//?EQOBDTJJ? SR0BC I
CTSAACA SUCSCIS
>ASTMO\A 7’1_—’143[:]\\\;2
BTSN ==
% I
=& =)\
2N IS

1950 2020
FUTURE VISION COMPUTER VISION

WHAT IS AN IMAGE?

>>> from numpy import random as r
>>> | =r.rand(256,256);

Think-Pair-Share:

- What is this? What does it look like?
- Which values does it take?

- How many values can it take?

- Isit an image?

>>> from matplotlib import pyplot as p
>>> | = r.rand(256,256);

>>> p.imshow(l);
>>> p.show();

0 ey
b

™ .’.”

»

&
” 3

Danny Alexander

Dimensionality of an Image

e @ 8bit =256 values » 65,536

— Computer says ‘Inf” combinations.

* Some depiction of all possible scenes
would fit into this memory.

Dimensionality of an Image

e @ 8bit =256 values » 65,536

— Computer says ‘Inf” combinations.

* Some depiction of all possible scenes
would fit into this memory.

 Computer vision as making sense of an
extremely high-dimensional space.
— Subspace of ‘natural’ images.
— Deriving low-dimensional, explainable models.

What is each part of an image?

What is each part of an image?

* Pixel -> picture element

138’

Image as a 2D sampling of signal

* Signal: function depending on some variable with
physical meaning.

* Image: sampling of that function.
— 2 variables: xy coordinates
— 3 variables: xy + time (video)
— ‘Brightness’ is the value of the function for visible light

* Can be other physical values too: temperature,
pressure, depth ...

Danny Alexander

Example 2D Images

96.7°F

o o o o
(=2} 0 - o

e L e e et |

Danny Alexander

Sampling in 1D

SamplelD ¢

—

Sampling in 1D takes a function and returns a
vector whose elements are values of that function
at the sample points.

Danny Al

Sampling in 2D

Sample.jD

Sampling in 2D takes a
function and returns a matrix.

Danny Alexander

Grayscale Digital Image

Brightness
or intensity

Danny Alexander

What is each part of a photograph?

* Pixel -> picture element

127

Integrating light over a range of angles.

Hlumination (energy)

..:’/’/ J(\‘ source

Imaging system

Output Image

(Internal) image plane

Scene element Camera Sensor

James Hays

Resolution — geometric vs. spatial resolution

Both images are ~500x500 pixels

Quantization

Underlying signal Quantized values

ANETEIYE e — ooao nees

OooOooao

Quantization

Sampling

Quantization Effects — Radiometric Resolution

8 bit — 256 levels 4 bit — 16 levels 2 bit — 4 levels 1 bit — 2 levels

Images in Python Numpy

N x M grayscale image “im”

James Hays

Row

— im[0,0] = top-left pixel value

— iml[y, x] =y pixels down, x pixels to right
— im[N-1, M-1] = bottom-right pixel

Column

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

Grayscale intensity

: i
JOU philg@mit,edu

Color

COPUPISNE 2000 philg@nit,edu

James Hays

Images in Python Numpy

N x M RGB image “im”

— im[0,0,0] = top-left pixel value in R-channel

— Im[x, y, b] = x pixels to right, y pixels down in the bt channel

— Im[N-1, M-1, 3] = bottom-right pixel in B-channel

ROW 0.92 [093 | 094 | 0.97 | 0.62 [037 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 | R
0.95 [0.89 [0.82 [0.89 | 0.56 | 031 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 |
0.89 | 0.72 | 051 | 055 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 552 | 0.9 G
0.96 | 095 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 0.95 | 091
071 | 0.81 [081 | 087 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 ' '
0.91 | 0.92
0.49 | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 097 | 0.95 0.92 | 0.99
0.86 | 0.84 | 0.74 | 058 | 0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 0'79 0'85 0.95 | 0.91
0.96 | 0.67 | 054 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 o. 25 0'33 091 | 0.92
0.69 | 049 | 056 | 0.66 | 0.43 | 042 | 0.77 | 0.73 | 0.71 | 0.90 0' 29 0'74 0.97 | 0.95
079 | 0.73 | 090 | 0.67 | 0.33 | 061 | 0.69 | 0.79 | 0.73 | 0.93 0'82 0'93 0.79 | 0.85
\ 4 0.91 | 094 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 ' ' 045 | 0.33
A B L A B A ~ A L A=A~ A A R K~ A A A A 0.90 | 0.99 0.49 0.74
079 | 0.73 [090 | 0.67 | 0.33 | 061 | 069 | 0.79 | 0.73 | 0.93 | 0.97 0'82 0'93
0.91 | 094 | 089 | 0.49 | 0.41 [0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 = :
oo T o T oo [oo T o T o T o T o T o7 0.90 | 0.99
{079 [073 | 090 [0.67 | 033 [061 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97
l 091094089049 041078 078]077] 089/ 099|093

