

Piazza etiquette with 300 students

• Read the project description

• Check top-level notes post on Piazza

• Search for similar questions on Piazza

• Question number in title

• Description of problem

• Description of how you have tried to debug it

• Code: divide and conquer; minimal non-working
example really helps

Gradescope – Late submissions

• Yes, there is a grace period

Gradescope – question PDFs

• Change of plan to help with grading 300 scripts

• No longer asking you to assign pages

• Now: please stick to pages
– we give you plenty of space.

Grok

To understand intuitively; completely; [to the point
of sharing an existence.]

1961 Robert A. Heinlein book; coined term

1980s Took on meaning in computing circles

"There isn't any software! Only different internal
states of hardware. It's all hardware! It's a shame
programmers don't grok that better."

https://en.wikipedia.org/wiki/Grok

https://en.wikipedia.org/wiki/Grok

Review of Filtering

• Filtering in frequency domain
– Can be faster than filtering in spatial domain (for

large filters)

– Can help understand effect of filter

– Algorithm:
1. Convert image and filter to Fourier domain (e.g.,

numpy.fft.fft2())

2. Element-wise multiply their decompositions

3. Convert result to spatial domain with inverse Fourier
transform (e.g., numpy.fft.ifft2())

You will play with code in Proj2 questions

Hays

Review of Filtering

• Linear filters for basic processing

– Edge filter (high-pass)

– Gaussian filter (low-pass)

FFT of Gaussian

[-1 1]

FFT of Gradient Filter

Gaussian

Hays

More Useful Filters

1st Derivative of Gaussian

(Laplacian of Gaussian)

Earl F. Glynn

Things to Remember

Sometimes it helps to think of images and
filtering in the frequency domain

– Fourier analysis

Can be faster to filter using FFT for large
images

– N logN vs. N2 for convolution/correlation

Images are mostly smooth
– Basis for compression

Remember to low-pass before sampling
• Otherwise you create aliasing

Hays

EDGE / BOUNDARY DETECTION

Many slides from James Hays, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

Szeliski 4.2

Edge detection

Goal: Identify visual changes
(discontinuities) in an image.

Intuitively, semantic information is
encoded in edges.

Think-pair-share:
What are some ‘causes’
of visual edges?

Source: D. Lowe

Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Why do we care about edges?

Extract information

– Recognize objects

Help recover geometry
and viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Characterizing edges

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Hays

Intensity profile

Source: D. Hoiem x

In
te

n
s
it
y

In
te

n
s
it
y
 d

e
ri
v
a
ti
v
e

With a little Gaussian noise

x

Source: D. Hoiem

In
te

n
s
it
y
 d

e
ri
v
a
ti
v
e

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d

f

g

f * g

)(gf
dx

d

Source: S. Seitz

• Convolution is differentiable:

• This saves us one operation:

g
dx

d
fgf

dx

d
=)(

Derivative theorem of convolution

g
dx

d
f

f

g
dx

d

Source: S. Seitz

Derivative of 2D Gaussian filter

* [1 -1] =

Hays

• Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth

Think-Pair-Share

What is a good edge detector?

Do we lose information when we look at edges?

Are edges ‘complete’ as a representation of
images?

Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to

the true edges
• the detector must return one point only for each

true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the

boundary
– Continuity and closure
– High-level knowledge

Source: L. Fei-Fei

Designing an edge detector

• “All real edges”

• We can aim to differentiate later which edges are
‘useful’ for our applications.

• If we can’t find all things which could be called an
edge, we don’t have that choice.

• Is this possible?

Closeup of edges

Source: D. Hoiem

Elder – Are Edges Incomplete? 1999

What information would we need to

‘invert’ the edge detection process?

Elder – Are Edges Incomplete? 1999

Edge ‘code’:

- position,

- gradient
magnitude,

- gradient
direction,

- blur size.

Where do humans see boundaries?

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

pB slides: Hays

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Results

Human (0.95)

Pb (0.88)

Score = confidence of edge.

For humans, this is averaged across

multiple participants.

Results

Human

Pb

Human (0.96)

Global PbPb (0.88)

Score = confidence of edge.

