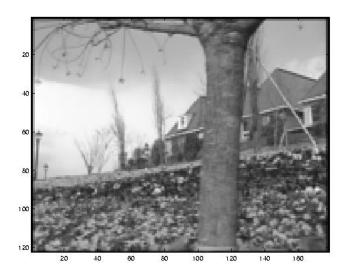
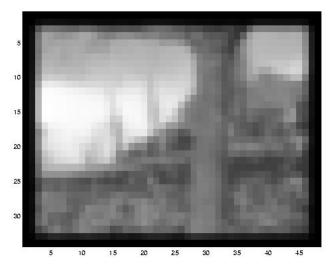


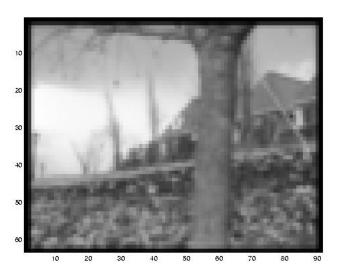
Optical flow

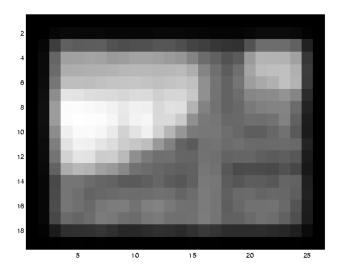
Gradient is informative of direction over only < 1 pixel

Reduce the resolution!

