

COMPUTER VISION

James, San Francisco, Aug. 2017

CAMERAS, MULTIPLE VIEWS, AND MOTION

What is a camera?

Translate

Turn off instant translation

Synonyms of camera

noun

vano, camera da letto

4 more synonyms

See also

camera da letto, camera doppia, camera singola, servizio in camera, camera d'aria, camera oscura, camera libera, camera mortuaria, camera dei bambini, camera con colazione

Google Translate for Business: Translator Toolkit

Translations of camera

noun

room camera, stanza, sala, ambiente, spazio, locale

chamber camera, cavità, aula

■ house casa, abitazione, edificio, dimora, camera, albergo

apartment appartamento, alloggio, camera, stanza

lodging alloggio, alloggiamento, appartamento, camera

Website Translator Global

Global Market Finder

Camera obscura: dark room

 Known during classical period in China and Greece (e.g., Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

Camera lucida

Tim's Vermeer

Vermeer, The Music Lesson, 1665

Tim Jenison (Lightwave 3D, Video Toaster)

Tim's Vermeer – video still

First Photograph

Oldest surviving photograph

Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Dimensionality Reduction Machine (3D to 2D)

Lake Sørvágsvatn in Faroe Islands

100 metres above sea level

Lake Sørvágsvatn in Faroe Islands

100 30 metres above sea level

Holbein's The Ambassadors - 1533

Holbein's The Ambassadors – Memento Mori

Cameras and World Geometry

James Hays

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

Let's design a camera

Idea 1: Put a sensor in front of an object Do we get a reasonable image?

Slide source: Seitz

Let's design a camera

Idea 2: Add a barrier to block most rays

- Pinhole in barrier
- Only sense light from one direction.
 - Reduces blurring.
- In most cameras, this aperture can vary in size.

Slide source: Seitz

Pinhole camera model

f = Focal length

c = Optical center of the camera

Projection: world coordinates \rightarrow image coordinates

What is the effect if f and Z are equal?

Projective Geometry

Length (and so area) is lost.

Length and area are not preserved

Projective Geometry

Angles are lost.

Projective Geometry

What is preserved?

• Straight lines are still straight.

Vanishing points and lines

Parallel lines in the world intersect in the projected image at a "vanishing point".

Parallel lines on the same plane in the world converge to vanishing points on a "vanishing line".

E.G., the horizon.

Vanishing points and lines

Pinhole camera model

f = Focal length

c = Optical center of the camera

Projection: world coordinates \rightarrow image coordinates

What is the effect if f and Z are equal?

Camera (projection) matrix

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$
Extrinsic Matrix

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Demo – Kyle Simek

- "Dissecting the Camera Matrix"
- Three-part blog series
- http://ksimek.github.io/2012/08/14/decompose/
- http://ksimek.github.io/2012/08/22/extrinsic/
- http://ksimek.github.io/2013/08/13/intrinsic/

- "Perspective toy"
- http://ksimek.github.io/perspective camera toy.html

Projective geometry

- 2D point in cartesian = (x,y) coordinates
- 2D point in projective = (x,y,w) coordinates

Projective geometry

- 2D point in cartesian = (x,y) coordinates
- 2D point in projective = (x,y,w) coordinates

Varying w

Projected image becomes smaller.

Projective geometry

- 2D point in projective = (x,y,w) coordinates
 - w defines the scale of the projected image.

– Each x,y point becomes a ray!

Projective geometry

- In 3D, point (x,y,z) becomes (x,y,z,w)
- Perspective is w varying with z:
 - Objects far away are appear smaller

Homogeneous coordinates

Converting to homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

$$(x, y, z) \Rightarrow \left| \begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right|$$

2D (image) coordinates

3D (scene) coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

2D (image) coordinates

3D (scene) coordinates

Homogeneous coordinates

Scale invariance in projection space

$$k\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$
Homogeneous Cartesian Coordinates

E.G., we can uniformly scale the projective space, and it will still produce the same image -> scale ambiguity

Camera (projection) matrix

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$
Extrinsic Matrix

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

K

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Savarese

Projection: world coordinates \rightarrow image coordinates

Remove assumption: known optical center

- Unit aspect ratio
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: equal aspect ratio

No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & u_0 & 0 \\ 0 & f_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & u_0 & 0 \\ 0 & f_y & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions

Extrinsic Assumptions

No rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Allow camera rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Demo – Kyle Simek

- "Dissecting the Camera Matrix"
- Three-part blog series
- http://ksimek.github.io/2012/08/14/decompose/
- http://ksimek.github.io/2012/08/22/extrinsic/
- http://ksimek.github.io/2013/08/13/intrinsic/

- "Perspective toy"
- http://ksimek.github.io/perspective camera toy.html

Orthographic Projection

- Special case of perspective projection
 - Distance from the COP to the image plane is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Field of View (Zoom, focal length)

From London and Upton

Beyond Pinholes: Radial Distortion

Corrected Barrel Distortion

Beyond Pinholes: Real apertures

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman

Accidental Cameras

c) Difference image (b-a) d) Crop upside down e) True view

Things to remember

 Vanishing points and vanishing lines

 Pinhole camera model and camera projection matrix

$$x = K[R \ t]X$$

Homogeneous coordinates

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

IS THIS ENOUGH?

