

© HARPERCOLLINS / CLARE SKE

Martian lava field, NASA, Wikipedia

Old Man of the Mountain, Franconia, New Hampshire

Pareidolia

http://smrt.ccel.ca/2013/12/16/pareidolia/

Reddit for more :) https://www.reddit.com/r/Pareidolia/top/

Pareidolia

Seeing things which aren't really there...

DeepDream as reinforcement pareidolia

Powerpoint Alt-text Generator

Vision-based caption generator

Alt Text

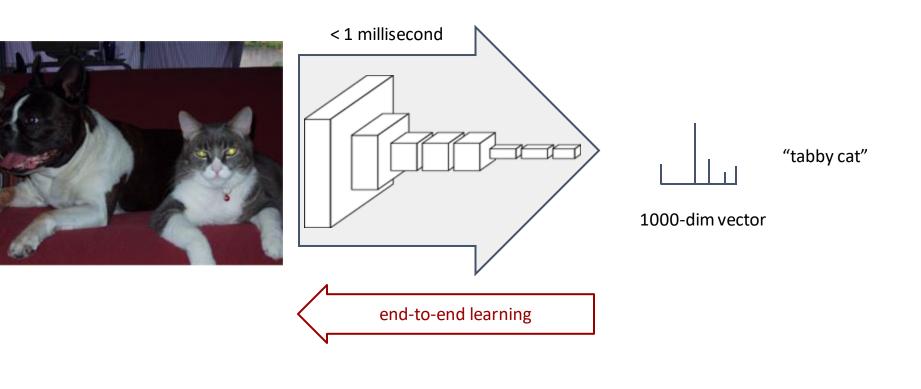
How would you describe this picture and its context to someone who is blind?

(1-2 sentences recommended)

A person standing on a rocky hill

Description generated with very high confidence

ConvNets perform classification

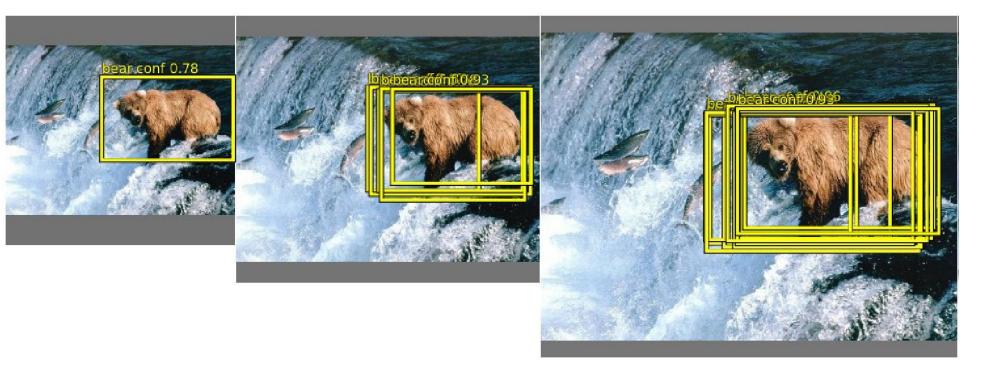


8

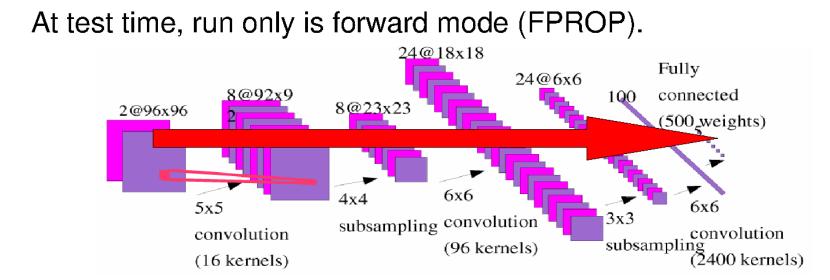
[Slides from Long, Shelhamer, and Darrell]

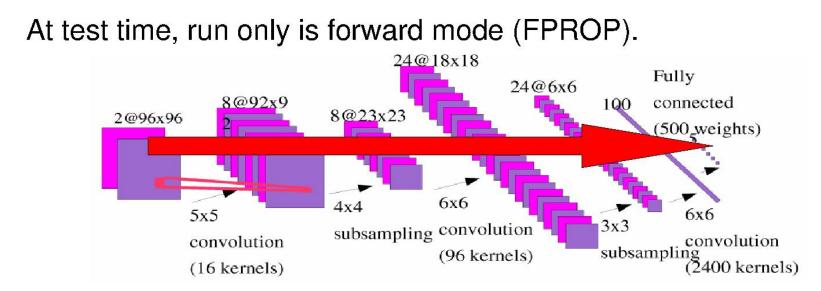
CONV NETS: EXAMPLES

- Object detection

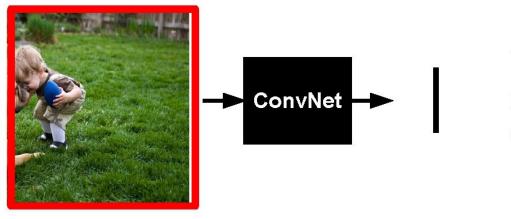


Sermanet et al. "OverFeat: Integrated recognition, localization, ..." arxiv 2013 Girshick et al. "Rich feature hierarchies for accurate object detection..." arxiv 2013 91 Szegedy et al. "DNN for object detection" NIPS 2013 Ranzato

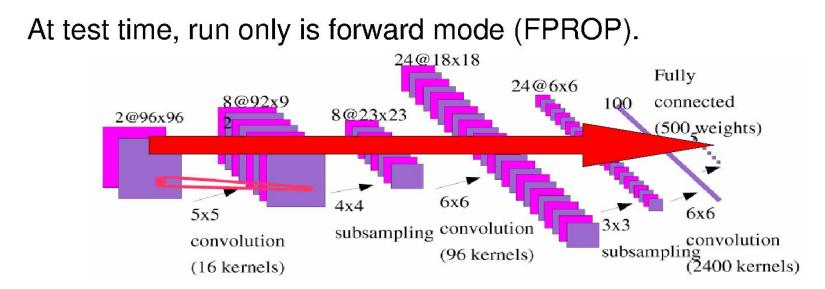




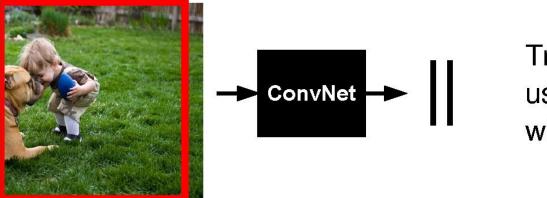
Naturally, convnet can process larger images



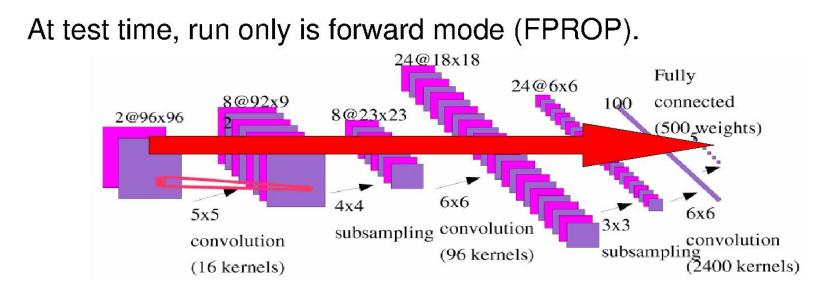
Traditional methods use inefficient sliding windows.



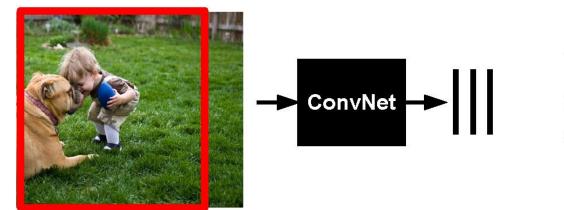
Naturally, convnet can process larger images



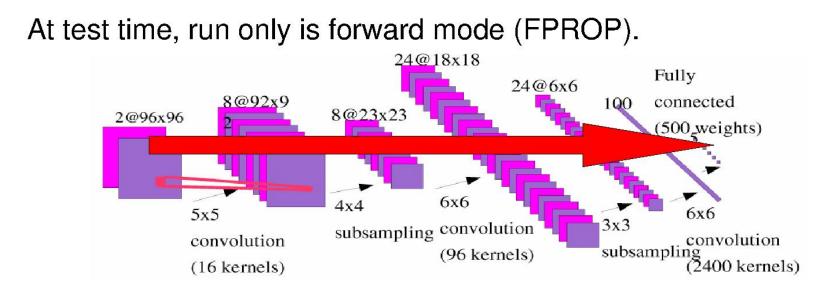
Traditional methods use inefficient sliding windows.