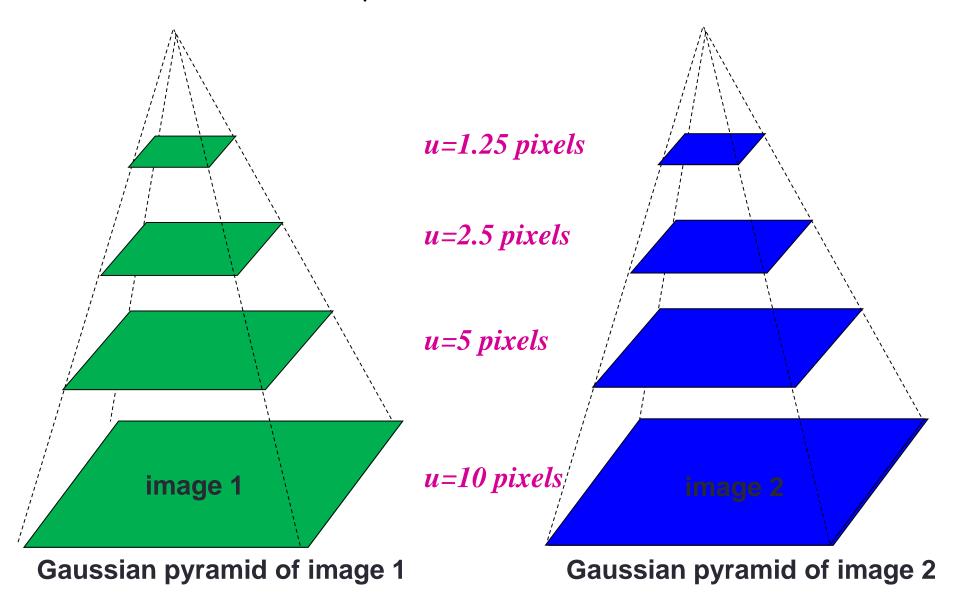


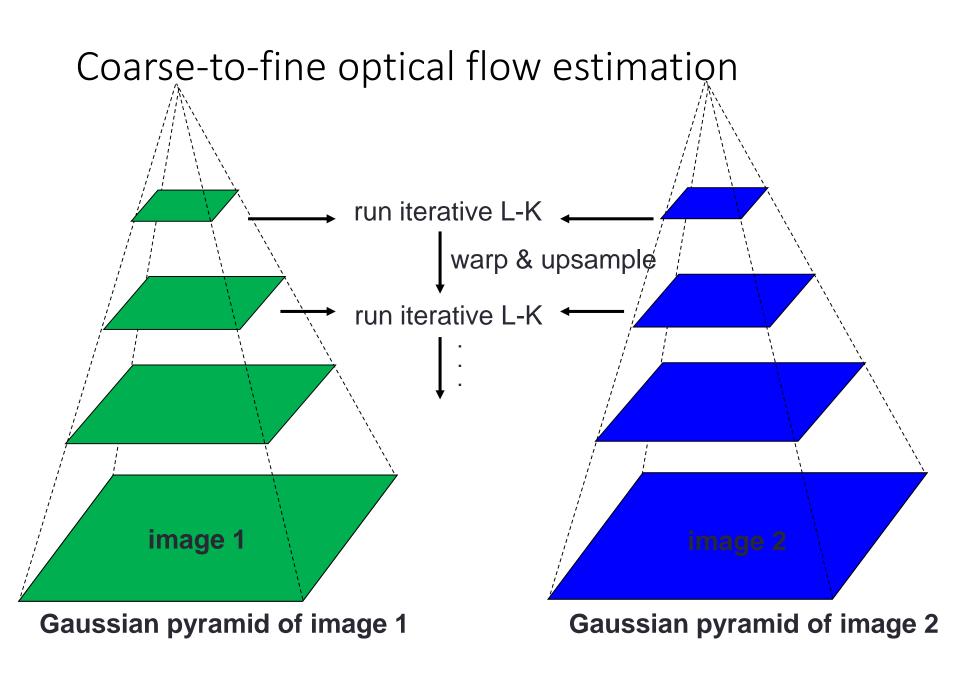




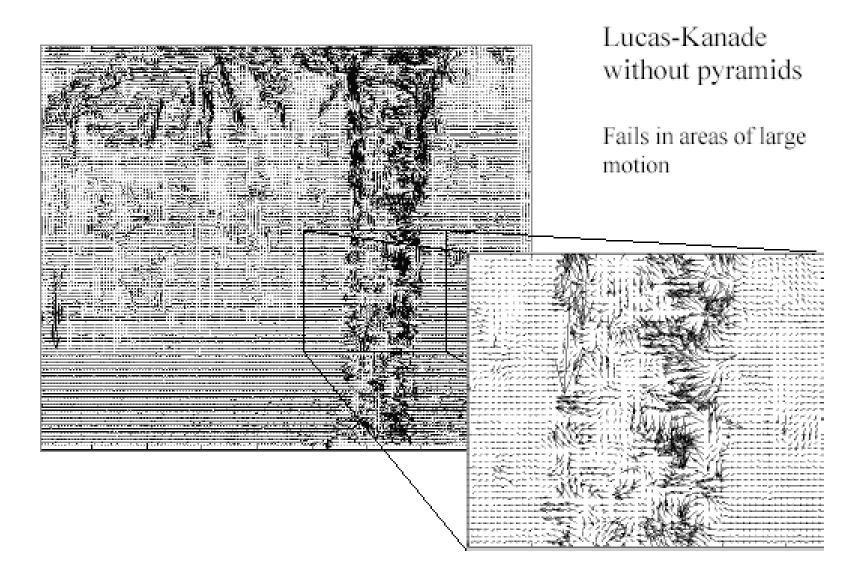


Coarse-to-fine optical flow estimation

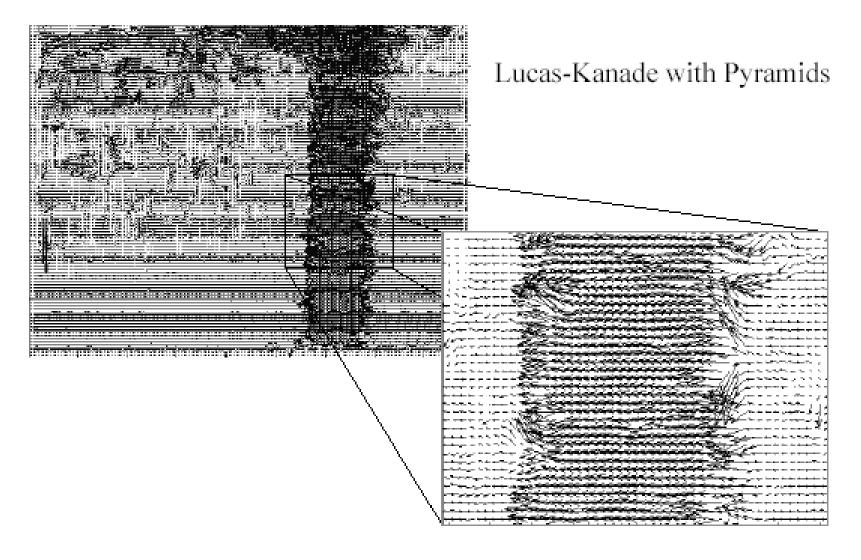




Optical Flow Results

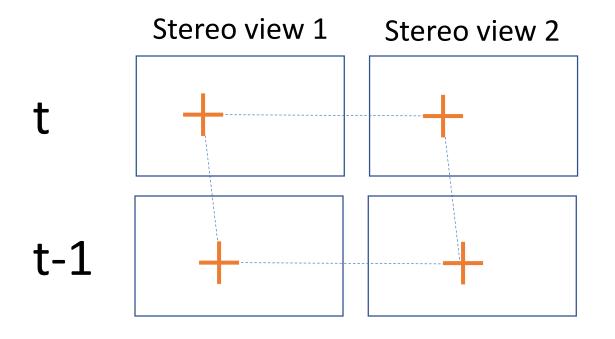


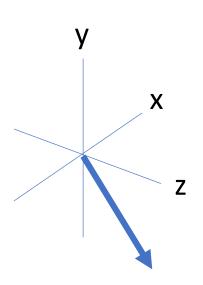
Optical Flow Results



Can we do more? Scene flow

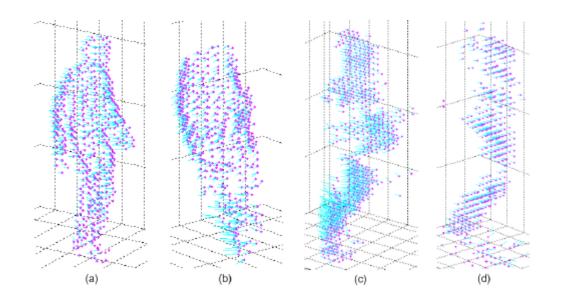
Combine spatial stereo & temporal constraints
Recover 3D vectors of world motion





3D world motion vector per pixel

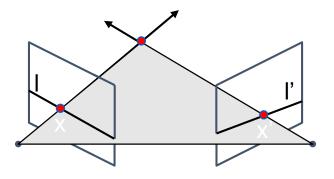
Scene flow example for human motion



Estimating 3D Scene Flow from Multiple 2D Optical Flows, Ruttle et al., 2009

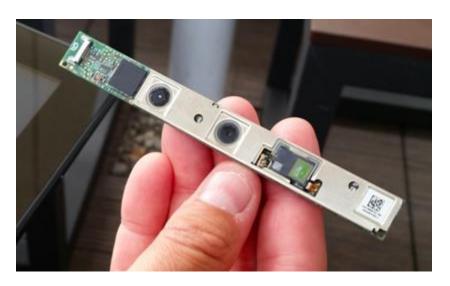
Stereo correspondence

- Let x be a point in left image, x' in right image
- Epipolar relation
 - x maps to epipolar line I'
 - x' maps to epipolar line l



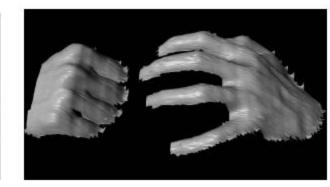


How does a depth camera work?



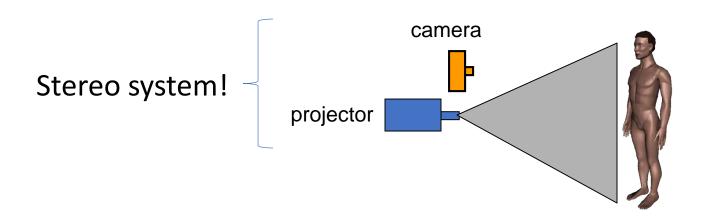
Intel laptop depth camera

Active stereo with structured light



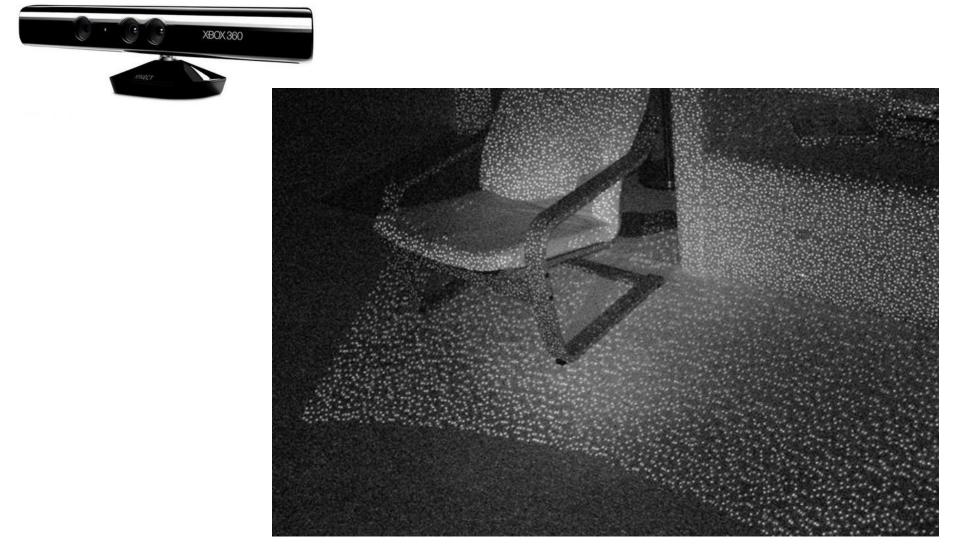
Project "structured" light patterns onto the object

