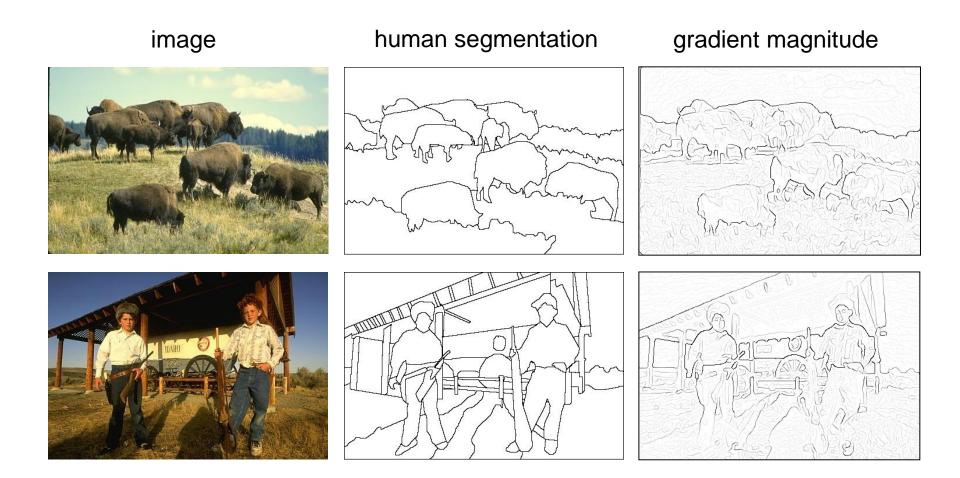


Figure 8. Top left: Original image. Top right: Detected edge locations. Middle left: Intermediate solution to the heat equation. Middle right: Reconstructed luminance function. Bottom left: Reblurred result. Bottom right: Error map (reblurred result—original). Bright indicates overestimation of intensity, dark indicates underestimation. Edge density is 1.7%. RMS error is 10.1 grey levels, with a 3.9 grey level DC component, and an estimated 1.6 grey levels due to noise removal.

Where do humans see boundaries?



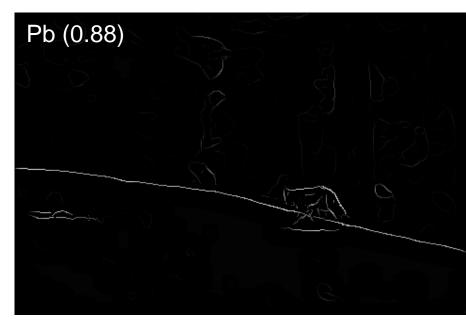
 Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB slides: Hays

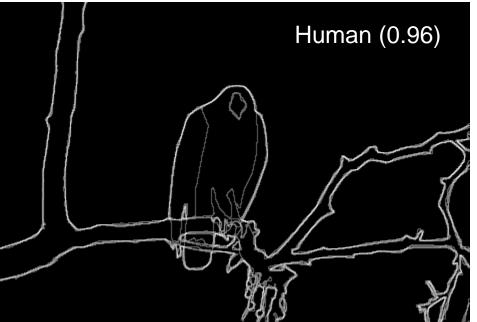
Results

Human (0.95)

Score = confidence of edge. For humans, this is averaged across multiple participants.



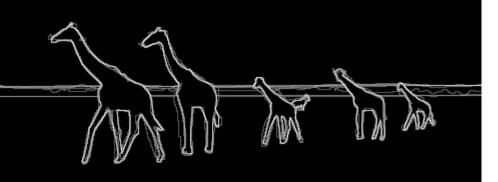
Results



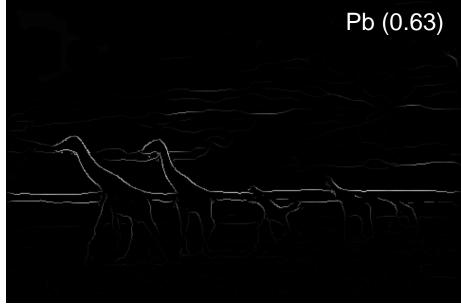
Score = confidence of edge. For humans, this is averaged across multiple participants.



Human (0.95)



Score = confidence of edge. For humans, this is averaged across multiple participants.