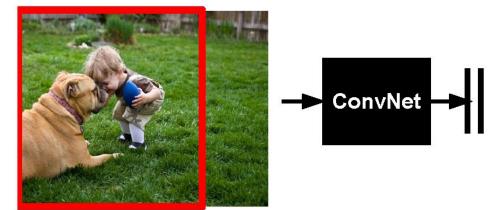
Naturally, convnet can process larger images



Traditional methods use inefficient sliding windows.

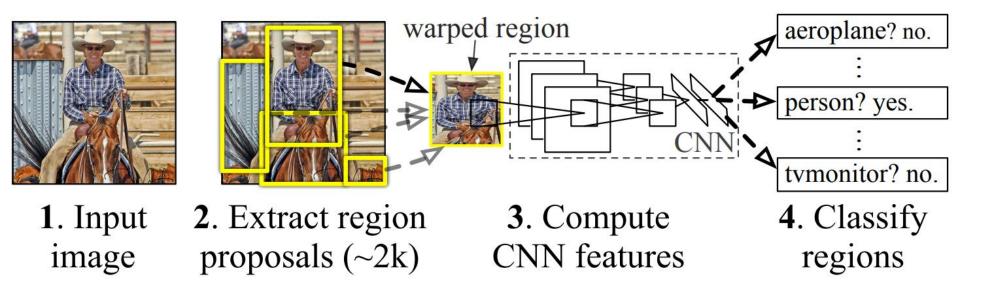


Naturally, convnet can process larger images



Traditional methods use inefficient sliding windows.

R-CNN: Region-based CNN



15

Figure: Girshick et al.

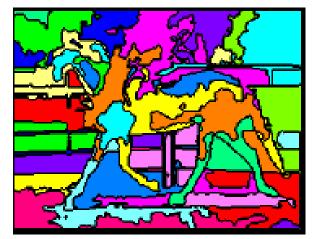
Stage 2: Efficient region proposals?

- Brute force on 1000x1000 = 250 billion rectangles
 - Testing the CNN over each one is too expensive
- Let's use B.C. vision! Before CNNs
 - Hierarchical clustering for segmentation

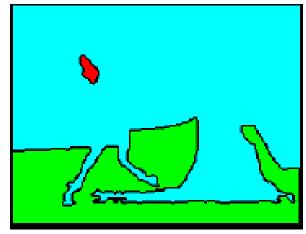
Uijlings et al., 2012, Selection Search

Thanks to Song Cao

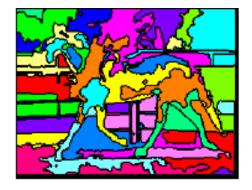
Remember clustering for segmentation?

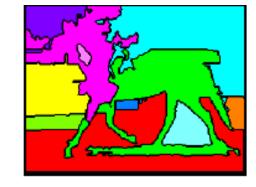


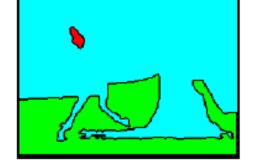
Oversegmentation



Undersegmentation







Hierarchical Segmentations

Cluster low-level features

- Define similarity on color, texture, size, 'fill'
- Greedily group regions together by selecting the pair with highest similarity
 - Until the whole image become a single region
- Draw a bounding box around each one
 Into a hierarchy

Vs Ground Truth

Average Best Overlap (ABO)

$$ABO = \frac{1}{|G^c|} \sum_{g_i^c \in G^c} \max_{l_j \in L} Overlap(g_i^c, l_j).$$
$$Overlap(g_i^c, l_j) = \frac{\operatorname{area}(g_i^c) \cap \operatorname{area}(l_j)}{\operatorname{area}(g_i^c) \cup \operatorname{area}(l_j)}.$$

(e) Plant: 0.873

Mean Average Best Overlap (MABO)

Thanks to Song Cao

method	recall	MABO	# windows
Arbelaez et al. [3]	0.752	0.649 ± 0.193	418
Alexe et al. [2]	0.944	0.694 ± 0.111	1,853
Harzallah et al. [16]	0.830	-	200 per class
Carreira and Sminchisescu [4]	0.879	0.770 ± 0.084	517
Endres and Hoiem [9]	0.912	0.791 ± 0.082	790
Felzenszwalb et al. [12]	0.933	0.829 ± 0.052	100,352 per class
Vedaldi et al. [34]	0.940	-	10,000 per class
Single Strategy	0.840	0.690 ± 0.171	289
Selective search "Fast"	0.980	0.804 ± 0.046	2,134
Selective search "Quality"	0.991	0.879 ± 0.039	10,097

Table 5: Comparison of recall, Mean Average Best Overlap (MABO) and number of window locations for a variety of methods on the Pascal 2007 TEST set.

Thanks to Song Cao

R-CNN: Region-based CNN

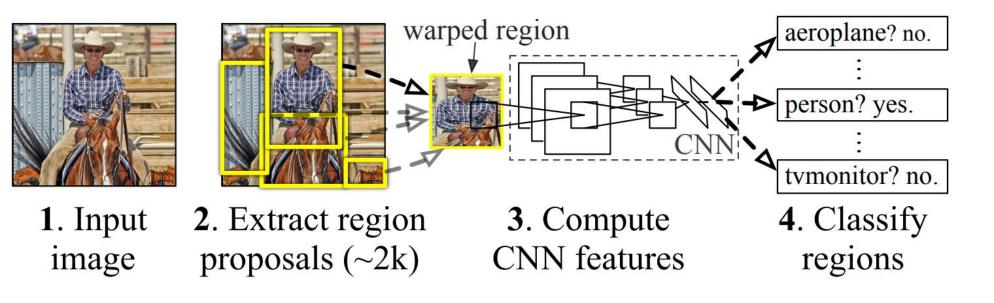
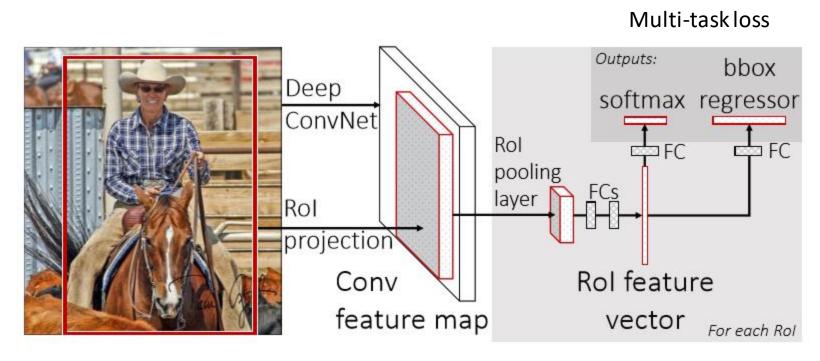


Figure: Girshick et al.

10,000 proposals with recall 0.991 is better.... but still takes 17 seconds per image to generate them. Then I have to test each one!

22

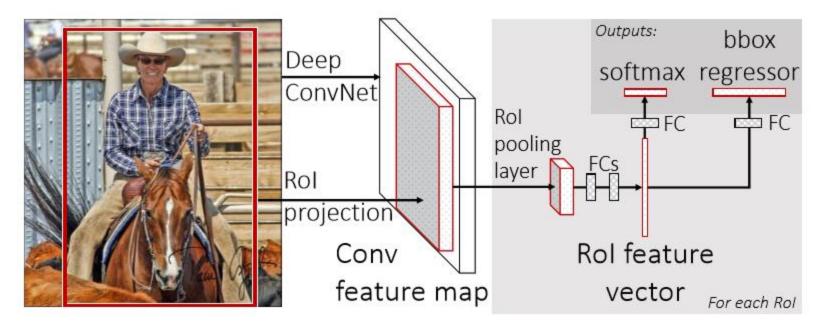
Fast R-CNN



RoI = Region of Interest

Figure: Girshick et al.