- Simplifies the correspondence problem
- Allows us to use only one camera



L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

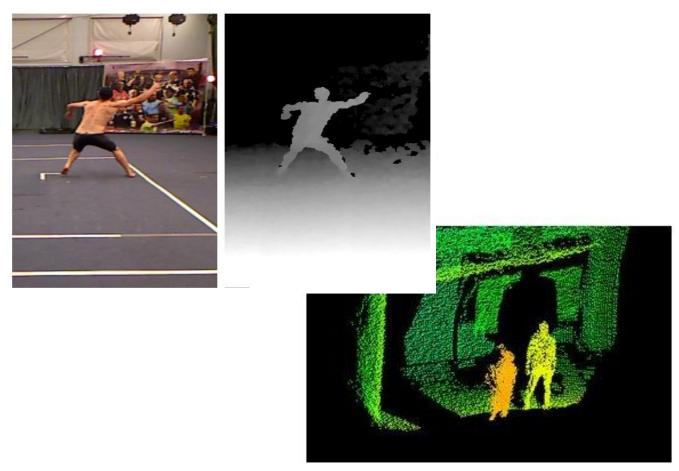
Kinect: Structured infrared light



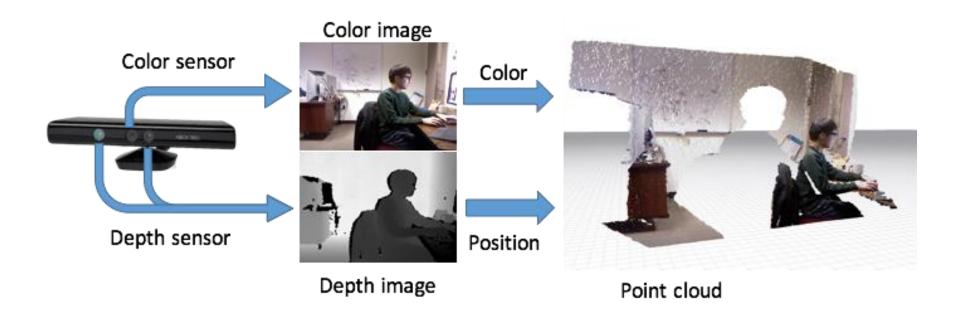
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

With either technique...

...I gain depth maps over time.



Optex Depth Camera Based on Canesta Solution



Demo

Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton et al. (MS Research & Xbox Incubation)

CVPR 2011

Slides by YoungSun Kwon

http://sglab.kaist.ac.kr/~sungeui/IR/Presentation/first/20143050권용선.pdf

2014. 11. 11

Background

- Motion Capture (Mocap)
 - Capture a motion from sensors attached to human body

http://www.neogaf.com/forum/showthread.php?t=824332

Background

- Pose Recognition
 - Estimate a pose from images and make a skeletal model

http://www.youtube.com/watch?v=Y-iKWe-U9bY

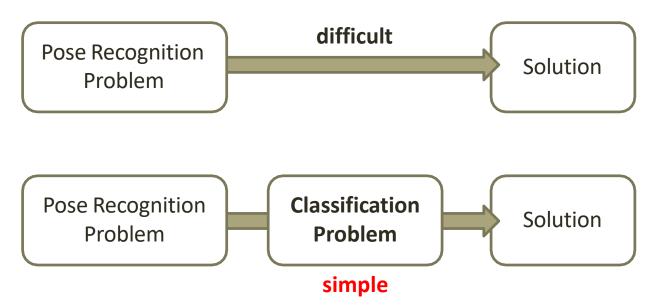
Background

- Depth Image
 - Each pixel has distance information, instead of RGB

http://userpage.fu-berlin.de/~latotzky/wheelchair/wp-content/uploads/kinect1_cropped.png

Why this paper?

- Main Contribution
 - Convert pose recognition problem to classification problem
 - One of application for image retrieval technique

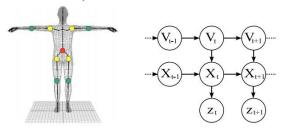


Why this paper?

Main Contribution

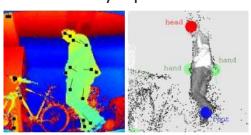
- Convert pose recognition problem to classification problem
 - One of application for image retrieval technique

Kinematic constraint T-pose initialization



[1] V. Ganapathi et al., Real-Time motion Capture using a Single Time-of-Flight camera, CVPR, 2010

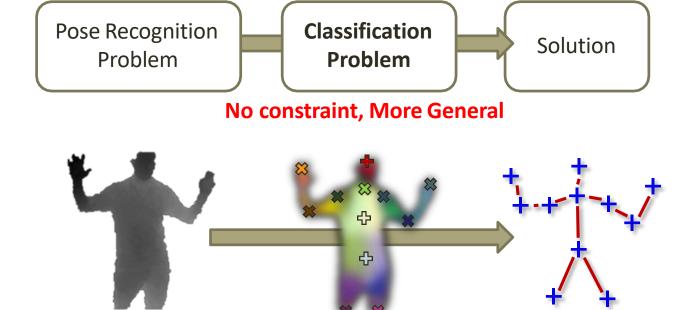
Limited patches Only 3 parts



[2] C. Palgemann et al., Real-Time Identification and Localization of Body Parts from Depth Images, ICRA, 2010

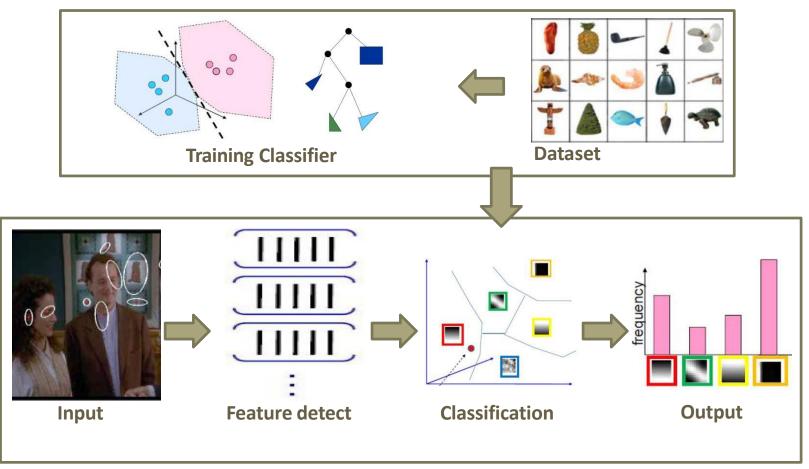
Why this paper?