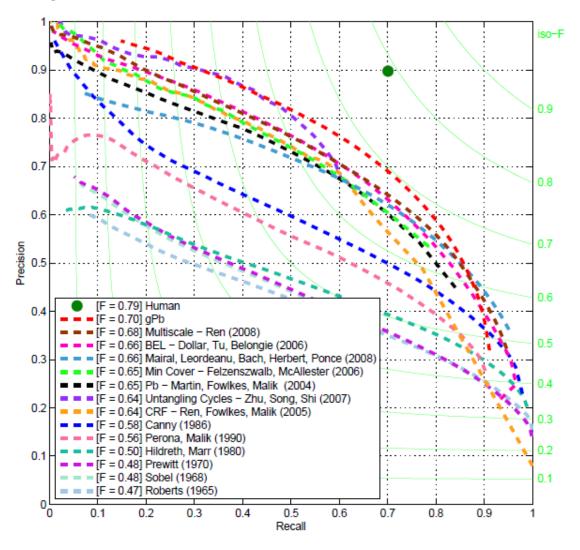


Score = confidence of edge. For humans, this is averaged across multiple participants.

For more: http://www.eecs.berkeley.edu/Research/Projects /CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection

[Pre deep learning]



State of edge detection

Local edge detection works well

 - 'False positives' from illumination and texture edges (depends on our application).

Some methods to consider longer contours

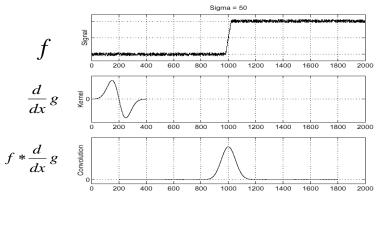
Modern methods that actually "learn" from data.

Poor use of object and high-level information.

Summary: Edges primer

- Edge detection to identify visual change in image
- Derivative of Gaussian and linear combination of convolutions

What is an edge?
 What is a good edge?



- Probably the most widely used edge detector in computer vision.
- Theoretical model: step-edges corrupted by additive Gaussian noise.
- Canny showed that first derivative of Gaussian closely approximates the operator that optimizes the product of *signal-to-noise ratio* and localization.

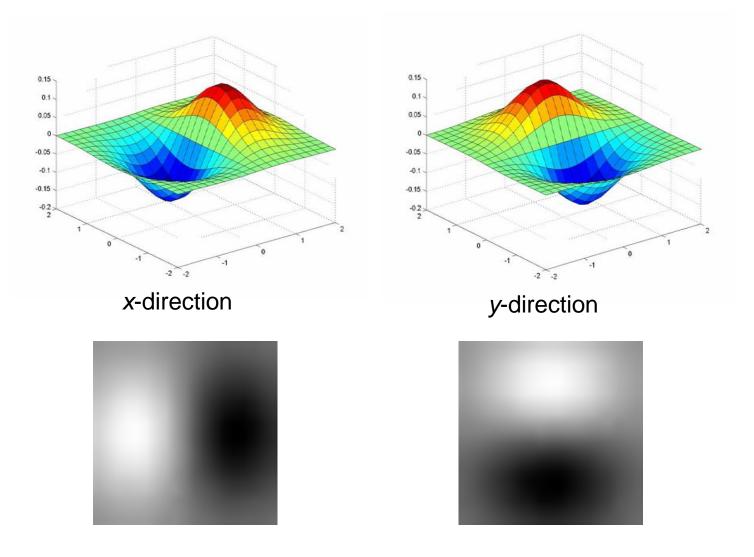
J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Demonstrator Image

rgb2gray('img.png')