Fast R-CNN

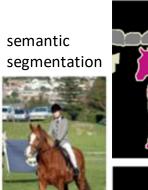


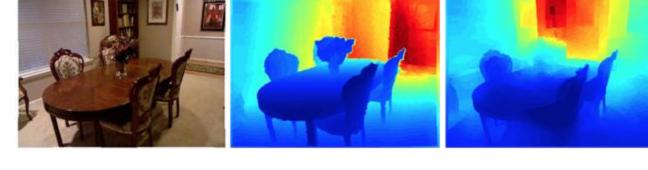
- Convolve whole image into feature map (many layers; abstracted)
- For each candidate Rol:
 - Squash feature map weights into fixed-size 'RoI pool' adaptive subsampling!
 - Divide Rol into H x W subwindows, e.g., 7 x 7, and max pool
 - Learn classification on RoI pool with own fully connected layers (FCs)
 - Output classification (softmax) + bounds (regressor)

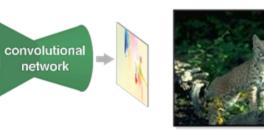
Figure: Girshick et al.

What if we want pixels out?

monocular depth estimation Eigen & Fergus 2015

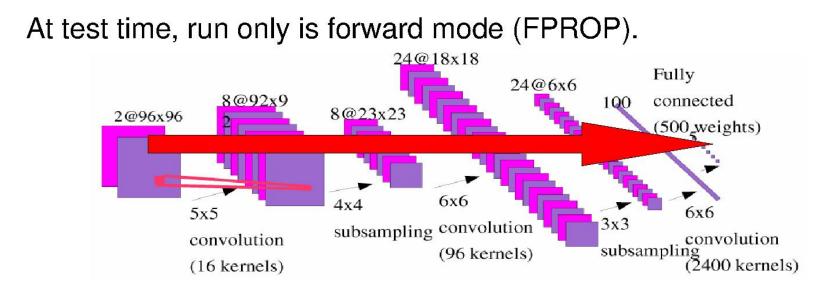




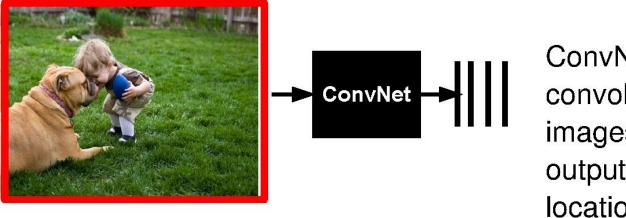


optical flow Fischer et al. 2015

boundary prediction Xie & Tu 2015 25

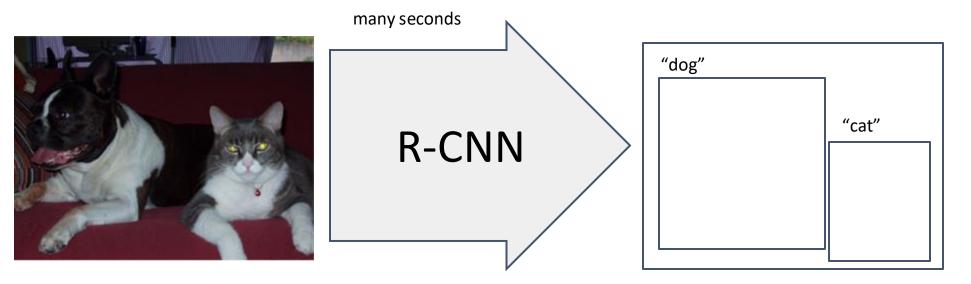


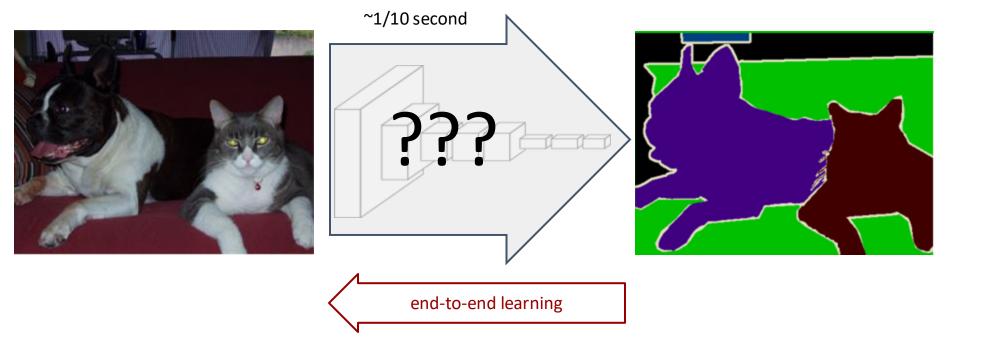
Naturally, convnet can process larger images at little cost.



ConvNet: unrolls convolutions over bigger images and produces outputs at several locations.

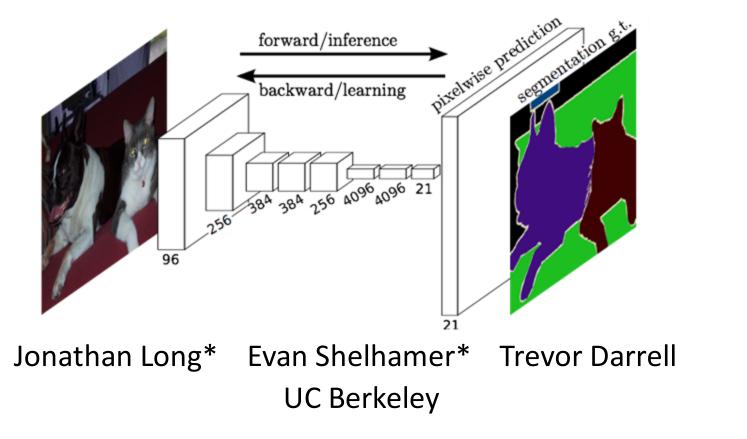
R-CNN does detection





28

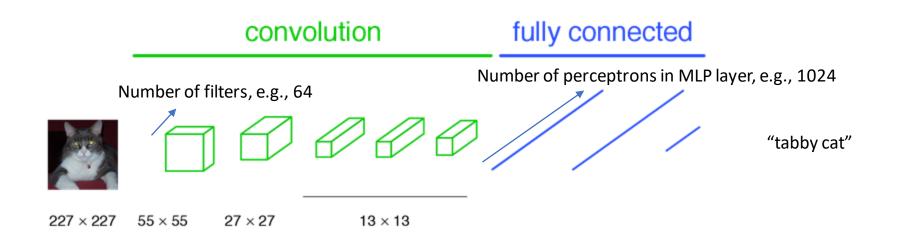
Fully Convolutional Networks for Semantic Segmentation



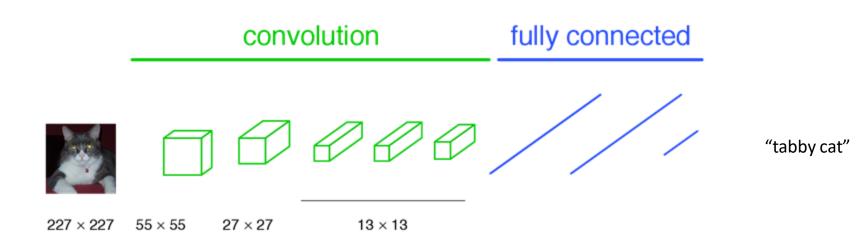
[CVPR 2015]

Slides from Long, Shelhamer, and Darrell

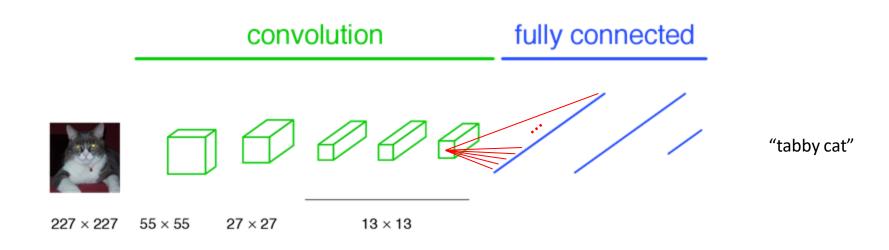
29



30

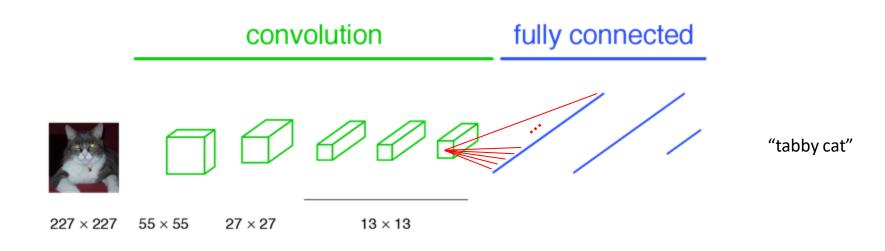


31



The response of every kernel across all positions are attached densely to the array of perceptrons in the fully-connected layer.