- Main Contribution
 - Convert pose recognition problem to classification problem
 - One of application for image retrieval technique



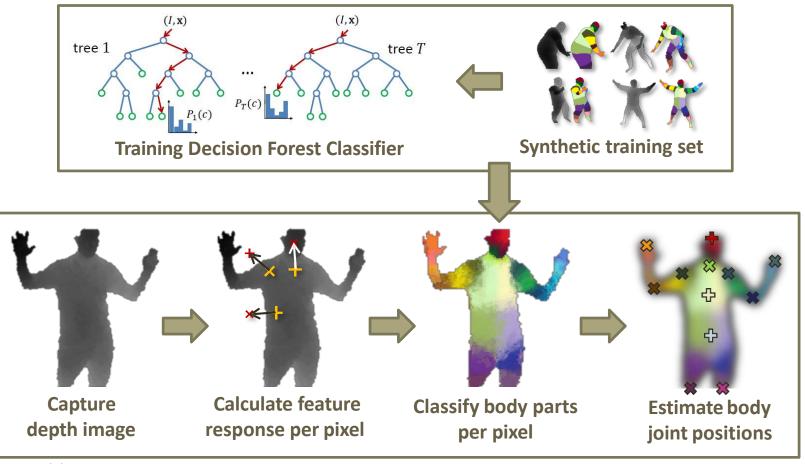
Overview

Overview



Overview

Overview



Body Part Representation

31 body parts (classes)

- LU/RU/LW/RW head
- Neck
- L/R shoulder
- LU/RU/LW/RW arm
- L/R elbow
- L/R wrist
- L/R hand
- LU/RU/LW/RW torso
- LU/RU/LW/RW leg
- L/R knee
- L/R ankle
- L/R foot

Synthetic dataset

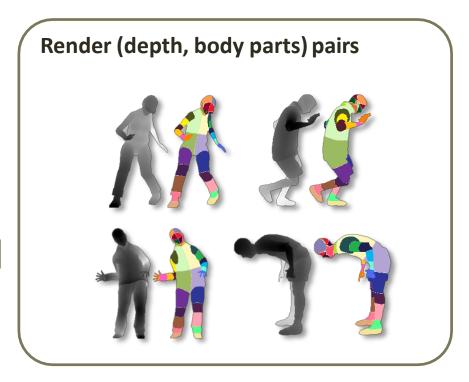
- To account for variations in real world
 - Rotation & Translation, Hair, Clothing, Height, Camera Pose, etc...
- Large scale and variety

Record motion captures

500K frames and extract **100K poses** among these

Create **several models** with variations





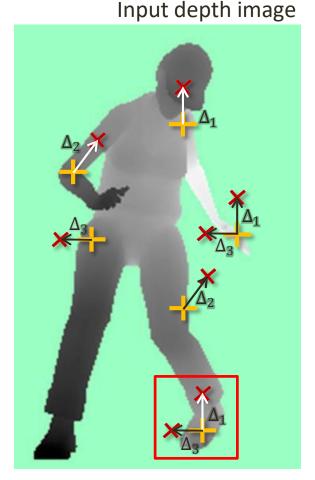
Depth Image Feature Comparison

Calculate feature response for each pixel

Feature Response Function

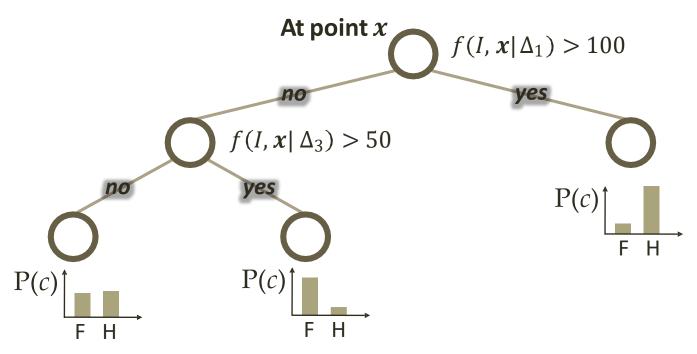
image depth offset depth
$$f(I,\mathbf{x}) = \overrightarrow{d_I}(\mathbf{x}) - \overrightarrow{d_I}(\mathbf{x} + \Delta)$$
 pixel

- Δ is chosen in training step randomly
- For example
 - $\Delta_1 = (0,1)$ $\Delta_3 = (-1,0)$
 - $f(I, x | \Delta_1)$ has small value
 - $f(I, x | \Delta_3)$ has large value
- Can be trained in parallel on GPUs



Decision tree classifier

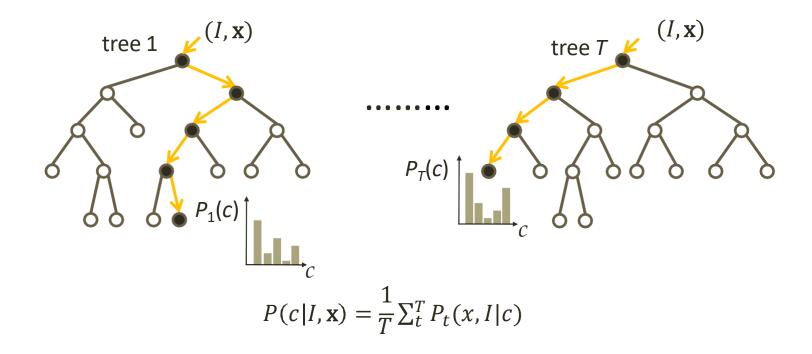
- Remember Viola-Jones face detector?
- Example of classification for hand(H) or foot(F)



- 4 T. Amit et al., Shape quantization and recognition with randomized trees, Neural Computation, 1997
- 5 L. Breiman, Random forests, Mach. Learning, 2001
- 6 F. Moosmann et al., Fast discriminative visual codebooks using randomized clustering forests, NIPS, 2006

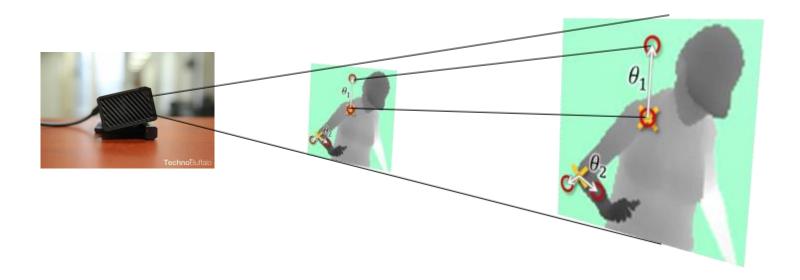
Decision Forest Classifier

- In training step, Δ is chosen randomly
- Generate many trees to build a decision forest
- In testing step, check all trees and compute average probability



But...normalized in depth

$$\frac{1}{d_I(\mathbf{x})}$$
 • for Depth Invariance $\operatorname{ir} f_{\theta}(I, \mathbf{x}) = d_I\left(\mathbf{x} + \frac{\mathbf{u}}{d_I(\mathbf{x})}\right) - d_I\left(\mathbf{x} + \frac{\mathbf{v}}{d_I(\mathbf{x})}\right)$