James Hays

Images in Python Numpy

Take care between types!
(values 0 to 255)

- uint8

- float32 (values O to 255)

- float32 (values O to 1)

— jo.imread(“file.jpg”)

— io.imread(“file.jpg”).astype(np.float32)
—img_as_float32(io.imread(“file.jpg”))

Column
ROW 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
V 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

James Hays

Ben Thomas

IMAGE FILTERING

Image filtering

Compute function of local neighborhood
at each position:

him,n] =" £k, 1] 1[m+k,n+1]

James Hays

Image filtering

Compute function of local neighborhood
at each position:

h=output f=filter I=1mage

him,n] =" £k, 1] 1[m+k,n+1]

2d coords=k, 1 2d coords=m,n

I .

Example: box filter

1| 1|1
1
—l1]1]|1
9

1| 1|1

Slide credit: David Lowe (UBC)

Image filtering ABnE
R BEE

IT.,.] h[.,.]

Credit: S. Seitz

Image filtering TS

f[.,.]é 1

IT.,.] h[.,.]

Credit: S. Seitz

Image filtering TS

Credit: S. Seitz

Image filtering TS

IT.,.] h[.,.]

Credit: S. Seitz

Image filtering ABnE
R BEE

IT.,.] h[.,.]

Credit: S. Seitz

Image filtering ABnE
R BEE

...

Credit: S. Seitz

Image filtering ABnE
R BEE

IT.,.] h[.,.]

?
50
m=6n =
k,l = [-1,0,1]

Credit: S. Seitz

Image filtering f[. -1 FEE

IT.,.]

him,n] =3 £k, 1] 1[m+k,n+1]

Credit: S. Seitz

Box Filter

What does it do?

» Replaces each pixel with 1] 1| 1
an average of its 1
neighborhood el I

9
1| 1|1

« Achieve smoothing effect
(remove sharp features)

Slide credit: David Lowe (UBC)

Box Filter

What does it do?

* Replaces each pixel with 11111
an average of its 1
neighborhood — |1 (1)1

9
_ _ 1|1 |1
« Achieve smoothing effect

(remove sharp features)

« Why does it sum to one?

Slide credit: David Lowe (UBC)

Smoothing with box filter

Image filtering

Compute function of local neighborhood
at each position:

him,n] =" £k, 1] 1[m+k,n+1]

e Really important!

— Enhance images

* Denoise, resize, increase contrast, etc.

— Extract information from images

* Texture, edges, distinctive points, etc.

— Detect patterns
* Template matching

James Hays

Think-Pair-Share time

O =

1. Practice with linear filters

0/0]0 0
0|10 54
0/0]0

Original

Source: D. Lowe

1. Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe

2. Practice with linear filters

o|lo]|o 0
0|01 e
o|lo]|o

Original

Source: D. Lowe

2. Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe

3. Practice with linear filters

1(0|-1

210]-2

110]|-1
Sobel

Vertical Edge
(absolute value)

David Lowe

3. Practice with linear filters

Horizontal Edge
(absolute value)

David Lowe

4. Practice with linear filters

0|00 1

01210 - ‘)
9 o

0|00

(Note that filter sums to 1)

Original

Source: D. Lowe

4. Practice with linear filters

0[{0|O0
1
0[2|0 e
9
0[{0|O0

Original

Sharpening filter
- Accentuates differences with local average

Source: D. Lowe

4. Practice with linear filters

before after

Source: D. Lowe

Correlation and Convolution

e 2d correlation
h[m,n]=Zf[k,I] I[m+k,n+1]
k.|

e.g., h = scipy.signal.correlate2d(f,I)

James Hays

Correlation and Convolution

e 2d correlation
h[m,n]=Zf[k,I] I[m+k,n+1]
kI

e.g., h = scipy.signal.correlate2d(f,I)

e 2d convolution
h[m,n]:Zf[k,I] I[m—k,n—1]

e.g., h = scipy.signal.convolve2d(f,I)

Convolution is the same as correlation with a 180° rotated filter kernel.
Correlation and convolution are identical when the filter kernel is symmetric.

James Hays

Key properties of linear filters

Linearity:
imfilter (I, £, + £,) =
imfilter (I, f,) + 1Imfilter(I,f,)

Shift invariance:
Same behavior given intensities regardless of

pixel location m,n
imfilter (I,shift(f)) = shift(imfilter (I, f))

Any linear, shift-invariant operator can be
represented as a convolution.