32



The response of every kernel across all positions are attached densely to the array of perceptrons in the fully-connected layer.

AlexNet: 256 filters over 6x6 response map Each 2,359,296 response is attached to one of 4096 perceptrons, leading to 37 mil params.

[Long et al.]

33

Problem

We want a label at every pixel

Current network gives us a label for the whole image.

Approach:

- Make CNN for every sub-image size ?
- 'Convolutionalize' *all layers* of network, so that we can treat it as one (complex) filter and slide around our full image.

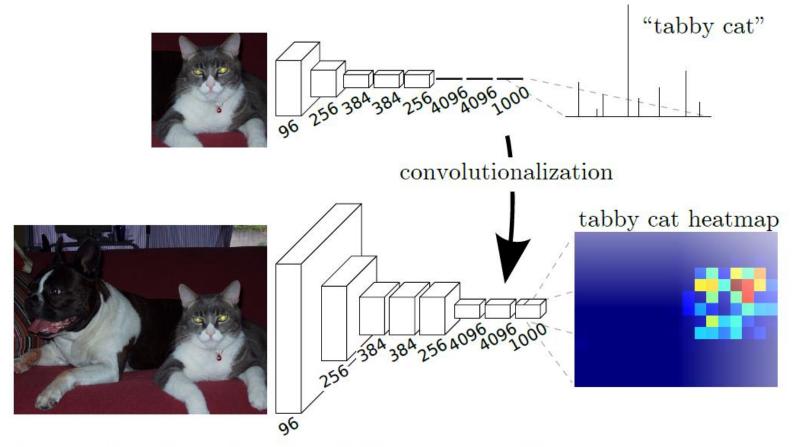


Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

Long, Shelhamer, and Darrell 2014



The response of every kernel across all positions are attached densely to the array of perceptrons in the fully-connected layer.

AlexNet: 256 filters over 6x6 response map Each 2,359,296 response is attached to one of 4096 perceptrons, leading to 37 mil params.

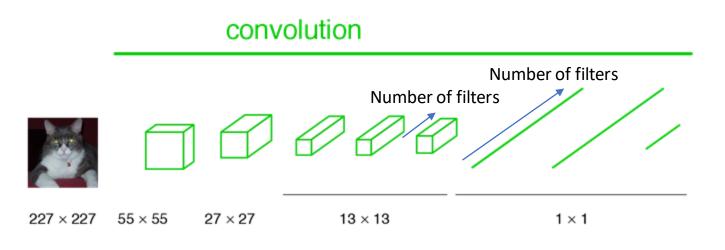
[Long et al.]

38

S Follow

In Convolutional Nets, there is no such thing as "fully-connected layers". There are only convolution layers with 1x1 convolution kernels and a full connection table.

Convolutionalization



1x1 convolution operates across all filters in the previous layer, and is slid across all positions.

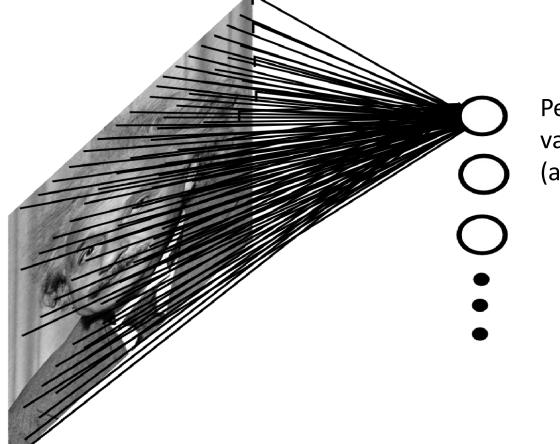
41

Back to the fully-connected perceptron... $output = \begin{cases} 0 & \text{if } u \\ 0 & 0 \end{cases}$

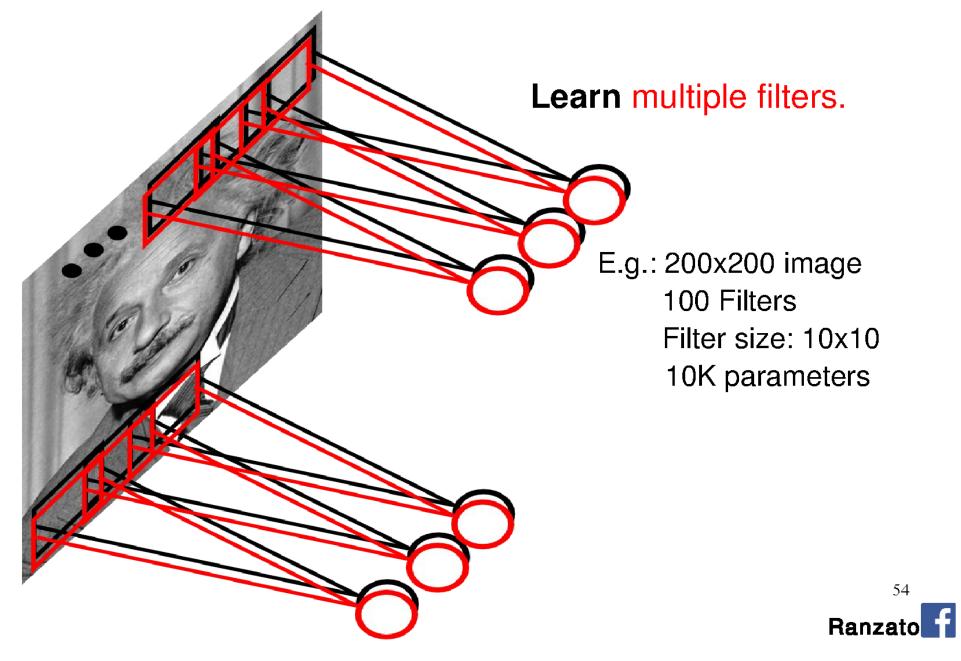
$$ext{utput} = egin{cases} 0 & ext{if} \, w \cdot x & \leq 0 \ 1 & ext{if} \, w \cdot x & > 0 \end{cases}$$

$$w\cdot x\equiv \sum_j w_j x_j$$

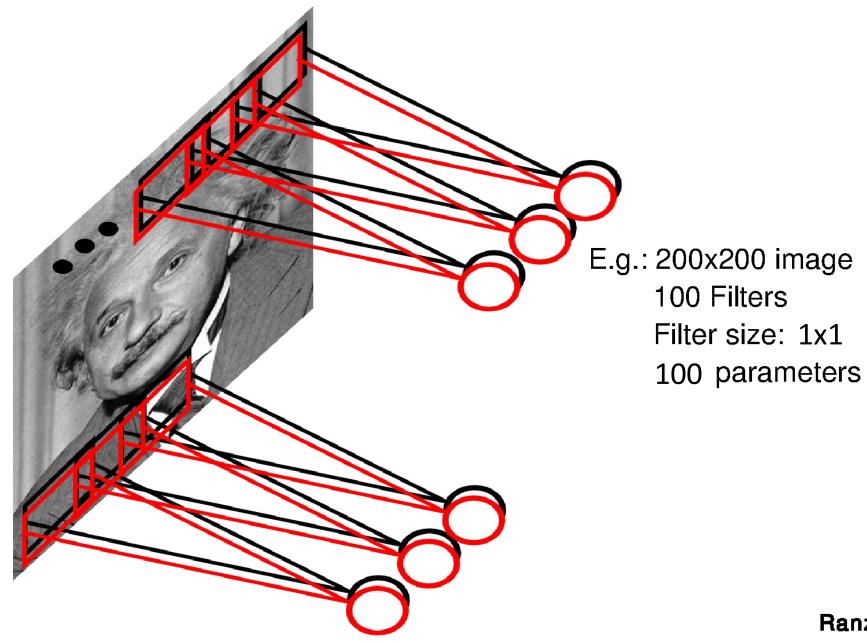
Perceptron is connected to every value in the previous layer (across all channels; 1 visible).