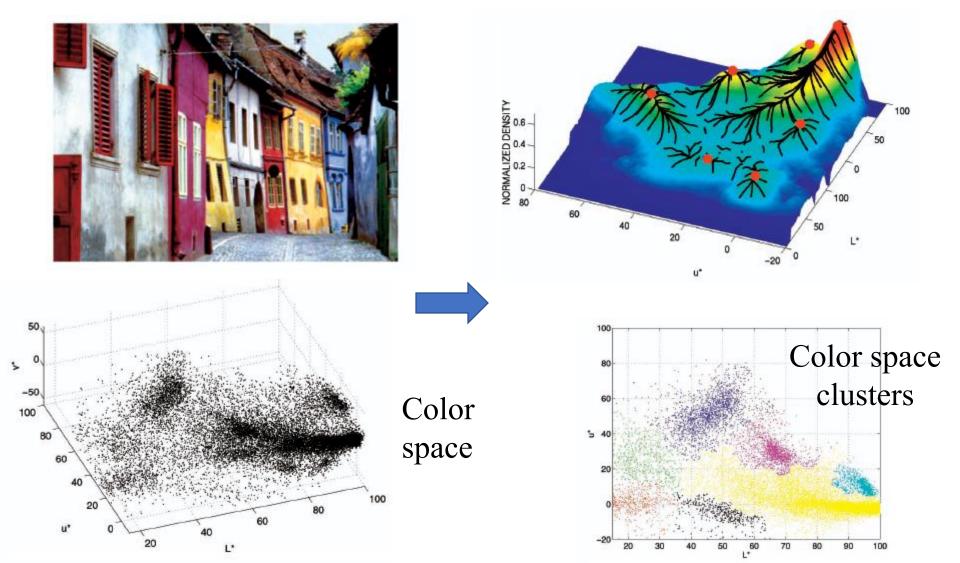
Joint Position Proposal

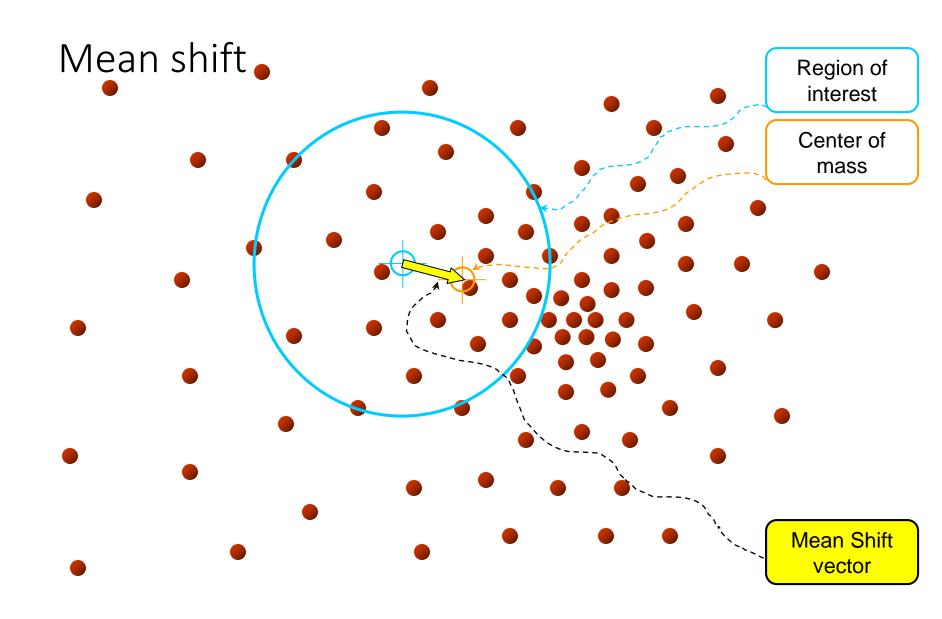
- Find mode using mean shift algorithm
 - With weighted Gaussian kernel
 - Using class probabilities for each pixel, find representative positions of classes

