

James, San Francisco, Aug. 2017

CAMERAS, MULTIPLE VIEWS,
AND MOTION

What is a camera?

Camera obscura: dark room

• Known during classical period in China and Greece
(e.g., Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

James Hays

Camera obscura / lucida used for tracing

Lens Based Camera Obscura, 1568

drawingchamber.wordpress.com

Camera lucida

Tim’s Vermeer

Vermeer, The Music Lesson, 1665 Tim Jenison (Lightwave 3D, Video Toaster)

Tim’s Vermeer – video still

First Photograph

Oldest surviving photograph

– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Point of observation

Figures © Stephen E. Palmer, 2002

Dimensionality Reduction Machine (3D to 2D)

3D world 2D image

Lake Sørvágsvatn in Faroe Islands

100 metres above sea level

Lake Sørvágsvatn in Faroe Islands

100 30 metres above sea level

amusingplanet.com, thanks to Aaron Gokaslan

Holbein’s The Ambassadors - 1533

Holbein’s The Ambassadors – Memento Mori

Cameras and World Geometry

How tall is this woman?

Which ball is closer?

How high is the camera?

What is the camera

rotation wrt. world?

James Hays

Let’s design a camera

Idea 1: Put a sensor in front of an object

Do we get a reasonable image?

Slide source: Seitz

sensor

Let’s design a camera

Idea 2: Add a barrier to block most rays
– Pinhole in barrier

– Only sense light from one direction.
• Reduces blurring.

– In most cameras, this aperture can vary in size.

Slide source: Seitz

sensor

Pinhole camera model

Figure from Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real

object

Projection: world coordinatesimage coordinates

Camera

Center

(0, 0, 0)



















Z

Y

X

P.

.

. f Z Y











V

U
p

.
V

U

Z

f
XU *

Z

f
YV *

What is the effect if f and Z are equal?

p = distance from

image center

Image

center

(u0, v0)

Projective Geometry

Length (and so area) is lost.

Which is closer?

Who is taller?

Length and area are not preserved

Figure by David Forsyth

B’

C’

A’

Projective Geometry

Perpendicular?

Parallel?

Angles are lost.

Projective Geometry

What is preserved?

• Straight lines are still straight.

Vanishing points and lines

Parallel lines in the world

intersect in the projected
image at a “vanishing point”.

Parallel lines on the same
plane in the world converge
to vanishing points on a
“vanishing line”.

E.G., the horizon.

Vanishing Point Vanishing Point

Vanishing Line

Vanishing points and lines

Vanishing
point

Vanishing
point

Vertical vanishing
point

(at infinity)

Slide from Efros, Photo from Criminisi

Pinhole camera model

Forsyth

f

f = Focal length

c = Optical center of the camera

c

Real

object

Projection: world coordinatesimage coordinates

Camera

Center

(0, 0, 0)



















Z

Y

X

P.

.

. f Z Y











V

U
p

.
V

U

Z

f
XU *

Z

f
YV *

What is the effect if f and Z are equal?

p = distance from

image center

Image

center

(u0, v0)

Slide Credit: Savarese

Camera (projection) matrix

 XtRKx 
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,t

X

x

Extrinsic Matrix

Demo – Kyle Simek

• “Dissecting the Camera Matrix”

• Three-part blog series

• http://ksimek.github.io/2012/08/14/decompose/

• http://ksimek.github.io/2012/08/22/extrinsic/

• http://ksimek.github.io/2013/08/13/intrinsic/

• “Perspective toy”

• http://ksimek.github.io/perspective_camera_toy.html

http://ksimek.github.io/2012/08/14/decompose/
http://ksimek.github.io/2012/08/22/extrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/perspective_camera_toy.html

Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Idea from www.tomdalling.com

Y

X

Projector

Projective geometry

• 2D point in cartesian = (x,y) coordinates

• 2D point in projective = (x,y,w) coordinates

Y

X

Projector W

Idea from www.tomdalling.com

Varying w

w1 w2 < w1

Projected image becomes smaller.