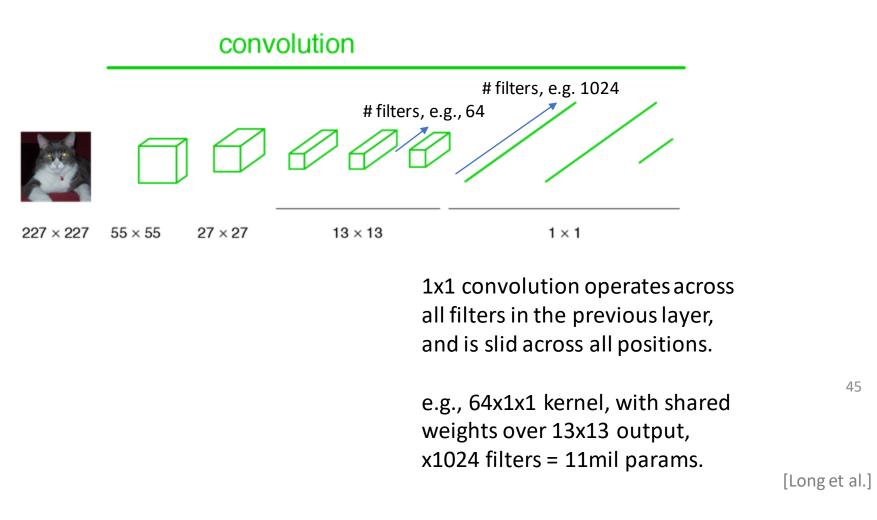
Convolutional Layer



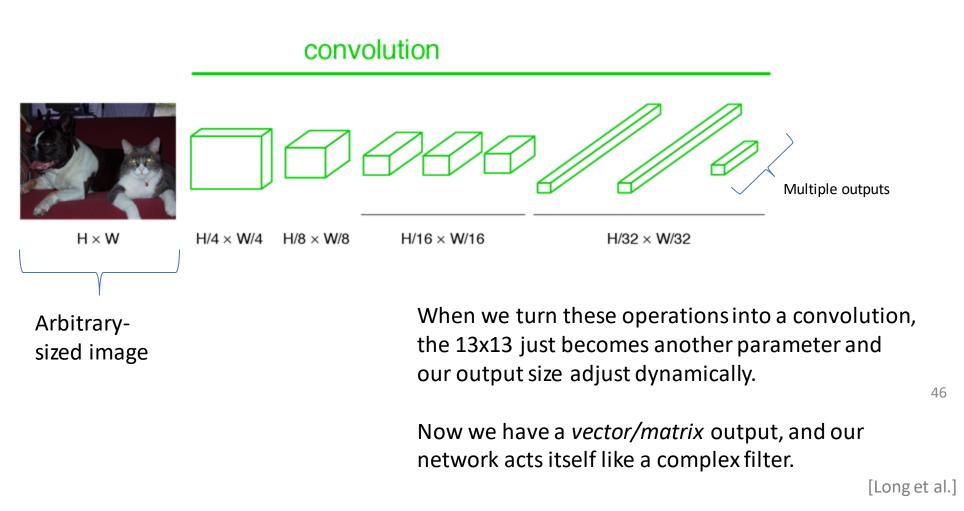
Convolutional Layer



Convolutionalization



Becoming fully convolutional



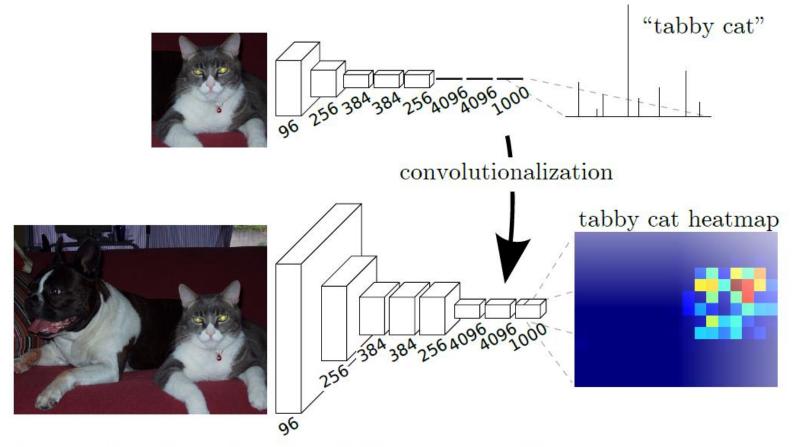
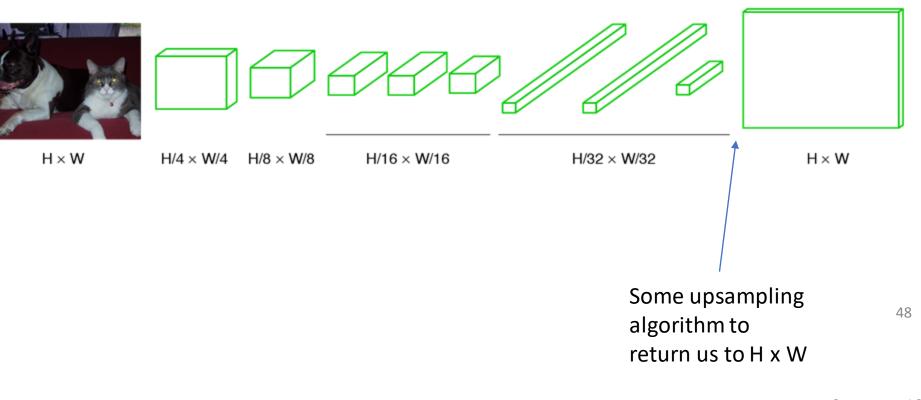


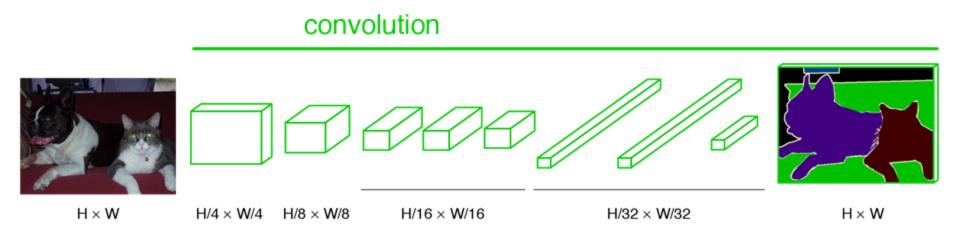
Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