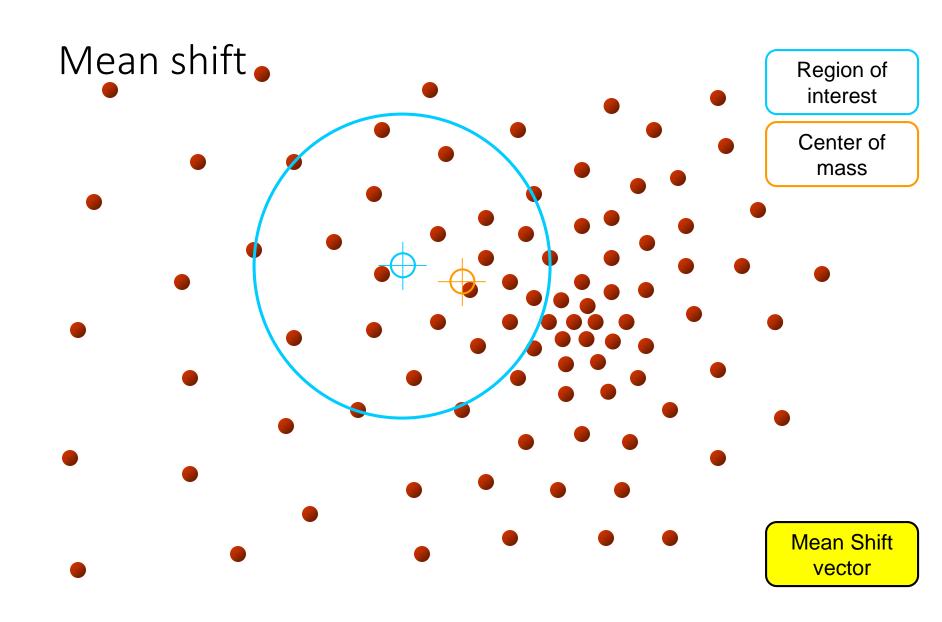


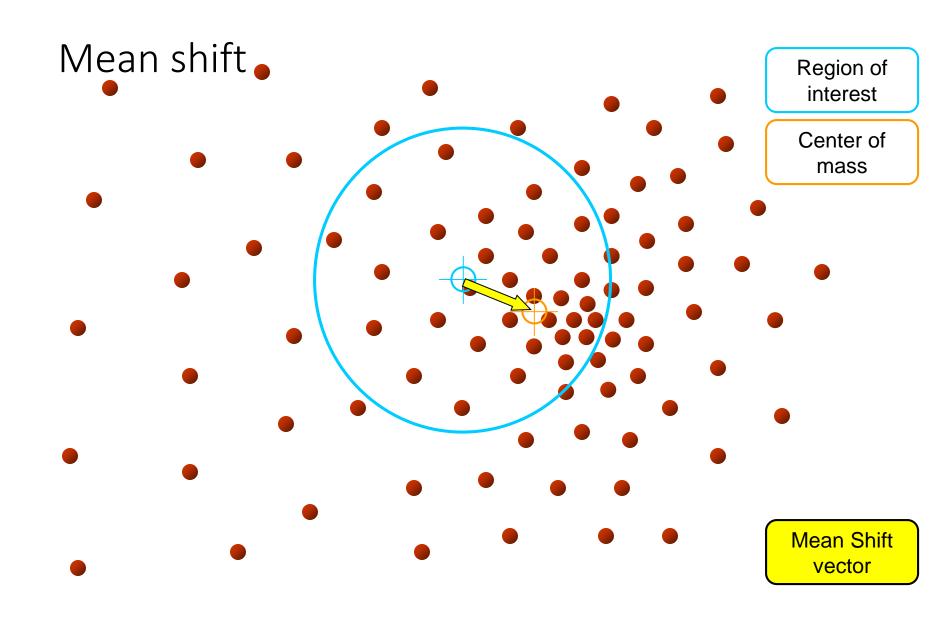
Mean shift algorithm

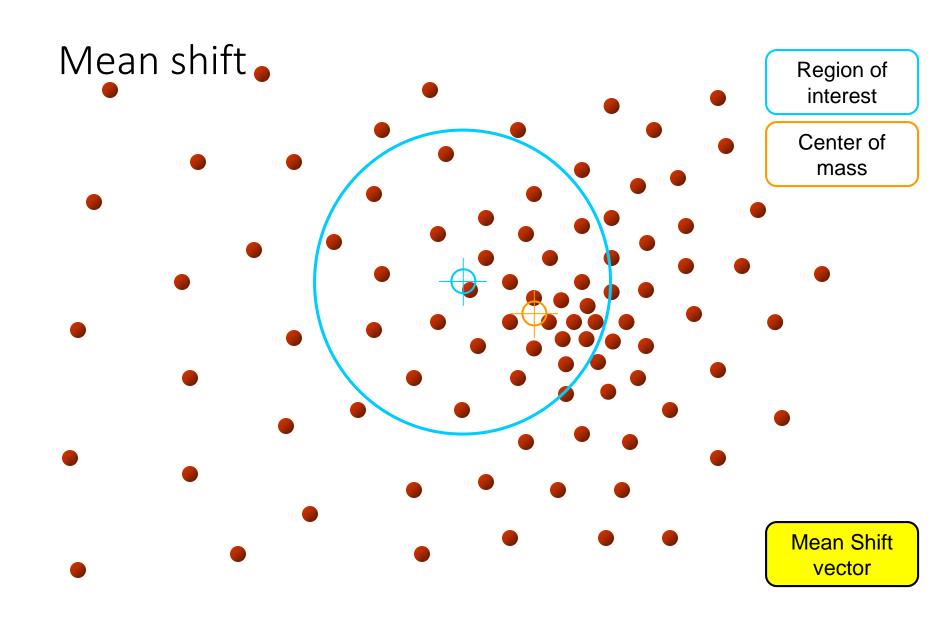
Try to find *modes* of a non-parametric density.