S. Lazebnik

Convolution properties

Commutative:a*b=b * a
— Conceptually no difference between filter and signal

— But particular filtering implementations might break this
equality, e.g., image edges

Associative:a * (b *c)=(a *b) *c

— Often apply several filters one after another: (((a * b;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)

Source: S. Lazebnik

Convolution properties

Commutative:a*b=b * a
— Conceptually no difference between filter and signal

— But particular filtering implementations might break this
equality, e.g., image edges

Associative:a * (b *c)=(a *b) *c
— Often apply several filters one after another: (((a * b;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)
— Correlation is _not_ associative (rotation effect)
— Why important?

Source: S. Lazebnik

Convolution properties

Commutative:a *b=b * a
— Conceptually no difference between filter and signal

— But particular filtering implementations might break this equality,
e.g., image edges

Associative:a * (b *c)=(a*b) *c
— Often apply several filters one after another: (((a * b,) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)
— Correlation is _not_ associative (rotation effect)
— Why important?

Distributes over addition: a * (b+c¢)=(a * b) + (a * ¢)
Scalars factor out: ka *b=a *kb =k (a * b)

ldentity: unit impulsee=[0,0,1,0,0],a *e=a

Source: S. Lazebnik

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
y | 0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

Kernel size 5 x 5,
Standard deviation o = 1

1 _ &%+
e 202

Gg=——
d D2

Viewed
from top

Slide credit: Christopher Rasmussen

Smoothing with Gaussian filter

| -
Q
=
4—
x
O
O
-
x
=
o]0)
=
-
)
@)
O
&
Vg

Gaussian filters

e Remove “high-frequency” components from the
image (a low-pass filter)

— Images become more smooth
e Gaussian convolved with Gaussian...
...iIs another Gaussian

— So can smooth with small-width kernel, repeat, and
get same result as larger-width kernel would have

— Convolving twice with Gaussian kernel of width o is
same as convolving once with kernel of width ov2

e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

Xty
G,(x — 1 207
(X y) = 52 oXP -
1 X2 y2
— (—— exp 2—52) L exp 2—52
V2o V2o

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

Separability example

2D convolution > la 2 1«3 5 15
(center location only)

The filter factors 112] T x| 1]2]?
into a product of 1D 2 14 12]=]|>2
filters: 112 |1 1
_ 21313 11
Perform convolution TzT11x03 15 15 1= 8
along rows:
4 14 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman

Separability
Why is separability useful in practice?
MxN image, PxQ filter

e 2D convolution: “"MNPQ multiply-adds
e Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)
Ox9 filter = ~4.5x faster

Practical matters

How big should the filter be?

* Values at edges should be near zero
e Gaussians have infinite extent...

e Rule of thumb for Gaussian: set filter half-width to
about3 o

James Hays

Practical matters

What about near the edge?

— The filter window falls off the edge of the image
— Need to extrapolate

— methods: 4 Y "

e clip filter (black)

* wrap around

e copy edge

* reflect across edge

Source: S. Marschner

Convolution in Convolutional Neural Networks

* Convolution is the basic operation in CNNs

* Learning convolution kernels allows us to
learn which features’ provide useful
information in images.

Sobel filter visualization

 What happens to negative numbers?

* For visualization:
— Shift image + 0.5
— If gradients are small, scale edge response

>> 1
>> h

img to float32(l1o.imread(‘luke.jpg’
convolve2d(I, sobelKernel);

plt.imshow(h);

)

1121

0|00

-11-2]-1
Sobel

Th | N k- Pa | r-S h are * = Convolution operator

Hoiem

| (from slide — 275 x 175)

| =D * D D (275 x 175 pixels)

“...something to do with lack of content (black) at edges...”

| (from slide — 275 x 175)

>> D =img_to float32(io.imread(‘convexample.png’))
>> | = convolve2d(D, D) |_norm

>> np.max(l)
1.1021e+04

Normalize for visualization
>> | _norm = (I — np.min(l)) / (hp.ma

>> plt.imshow(|_norm)

| - D * D D (275 x 175 pixels) | (from slide — 275 x 175)

N\

(275-1)/2 275-1)/2 el

<
<

|_norm (549 x 349 pixels)

For x: 275 + (275-1)/2 + (275-1)/2
=549

| (from slide — 275 x 175)

| =D * D D (275 x 175 pixels)

>> | = convolve2d(D, D, mode="full’)

(Default; pad with zeros)
549 x 349

>> | = convolve2d(D, D, mode=‘same’)

(Return same size as D) a
275x 175

>> | = convolve2d(D, D, mode=‘valid’) Value = 10528.3
(No padding) e

C - “because it kind of looks like it.”