Long, Shelhamer, and Darrell 2014

Upsampling the output

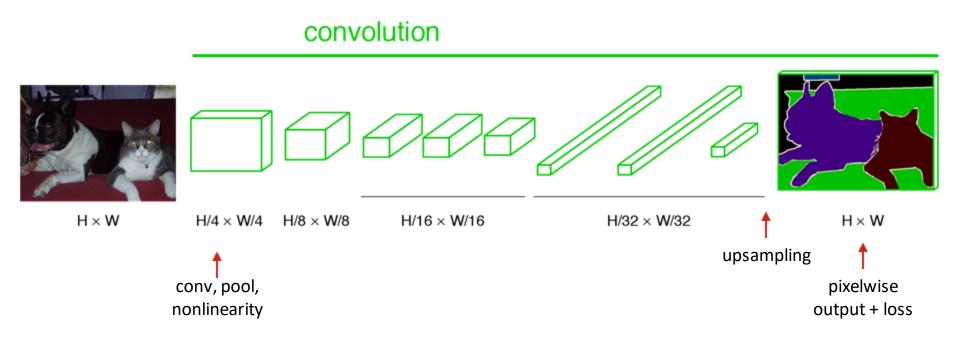


End-to-end, pixels-to-pixels network



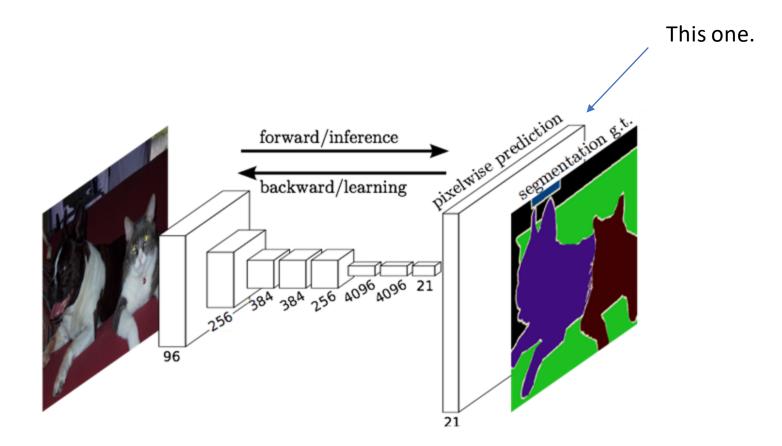
49

End-to-end, pixels-to-pixels network



50

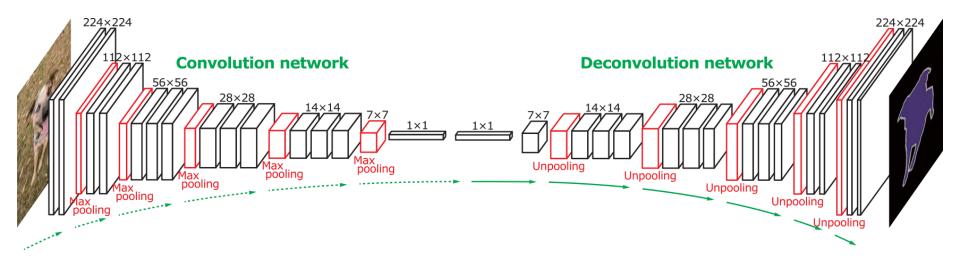
What is the upsampling layer?



Hint: it's actually an upsampling *network*

51

'Deconvolution' networks *learn to upsample*



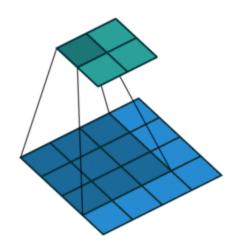
Often called "deconvolution", but misnomer. Not the deconvolution that we saw in deblurring -> that is division in the Fourier domain.

'Transposed convolution' is better.

Zeiler et al., Deconvolutional Networks, CVPR 2010 Noh et al., Learning Deconvolution Network for Semantic Segmentation, ICCV 2015

Upsampling with transposed convolution

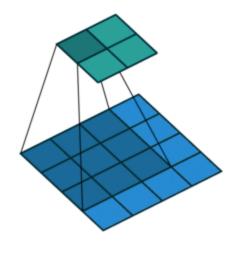
Convolution

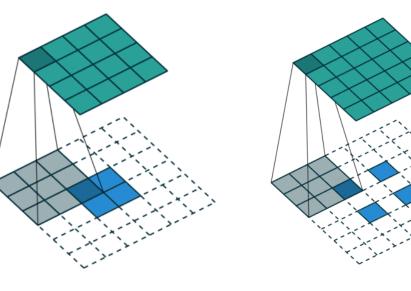


Upsampling with transposed convolution

Convolution

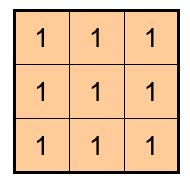
Transposed convolution = padding/striding smaller image then weighted sum of input x filter: 'stamping' kernel



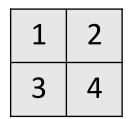


2x2, stride 1, 3x3 kernel, upsample to 4x4

2x2, stride 2, 3x3 kernel, upsample to 5x5.



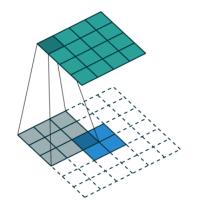
Feature map

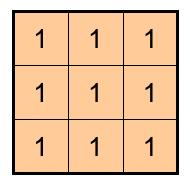


Padded feature map

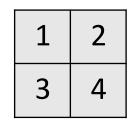
	1	2	
	3	4	

Inspired by andriys





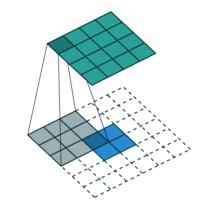
Input feature map



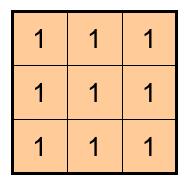
Padded input feature map

	1	2	
	3	4	

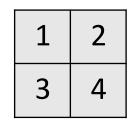
Inspired by andriys



Output feature map



Input feature map

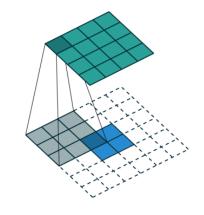


Padded input feature map

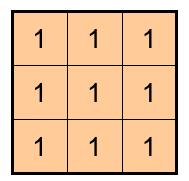
	1	2	
	3	4	

1	4	4	3	
1	4	4	3	
1	4	4	3	

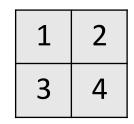
Inspired by andriys



Output feature map



Input feature map

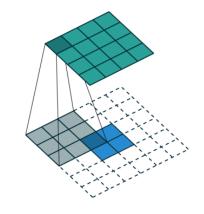


Padded input feature map

	1	2	
	3	4	

1	4	7	6	3	
1	4	7	6	3	
1	4	7	6	3	

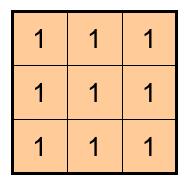
Inspired by andriys



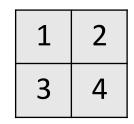
Output feature map

Г

Т



Input feature map

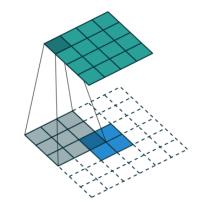


Padded input feature map

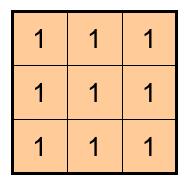
	1	2	
	3	4	

1	4	7	8	5	2
1	4	7	8	5	2
1	4	7	8	5	2

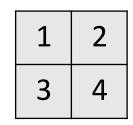
Inspired by andriys



Output feature map



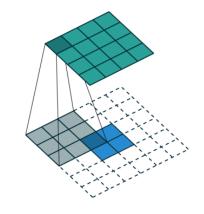
Input feature map



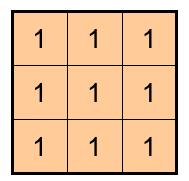
Padded input feature map

	1	2	
	3	4	

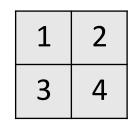
Inspired by andriys



Output feature map



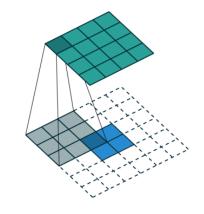
Input feature map



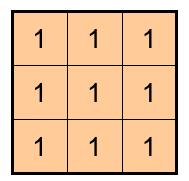
Padded input feature map

	1	2	
	3	4	

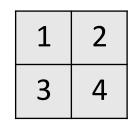
Inspired by andriys



Output feature map



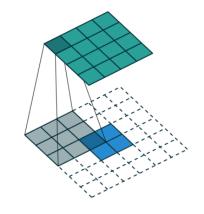
Input feature map



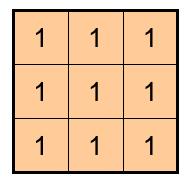
Padded input feature map

	1	2	
	3	4	

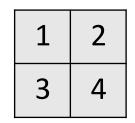
Inspired by andriys



Output feature map



Input feature map



Padded input feature map

	1	2	
	3	4	

Cropped output feature map

18	31	34	21
32	55	60	37
38	66	64	43
24	41	44	27

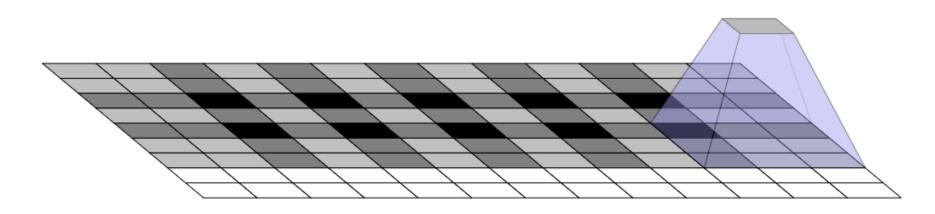
Inspired by andriys

Uneven overlap across output

Is uneven overlap a problem?