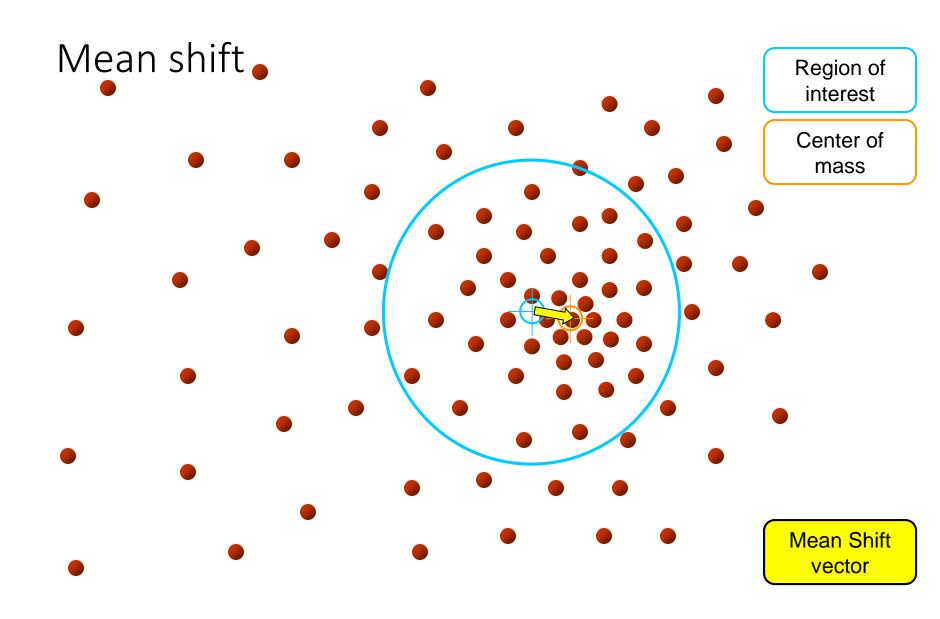


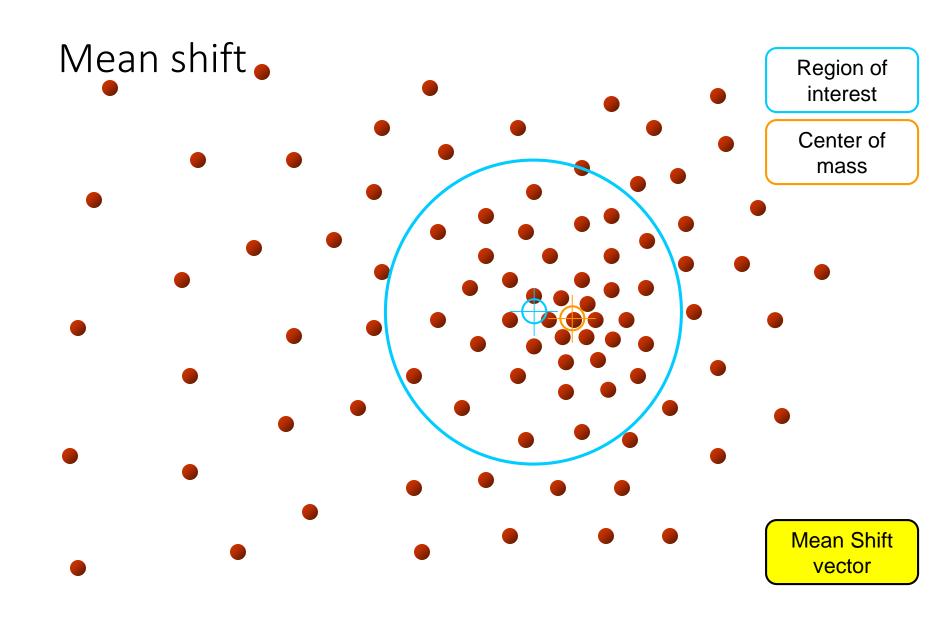


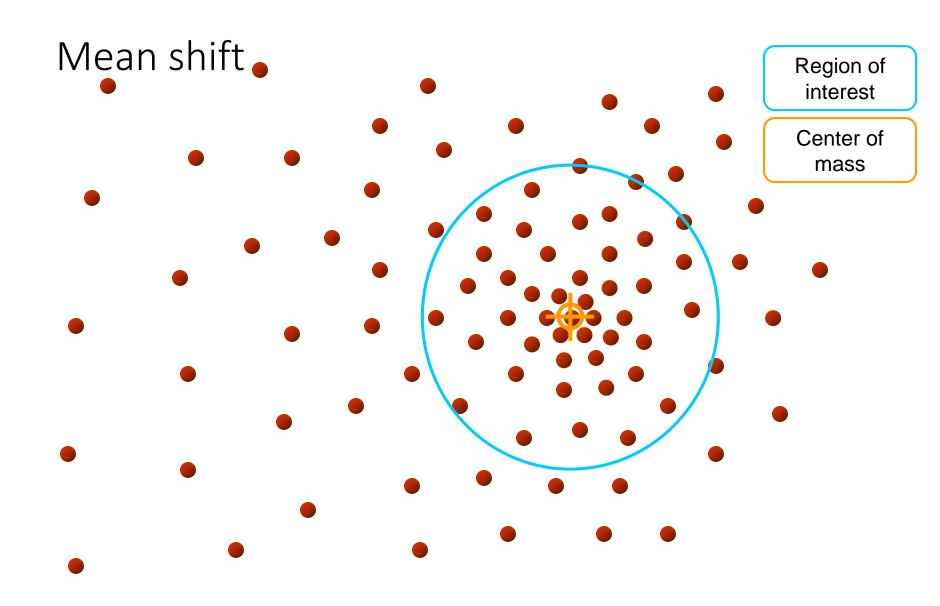












Kernel density estimation

Kernel density estimation function

$$\widehat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

n = number of points assessed

h ='bandwidth', or normalization for size of region

Gaussian kernel

$$K\left(\frac{x-x_i}{h}\right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^2}{2h^2}}.$$

Mean shift clustering

The mean shift algorithm seeks *modes* of the given set of points

- 1. Choose kernel and bandwidth
- 2. For each point:
 - a) Center a window on that point
 - b) Compute the mean of the data in the search window
 - c) Center the search window at the new mean location
 - d) Repeat (b,c) until convergence
- 3. Assign points that lead to nearby modes to the same cluster

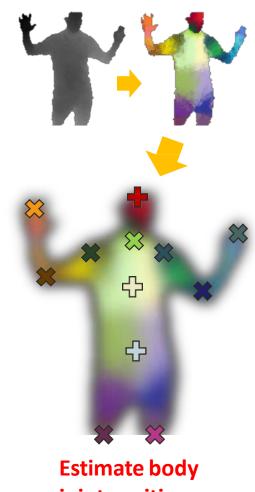
Joint Position Proposal

- Find mode using mean shift algorithm
 - With weighted Gaussian kernel
 - Using class probabilities for each pixel, find representative positions of classes

3D position of i pixel of class of class
$$f_c(\hat{\mathbf{x}}) \propto \sum_{i=1}^{N} \widehat{w_{ic}} \exp\left(-\left\|\frac{\hat{\mathbf{x}} - \hat{\mathbf{x}}_i}{b_c}\right\|^2\right)$$
 pixel index i

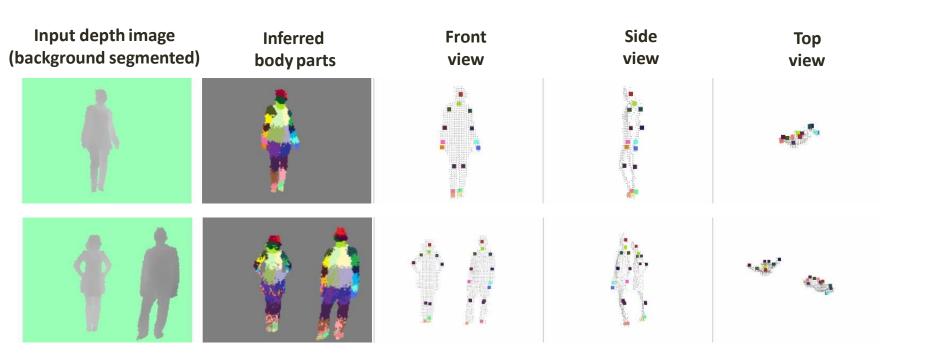
$$w_{ic} = \underbrace{P(c|I,\mathbf{x}_i) \cdot d_I(\mathbf{x}_i)^2}_{\text{class}}$$

$$\underset{\text{probability}}{\text{class}} \quad \underset{\text{i pixel}}{\text{depth at}}$$

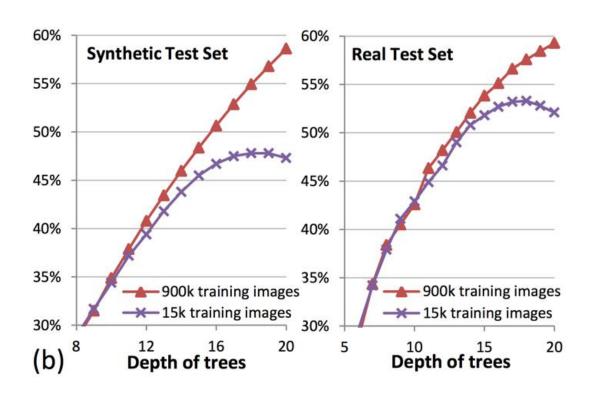


Results

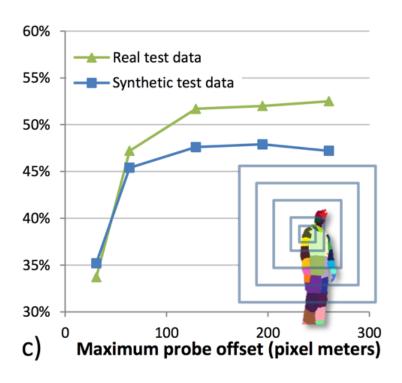
- Fast Joint Proposals
 - Max. 200 FPS on Xbox 360 GPU, 50 FPS on 8 core CPU
 - Previous work was 4 ~ 16 FPS