1. Filter image with x, y derivatives of Gaussian

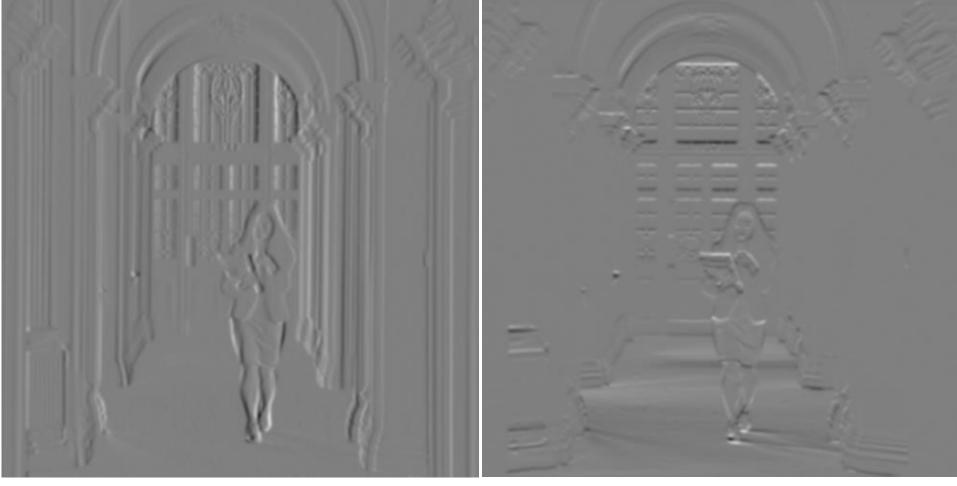
Derivative of Gaussian filter



Compute Gradients

X Derivative of Gaussian

Y Derivative of Gaussian



(x2 + 0.5 for visualization)

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient

Compute Gradient Magnitude

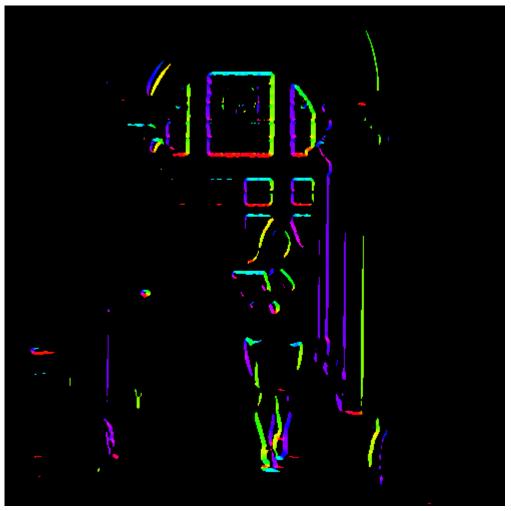
sqrt(XDerivOfGaussian .^2 + YDerivOfGaussian .^2)

= gradient magnitude

(x4 for visualization)

Compute Gradient Orientation

- Threshold magnitude at minimum level
- Get orientation via theta = atan2(yDeriv, xDeriv)

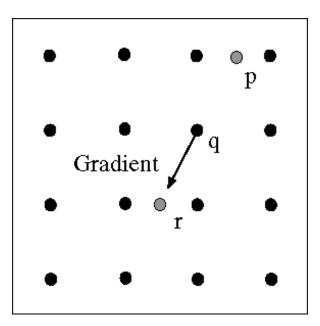


2

-2

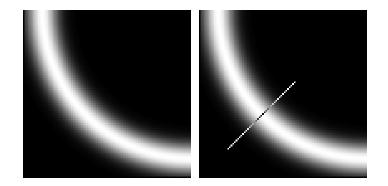
- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width

Non-maximum suppression for each orientation



At pixel q: We have a maximum if the value is larger than those at both p and at r.

Interpolate along gradient direction to get these values.

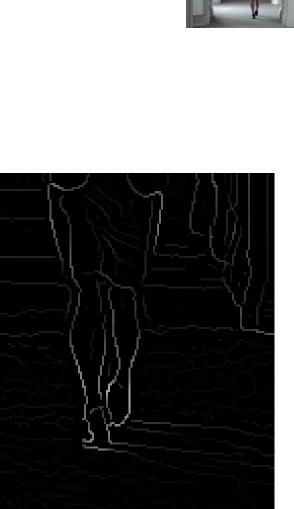


Before Non-max Suppression



Gradient magnitude (x4 for visualization)

After non-max suppression

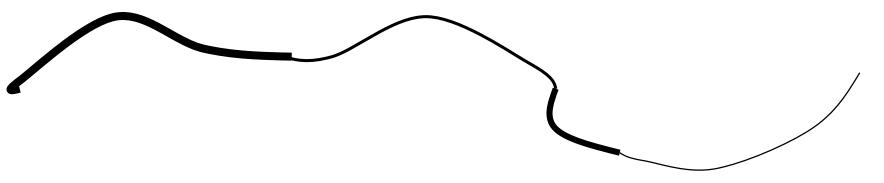


Gradient magnitude (x4 for visualization)