Yes = causes grid artifacts

Could fix it by picking stride/kernel numbers which have no overlap...



Uneven overlap across output

Is uneven overlap a problem?

Yes = causes grid artifacts

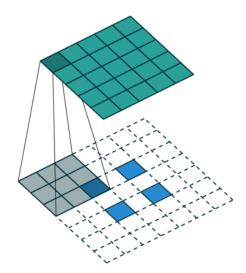


Could fix it by picking stride/kernel numbers which have no overlap...

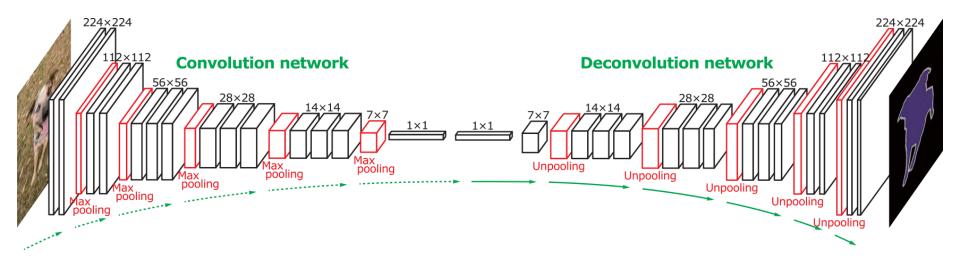
Or...think in frequency!

Introduce explicit bilinear upsampling before transpose convolution; let kernels of transpose convolution learn to fill in only highfrequency detail.

https://distill.pub/2016/deconv-checkerboard/



'Deconvolution' networks *learn to upsample*



Often called "deconvolution", but misnomer. Not the deconvolution that we saw in deblurring -> that is division in the Fourier domain.

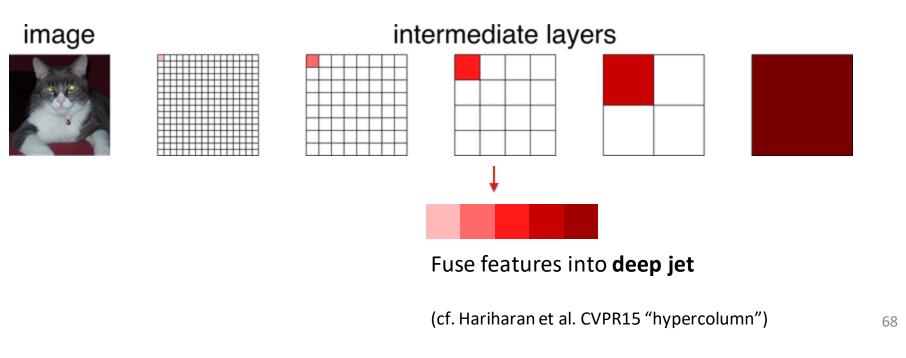
'Transposed convolution' is better.

Zeiler et al., Deconvolutional Networks, CVPR 2010 Noh et al., Learning Deconvolution Network for Semantic Segmentation, ICCV 2015 But we have downsampled so far...

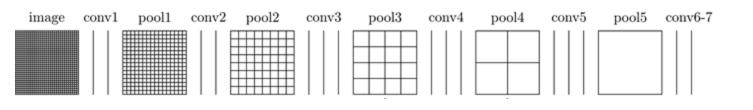
How do we 'learn to create' or 'learn to restore' new high frequency detail?

Spectrum of deep features

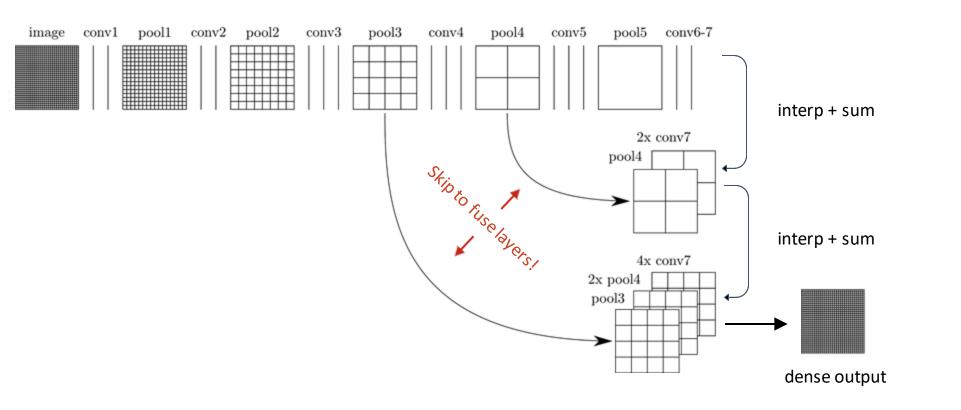
Combine *where* (local, shallow) with *what* (global, deep)



Learning upsampling kernels with skip layer refinement

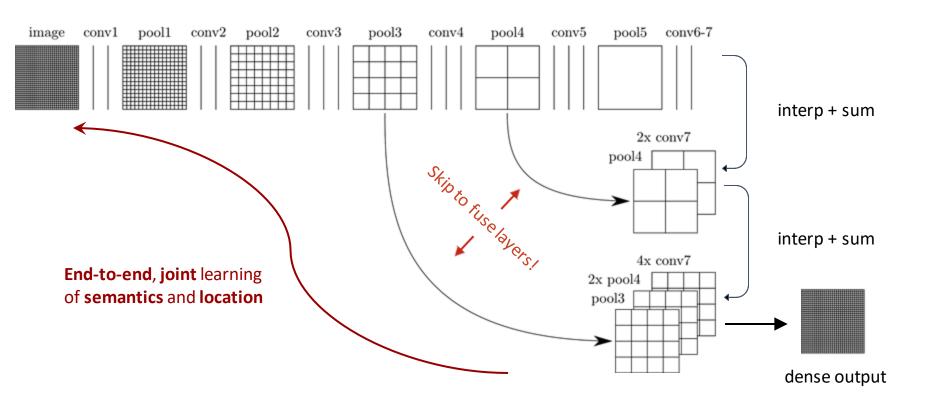


Learning upsampling kernels with skip layer refinement

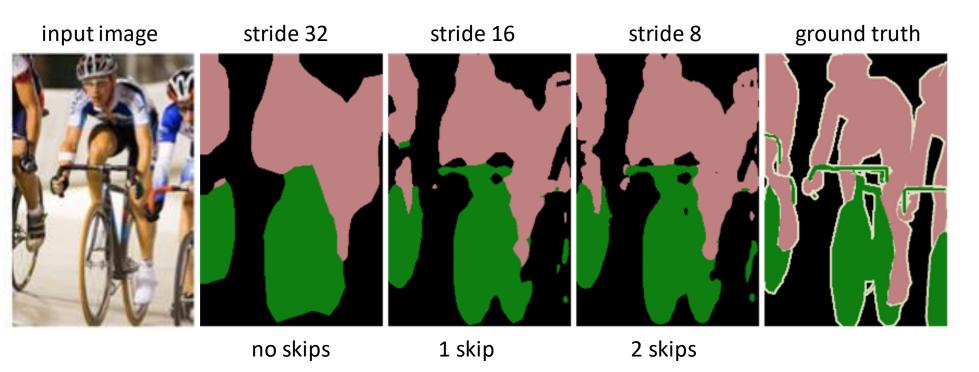


[Long et al.]