= B *

B <

When the filter ‘looks like’ the image = ‘template matching’

C is a Gaussian filter
(or something close to it it),
and we know that it ‘blurs’.

Filtering viewed as comparing an image of
what you want to find against all image regions.

For symmetric filters: use either convolution or correlation.
For nonsymmetric filters: correlation is template matching.

Filtering: Correlation and Convolution

e 2d correlation
h[m,n]=Zf[k,I] I[m+k,n+1]
k.|

e.g., h = scipy.signal.correlate2d(f,I)

e 2d convolution
h[m,n]:Zf[k,I] I[m—k,n—1]

e.g., h = scipy.signal.convolve2d(f,I)

Convolution is the same as correlation with a 180° rotated filter kernel.
Correlation and convolution are identical when the filter kernel is symmetric.

James Hays

D (275 x 175 pixels)

OK, so let’s test this idea. Let’s see if we can use correlation
to ‘find’ the parts of the image that look like the filter.

>>f=D[57:117,107:167]
Expect response ‘peak’ in middle of |

>> | = correlate2d(D, f, ‘same’)

Correct

Hmm... location
That didn’t work — why not? H

Response
peak

[Thanks to Robert Collins @ Penn State]

Correlation

h[m,n]=>" [k, 1] 1[m+k,n+1]

e.g., h = scipy.signal.correlate2d(f,I)

As brightness in / increases, the response
in & will increase, as long as fis positive.

Overall brighter regions will give higher
correlation response -> not useful!

D2 (275 x 175 pixels)

OK, so let’s subtract the mean

>>f=D[57:117, 107:167]
>>f2 = f — np.mean(f)
>> D2 =D — np.mean(D)

f2
61x61

Now zero centered.
Score is higher only when dark parts
match and when light parts match.

>> |2 = correlate2d(D2, f2, ‘same’)

D2 (275 x 175 pixels)

Or even for our original example

>> |3 = correlate2d(D2, D2, ‘full’)

13

D2 (275 x 175 pixels)

What happens with convolution?

>>f=D[57:117, 107:167]
>>f2 = f — np.mean(f)
>> D2 =D — np.mean(D)

>> |2 = convolve2d(D2, f2, ‘same’)

NON-LINEAR FILTERS

Median filters

* Operates over a window by selecting the
median intensity in the window.

* ‘Rank’ filter as based on ordering of gray levels

— E.G., min, max, range filters

Steve Seitz, Steve Marschner

Image filtering - mean

fl 15

IT.,.] h[.,.]

30

30

him,n] =3 £k, 1] 1[m+k,n+1]

Credit: S. Seitz

Image filtering - mean

fl 15

IT.,.] h[.,.]

30

30

50

him,n] =3 £k, 1] 1[m+k,n+1]

Credit: S. Seitz

Median filter?

IT.,.] h[.,.]

Credit: S. Seitz

Median filters

* Operates over a window by selecting the
median intensity in the window.

 What advantage does a median filter have over
a mean filter?

Steve Seitz, Steve Marschner

Noise — Salt and Pepper Jack

Mean Jack — 3 x 3 filter

Very Mean Jack — 11 x 11 filter

Noisy — Salt and Pepper Jack

Median Jack—3 x 3

Very Median Jack—-11x 11

Median filters

* Operates over a window by selecting the
median intensity in the window.

 What advantage does a median filter have over
a mean filter?

* |s a median filter a kind of convolution?

Steve Seitz, Steve Marschner

Median filters

* Operates over a window by selecting the
median intensity in the window.

 What advantage does a median filter have over
a mean filter?

* |s a median filter a kind of convolution?

Interpretation: Median filtering is sorting.

Ben Thomas

Tilt-shift photography

Tilt shift camera

Shift Tilt I ‘ J

...........

Macro photography

3
2]
a
b
a
5
o
2
-
5
—
=
5
E
N
=
E
=
o
s

Key:

Lens Plane (LP)

Image Plane (IP)

Focal volume

Can we fake tilt shift?

 We need to blur the image

— OK, now we know how to do that.

Can we fake tilt shift?

 We need to blur the image

— OK, now we know how to do that.

 We need to blur progressively more away
from our ‘fake’ focal point

But can | make it look more like a toy?

* Boost saturation — toys are very colorful
 We’ll learn how to do this when we discuss color

* For now: transform to Hue, Saturation, Value
instead of RGB

Next class: Thinking in Frequency