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding

'Hysteresis' thresholding

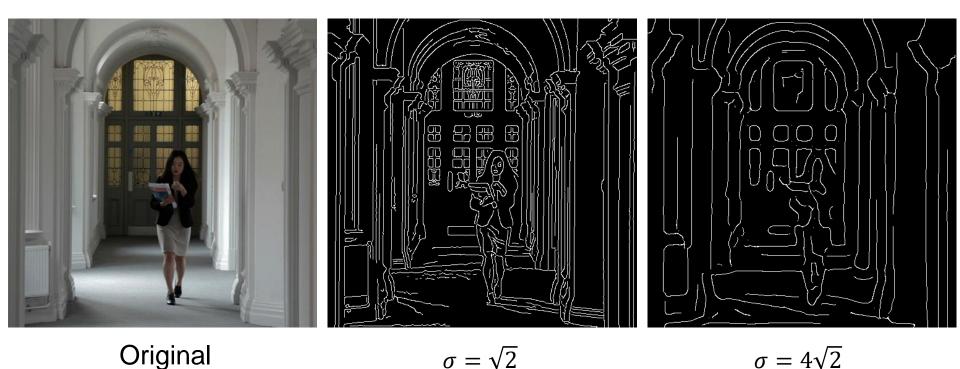
- Two thresholds high and low
- Grad. mag. > high threshold? = strong edge
- Grad. mag. < low threshold? noise
- In between = weak edge
- 'Follow' edges starting from strong edge pixels
- Continue them into weak edges
 - Connected components (Szeliski 3.3.4)



Final Canny Edges

$$\sigma = \sqrt{2}, t_{low} = 0.05, t_{high} = 0.1$$

Effect of σ (Gaussian kernel spread/size)

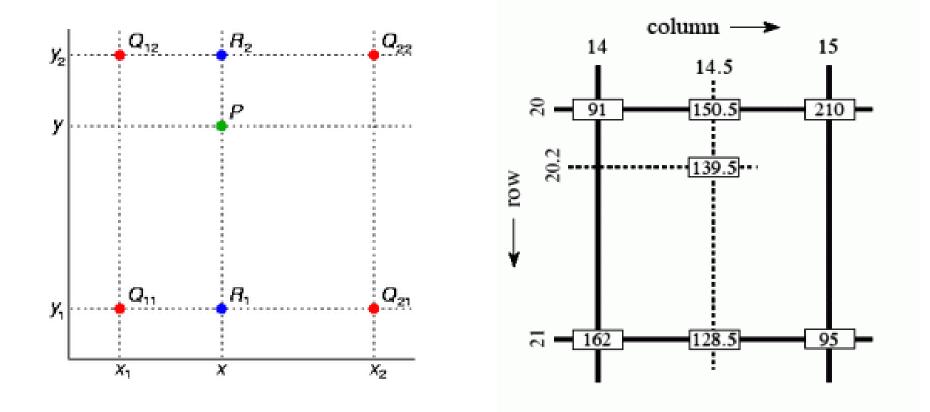


The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding:
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
 - 'Follow' edges starting from strong edge pixels
 - Connected components (Szeliski 3.3.4)
- Python: e.g., skimage.feature.canny()

Sidebar: Bilinear Interpolation



$$f(x,y) \approx \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} f(0,0) & f(0,1) \\ f(1,0) & f(1,1) \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}.$$

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

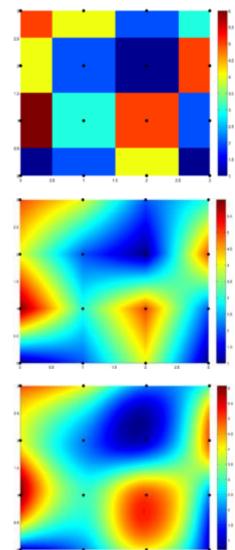
e.g., skimage.transform.rescale(I, 2, order=x)

- x == 0 -> 'nearest neighbor'
 - Copy value from nearest known
 - Very fast but creates blocky edges

x == 1 -> 'bilinear' (default)

- Weighted average from four nearest known pixels
- Fast and reasonable results
- x == 3 => 'bicubic'
 - Fit cubic spline to pixel intensities
 - Non-linear interpolation over larger area (4x4)
 - Slower, visually appealing, may create negative pixel values in cubic function fitting

Examples from http://en.wikipedia.org/wiki/Bicubic interpolation



Canny edge demo!!!

From Luke Murray (Fall 2017 TA)

<u>https://cse442-17f.github.io/Sobel-Laplacian-and-Canny-Edge-Detection-Algorithms/</u>

 Written in <u>https://idyll-lang.org/</u>