Y

X

Projector

Y

X

Projector

Projective geometry

• 2D point in projective = (x,y,w) coordinates

– w defines the scale of the projected image.

– Each x,y point becomes a ray!

Y

X

Projector W

Projective geometry

• In 3D, point (x,y,z) becomes (x,y,z,w)

• Perspective is w varying with z:

– Objects far away are appear smaller

B’

C’

Homogeneous coordinates

Converting to homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates

Converting from homogeneous coordinates

2D (image) coordinates 3D (scene) coordinates

Homogeneous coordinates

Scale invariance in projection space






















































w

y

w
x

kw

ky

kw
kx

kw

ky

kx

w

y

x

k

Homogeneous
Coordinates

Cartesian
Coordinates

E.G., we can uniformly scale the projective space, and it will still

produce the same image -> scale ambiguity

Slide Credit: Savarese

Camera (projection) matrix

 XtRKx 
x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Ow

iw

kw

jw
R,t

X

x

Extrinsic Matrix

 X0IKx 




















































1
0100

000

000

1
z

y

x

f

f

v

u

w

K

Slide Credit: Savarese

Projection matrix

Intrinsic Assumptions

• Unit aspect ratio

• Optical center at (0,0)

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

X

x
(0,0,0)

Projection: world coordinatesimage coordinates

Camera

Center

(0, 0, 0)



















Z

Y

X

P.

.

. f Z Y











V

U
p

.
V

U

Z

f
XU *

Z

f
YV *

p = distance from

image center

Image

center

(u0, v0)

Remove assumption: known optical center

 X0IKx 




















































1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w

Intrinsic Assumptions

• Unit aspect ratio

• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays

K

Remove assumption: equal aspect ratio

 X0IKx 




















































1
0100

00

00

1

0

0

z

y

x

vf

uf

v

u

w y

x

Intrinsic Assumptions
• No skew

Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

James Hays

Remove assumption: non-skewed pixels

 X0IKx 




















































1
0100

00

0

1

0

0

z

y

x

vf

usf

v

u

w y

x

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

• Camera at (0,0,0)

Note: different books use different notation for parameters James Hays

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

X

x

James Hays

Allow camera translation

 XtIKx 




































































1
100

010

001

100

0

1

0

0

z

y

x

t

t

t

vf

usf

v

u

w

z

y

x

y

x

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

James Hays

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:















 









































100

0cossin

0sincos

)(

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

















z

y

x

R

R

R

p

p’

γ

y

z

Slide Credit: Saverese

x

Allow camera rotation

 XtRKx 





































































1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

vf

usf

v

u

w

z

y

x

y

x

James Hays

Demo – Kyle Simek

• “Dissecting the Camera Matrix”

• Three-part blog series

• http://ksimek.github.io/2012/08/14/decompose/

• http://ksimek.github.io/2012/08/22/extrinsic/

• http://ksimek.github.io/2013/08/13/intrinsic/

• “Perspective toy”

• http://ksimek.github.io/perspective_camera_toy.html

http://ksimek.github.io/2012/08/14/decompose/
http://ksimek.github.io/2012/08/22/extrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/perspective_camera_toy.html

Orthographic Projection

• Special case of perspective projection

– Distance from the COP to the image plane is infinite

– Also called “parallel projection”

– What’s the projection matrix?

Image World

Slide by Steve Seitz





















































1
1000

0010

0001

1
z

y

x

v

u

w

Field of View (Zoom, focal length)

Beyond Pinholes: Radial Distortion

Image from Martin Habbecke

Corrected Barrel Distortion

Beyond Pinholes: Real apertures

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture.

Antonio Torralba, William T. Freeman

Accidental Cameras

James Hays

Things to remember

• Vanishing points and
vanishing lines

• Pinhole camera model
and camera projection
matrix

• Homogeneous
coordinates

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

 XtRKx 

James Hays

IS THIS ENOUGH?

Erik Johansson – The Architect

