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Depth from disparity

• Goal: recover depth by finding image coordinate x’ that 
corresponds to x
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• Assume parallel optical axes, known camera parameters (i.e., 
calibrated cameras).  What is expression for Z?

Similar triangles (pl, P, pr) and 

(Ol, P, Or):

Geometry for a simple stereo system
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Depth from disparity

• Goal: recover depth by finding image coordinate x’ that 
corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if 
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'



Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y), y)

If we could find the corresponding points in two images, we 

could estimate relative depth…

James Hays



What do we need to know?

1. Calibration for the two cameras.

1. Intrinsic matrices for both cameras (e.g., f)

2. Baseline distance T in parallel camera case

3. R, t in non-parallel case

2. Correspondence for every pixel.

Like project 2, but project 2 is “sparse”.

We need “dense” correspondence!



Correspondence for every pixel.
Where do we need to search?



Wouldn’t it be nice to know 
where matches can live? 

Epipolar geometry
Constrains 2D search to 1D



Potential matches for x have to 

lie on the corresponding line l’.

Potential matches for x’ have to 

lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X



• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’



• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers



Think Pair Share

Where are the epipoles?

What do the epipolar lines look like?
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Example: Converging cameras



Example: Motion parallel to image plane



e

e’

Example: Forward motion

Epipole has same coordinates in both 

images.

Points move along lines radiating from e: 

“Focus of expansion”



What is this useful for?

• Find X: If I know x, and have calibrated cameras 
(known intrinsics K,K’ and extrinsic relationship), I 
can restrict x’ to be along l’.

• Discover disparity for stereo.
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What is this useful for?

• Given candidate x, x’ correspondences, estimate 
relative position and orientation between the 
cameras and the 3D position of corresponding 
image points.
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What is this useful for?

• Model fitting: see if candidate x, x’
correspondences fit estimated projection 
models of cameras 1 and 2.
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Epipolar lines



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix



Epipolar constraint: Calibrated case

x x’

X

XxKx 1  ˆ

ො𝑥′
ො𝑥

XxKx 1  ˆ
Homogeneous 2d point 

(3D ray towards X) 2D pixel coordinate 

(homogeneous)

3D scene point

3D scene point in 2nd

camera’s 3D coordinates



Epipolar constraint: Calibrated case

x x’

X

t

XxKx 1  ˆ

0)]ˆ([ˆ  xRtx

(because ො𝑥, 𝑅 ො𝑥′, and 𝑡 are co-planar)

ො𝑥′
ො𝑥

XxKx 1  ˆ
Homogeneous 2d point 

(3D ray towards X) 2D pixel coordinate 

(homogeneous)

3D scene point

3D scene point in 2nd

camera’s 3D coordinates



Essential Matrix

(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ  xRtx   RtExExT

 with0ˆˆ

X

x x’

E is a 3x3 matrix which relates 

corresponding pairs of normalized 

homogeneous image points across pairs of 

images – for K calibrated cameras.

Estimates relative position/orientation. Note: [t]× is matrix representation of cross product 



Epipolar constraint: Uncalibrated case

• If we don’t know K and K’, then we can 
write the epipolar constraint in terms of 
unknown normalized coordinates:

X

x x’

0ˆˆ xExT xKxxKx  ˆ,ˆ



The Fundamental Matrix

Fundamental Matrix

(Faugeras and Luong, 1992)

0ˆˆ xExT

1with0   KEKFxFx TT

Without knowing K and K’, we can define a similar 

relation using unknown normalized coordinates

xKx 1ˆ

xKx 1  ˆ



Properties of the Fundamental matrix

1with0   KEKFxFx TT

• F x’ = 0 is the epipolar line l associated with x’ 

• FTx = 0 is the epipolar line l’ associated with x 

• F is singular (rank two): det(F)=0

• F e’ = 0   and   FTe = 0   (nullspaces of F = e’; nullspace of FT = e’)

• F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

X

x x’



F in more detail

• F is a 3x3 matrix
• Rank 2 -> projection; one column is a linear 

combination of the other two.
• Determined up to scale.
• 7 degrees of freedom

𝑎 𝑏 𝛼𝑎 + 𝛽𝑏
𝑐 𝑑 𝛼𝑐 + 𝛽𝑑
𝑒 𝑓 𝛼𝑒 + 𝛽𝑓

where a is scalar; e.g., can normalize out.