For humans, this is averaged across

multiple participants.

Human (0.95)

Pb (0.63)

Score = confidence of edge.

For humans, this is averaged across

multiple participants.

Human (0.90)

Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects

/CS/vision/bsds/bench/html/108082-color.html

Score = confidence of edge.

For humans, this is averaged across

multiple participants.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

[Pre deep learning]

State of edge detection

Local edge detection works well

– ‘False positives’ from illumination and texture
edges (depends on our application).

Some methods to consider longer contours

Modern methods that actually “learn” from data.

Poor use of object and high-level information.

Hays

Summary: Edges primer

• Edge detection to identify
visual change in image

• Derivative of Gaussian
and linear combination
of convolutions

• What is an edge?
What is a good edge?

g
dx

d
f

f

g
dx

d

Canny edge detector

• Probably the most widely used edge detector
in computer vision.

• Theoretical model: step-edges corrupted by
additive Gaussian noise.

• Canny showed that first derivative of Gaussian
closely approximates the operator that
optimizes the product of signal-to-noise ratio
and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

L. Fei-Fei

22,000 citations!

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Demonstrator Image

rgb2gray(‘img.png’)

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Source: D. Lowe, L. Fei-Fei

Derivative of Gaussian filter

x-direction y-direction

Compute Gradients

X Derivative of Gaussian Y Derivative of Gaussian

(x2 + 0.5 for visualization)

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei

Compute Gradient Magnitude

sqrt(XDerivOfGaussian .^2 + YDerivOfGaussian .^2) = gradient magnitude

(x4 for visualization)

Compute Gradient Orientation

• Threshold magnitude at minimum level

• Get orientation via theta = atan2(yDeriv, xDeriv)

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei

Non-maximum suppression for each orientation

At pixel q:

We have a maximum if the

value is larger than those at

both p and at r.

Interpolate along gradient

direction to get these values.

Source: D. Forsyth

Before Non-max Suppression

Gradient magnitude (x4 for visualization)

After non-max suppression

Gradient magnitude (x4 for visualization)

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding

Source: D. Lowe, L. Fei-Fei

‘Hysteresis’ thresholding

• Two thresholds – high and low

• Grad. mag. > high threshold? = strong edge

• Grad. mag. < low threshold? noise

• In between = weak edge

• ‘Follow’ edges starting from strong edge pixels

• Continue them into weak edges

• Connected components (Szeliski 3.3.4)

Source: S. Seitz

Final Canny Edges

𝜎 = 2, 𝑡𝑙𝑜𝑤 = 0.05, 𝑡ℎ𝑖𝑔ℎ = 0.1

Effect of (Gaussian kernel spread/size)

Original

The choice of depends on desired behavior
• large detects large scale edges

• small detects fine features

Source: S. Seitz

𝜎 = 4 2𝜎 = 2

Canny edge detector
1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
– Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding:
– Define two thresholds: low and high

– Use the high threshold to start edge curves and the
low threshold to continue them

– ‘Follow’ edges starting from strong edge pixels

• Connected components (Szeliski 3.3.4)

• Python: e.g., skimage.feature.canny()

Source: D. Lowe, L. Fei-Fei

Sidebar: Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

e.g., skimage.transform.rescale(I, 2, order=x)

x == 0 -> ‘nearest neighbor’
– Copy value from nearest known
– Very fast but creates blocky edges

x == 1 -> ‘bilinear’ (default)
– Weighted average from four nearest known

pixels
– Fast and reasonable results

x == 3 => ‘bicubic’
– Fit cubic spline to pixel intensities
– Non-linear interpolation over larger area (4x4)
– Slower, visually appealing, may create

negative pixel values in cubic function fitting

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation

Canny edge demo!!!

From Luke Murray (Fall 2017 TA)

• https://cse442-17f.github.io/Sobel-Laplacian-
and-Canny-Edge-Detection-Algorithms/

• Written in
https://idyll-lang.org/

[Additional information]

https://cse442-17f.github.io/Sobel-Laplacian-and-Canny-Edge-Detection-Algorithms/
https://idyll-lang.org/