Depth of trees

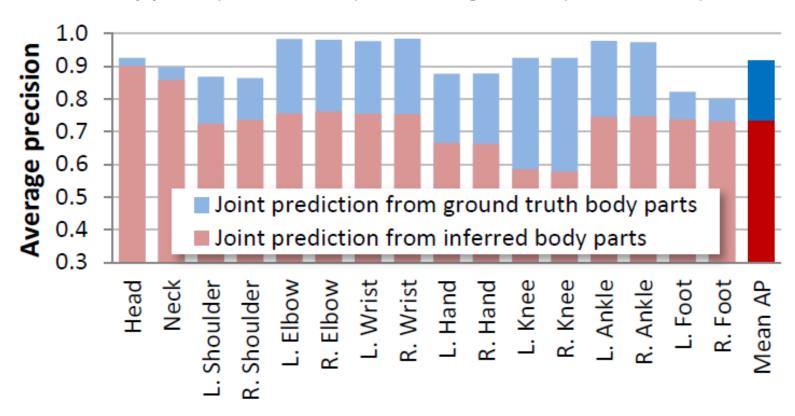


Offset Size



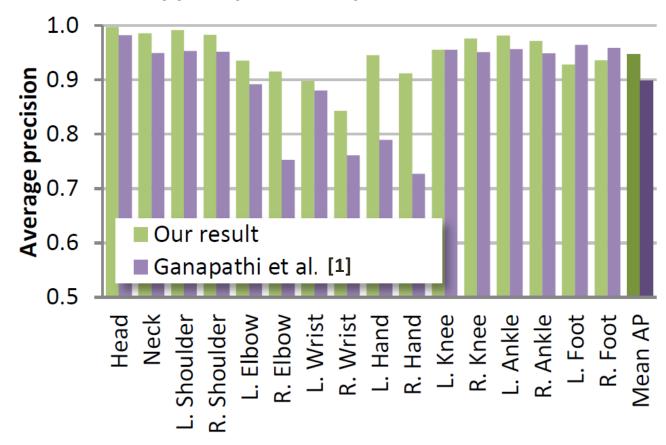
Results

- Body Parts Classification Accuracy on synthetic test set
 - GT body parts (0.914 mAP) vs Our Algorithm (0.731 mAP)



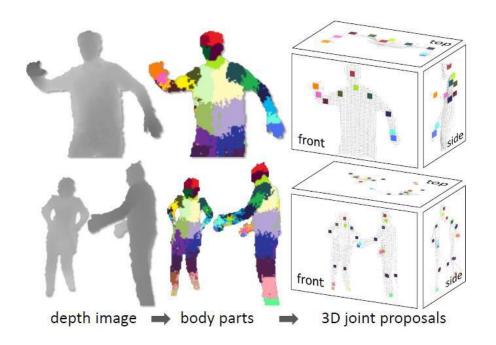
Results

- Joint Prediction Accuracy
 - How well body joint position is predicted



Summary

- Body parts representation for efficiency
- Fast, simple machine learning Decision Forest
- No constraint, high generality
- Significant engineering to scale to a massive, varied training dataset



VNect – Mehta et al.

Depth information is rich...

...but do we always need it?

Can we learn to predict joint locations from RGB data?

Pipeline

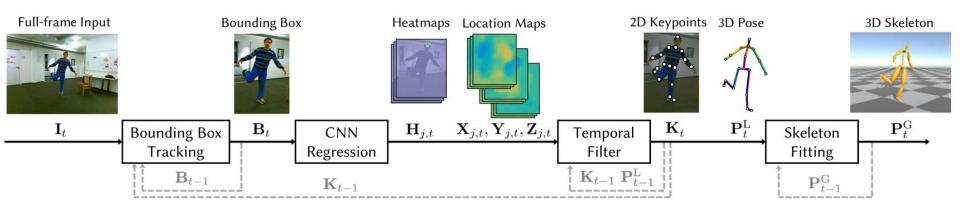


Fig. 2. Overview. Given a full-size image \mathbf{I}_t at frame t, the person-centered crop \mathbf{B}_t is efficiently extracted by bounding box tracking, using the previous frame's keypoints \mathbf{K}_{t-1} . From the crop, the CNN jointly predicts 2D heatmaps $\mathbf{H}_{j,\,t}$ and our novel 3D *location-maps* $\mathbf{X}_{j,\,t}$, $\mathbf{Y}_{j,\,t}$ and $\mathbf{Z}_{j,\,t}$ for all joints j. The 2D keypoints \mathbf{K}_t are retrieved from $\mathbf{H}_{j,\,t}$ and, after filtering, are used to read off 3D pose $\mathbf{P}_t^{\mathsf{L}}$ from $\mathbf{X}_{j,\,t}$, $\mathbf{Y}_{j,\,t}$ and $\mathbf{Z}_{j,\,t}$. These per-frame estimates are combined to stable global pose $\mathbf{P}_t^{\mathsf{G}}$ by skeleton fitting. Information from frame t-1 is marked in gray-dashed.

Joint position encoding

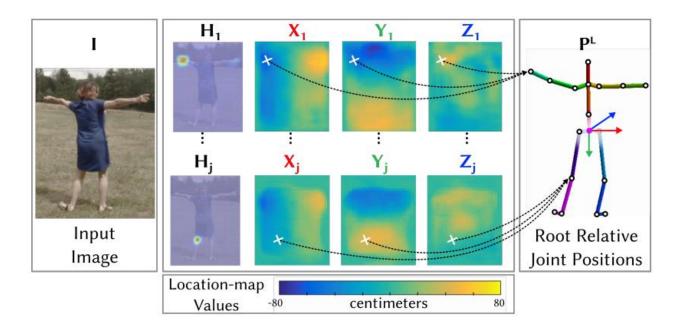
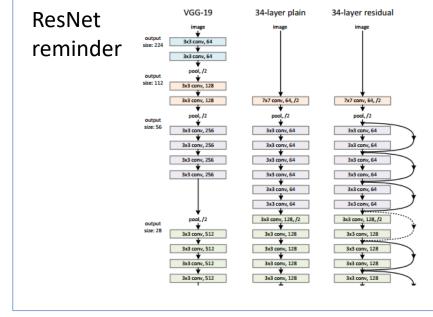


Fig. 3. Schema of the fully-convolutional formulation for predicting root relative joint locations. For each joint j, the 3D coordinates are predicted from their respective *location-maps* X_j , Y_j , Z_j at the position of the maximum in the corresponding 2D heatmap H_j . The structure observed here in the location-maps emerges due to the spatial loss formulation. See Section 4.1.

Training data

Fig. 4. Representative training frames from Human3.6m and MPI-INF-3DHP 3D pose datasets. Also shown are the background, clothing and occluder augmentations done on MPI-INF-3DHP training data.

Architecture



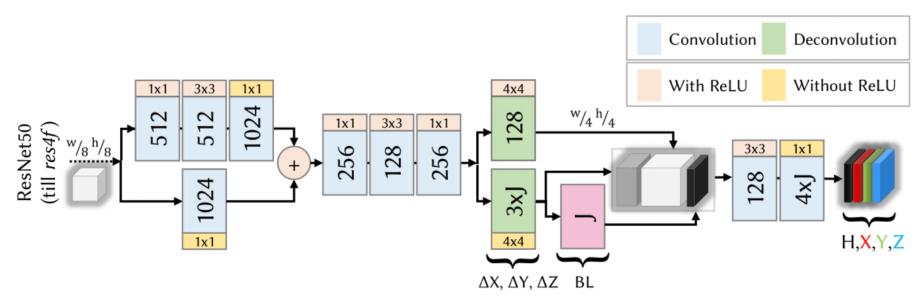


Fig. 5. Network Structure. The structure above is preceded by ResNet50/100 till level 4. We use kinematic parent relative 3D joint location predictions ΔX , ΔY , ΔZ as well as bone length maps BL constructed from these as auxiliary tasks. The network predicts 2D location heatmaps H and root relative 3D joint locations X, Y, Z. Refer to Section 4.1.