Given x projected from X into image 1, F constrains the 
projection of x’ into image 2 to an epipolar line.



Estimating the Fundamental Matrix

• 8-point algorithm

– Least squares solution using SVD on equations 
from 8 pairs of correspondences

– Enforce det(F)=0 constraint using SVD on F

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

0xx FT

𝑢𝑢′𝑓11 + 𝑢𝑣′𝑓12 + 𝑢𝑓13 + 𝑣𝑢′𝑓21 + 𝑣𝑣′𝑓22 + 𝑣𝑓23 + 𝑢′𝑓31 + 𝑣′𝑓32 + 𝑓33 = 0

A𝒇 =
𝑢1𝑢1′ 𝑢1𝑣1′ 𝑢1 𝑣1𝑢1′ 𝑣1𝑣1′ 𝑣1 𝑢1′ 𝑣1′ 1
⋮

𝑢𝑛𝑢𝑣
′

⋮
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⋮
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⋮
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⋮
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8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

Matlab: 
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;



Need to enforce singularity constraint



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

2. Resolve det(F) = 0 constraint using SVD

Matlab: 
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Matlab: 
[U, S, V] = svd(F);

S(3,3) = 0;

F = U*S*V’;



Problem with eight-point algorithm
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Problem with eight-point algorithm

Poor numerical conditioning

Can be fixed by rescaling the data



The normalized eight-point algorithm

• Center the image data at the origin, and scale it so 

the mean squared distance between the origin and 

the data points is 2 pixels

• Use the eight-point algorithm to compute F from the 

normalized points

• Enforce the rank-2 constraint (for example, take SVD 

of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: 

if T and T’ are the normalizing transformations in the 

two images, than the fundamental matrix in original 

coordinates is T’T F T

(Hartley, 1995)



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



From epipolar geometry to camera calibration

• If we know the calibration matrices of the two cameras, we 
can estimate the essential matrix: E = KTFK’

• The essential matrix gives us the relative rotation and 
translation between the cameras, or their extrinsic 
parameters.

• Fundamental matrix lets us compute relationship up to scale 
for cameras with unknown intrinsic calibrations.

• Estimating the fundamental matrix is a kind of “weak 
calibration”



Let’s recap…

• Fundamental matrix song

• http://danielwedge.com/fmatrix/

http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/


Among all my matches, how do I know which 
ones are good?



VLFeat’s 800 most confident matches 
among 10,000+ local features.



Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 

 


n

i ii bxmyE
1

2)(

(xi, yi)

y=mx+b

Matlab: p = A \ y;

Modified from S. Lazebnik

(Closed form solution)



Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters ϴ

   ;,ii

i

xu

The robust function ρ
• Favors a configuration 

with small residuals

• Constant penalty for large 

residuals

 


n

i ii bxmyu
1

22 )(

Slide from S. Savarese

ρ – robust function with scale parameter σ



Choosing the scale: Just right

The effect of the outlier is minimized



The error value is almost the same for every

point and the fit is very poor

Choosing the scale: Too small



Choosing the scale: Too large

Behaves much the same as least squares



Robust estimation: Details

• Robust fitting is a nonlinear optimization 
problem that must be solved iteratively

• Scale of robust function should be chosen 
adaptively based on median residual 

• Least squares solution can be used for 
initialization



VLFeat’s 800 most confident matches 
among 10,000+ local features.



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit 

to a known model.



RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

This data is noisy, but we expect a good fit 

to a known model.

Here, we expect to see a line, but least-

squares fitting will produce the wrong result 

due to strong outlier presence.



RANSAC

Algorithm:

1. Sample (randomly) the number of points s required to fit the model

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6InliersN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14InliersN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples 

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of algorithm iterations N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g., p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) 

within threshold
– Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

    s
epN  11log/1log

Proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys
For p = 0.99



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution
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(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4



VLFeat’s 800 most confident matches 
among 10,000+ local features.



Epipolar lines



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix



RANSAC conclusions

Good
• Robust to outliers
• Applicable for large number of objective function parameters 

(than Hough transform)
• Optimization parameters are easier to choose (than Hough 

transform)

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Estimating fundamental matrix (relating two views)
• Computing a homography (e.g., image stitching)