Learning upsampling kernels with skip layer refinement

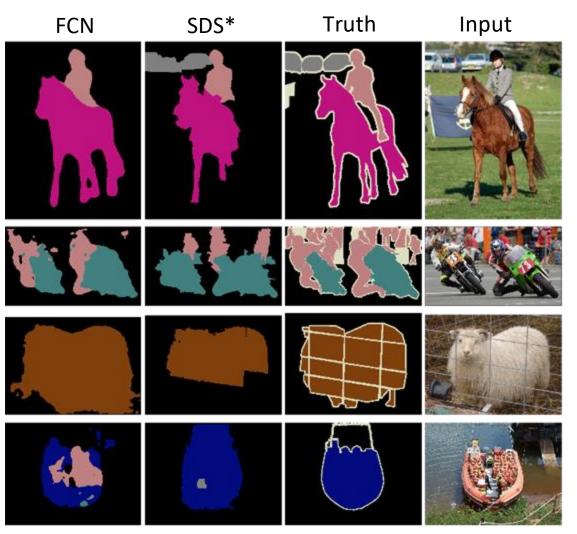


Skip layer refinement



72

Results

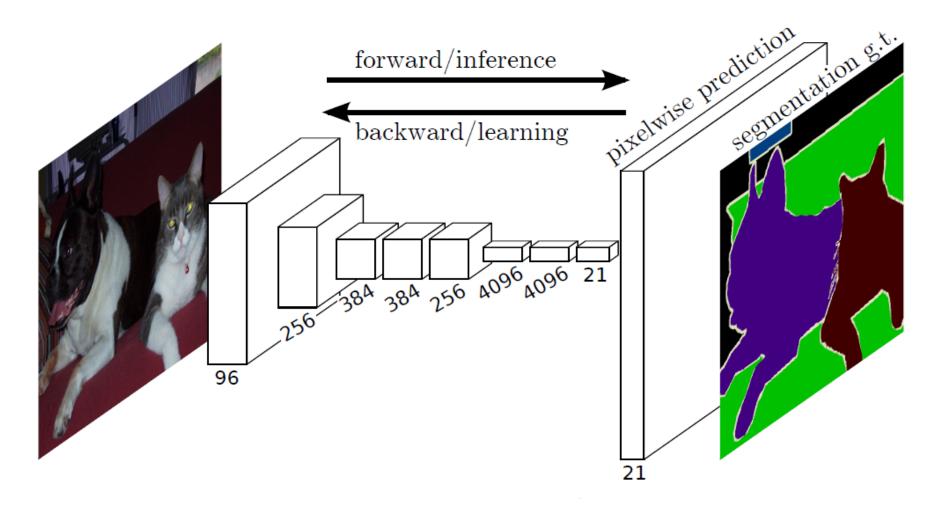


Relative to prior state-of-the-art SDS:

- 30% relative improvement for mean IoU
- 286× faster

*Simultaneous Detection and Segmentation Hariharan et al. ECCV14

[Long et al.]



What can we do with an FCN?

Long, Shelhamer, and Darrell 2014

How much can an image tell about its geographic location?

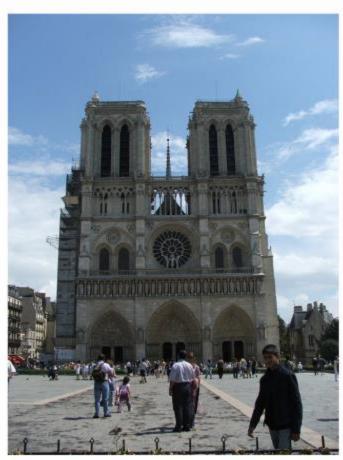


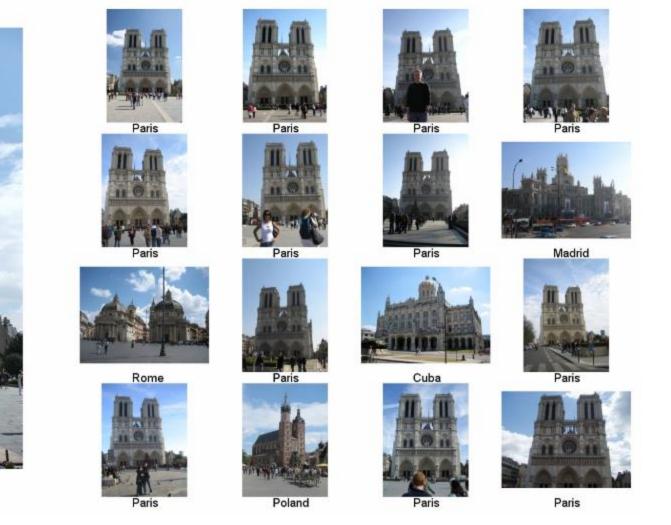
6 million geo-tagged Flickr images

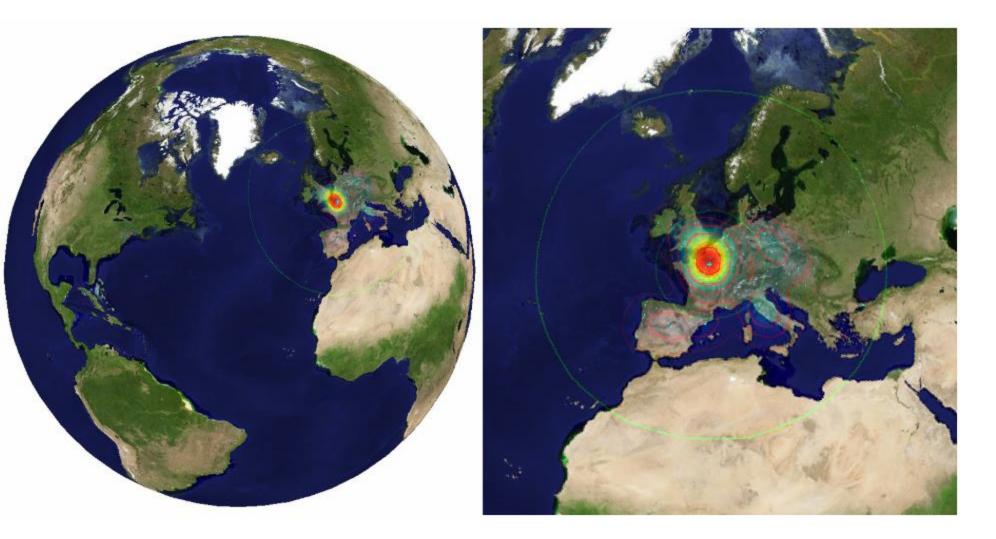
http://graphics.cs.cmu.edu/projects/im2gps/

im2gps (Hays & Efros, CVPR 2008)

Nearest Neighbors according to gist + bag of SIFT + color histogram + a few others







PlaNet - Photo Geolocation with Convolutional Neural Networks

Tobias Weyand, Ilya Kostrikov, James Philbin

ECCV 2016

Discretization of Globe

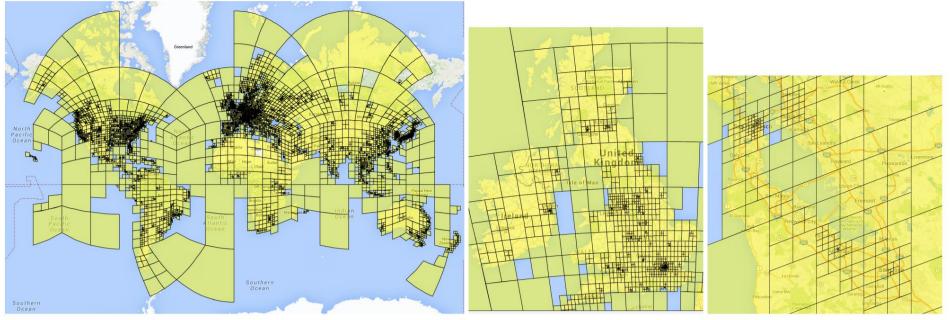


Figure 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Right: Detail views of Great Britain and Ireland and the San

Network and Training

- Network Architecture: Inception with 97M parameters
- 26,263 "categories" places in the world

- 126 Million Web photos
- 2.5 months of training on 200 CPU cores

Photo CC-BY-NC by stevekc

(a)

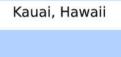
Photo CC-BY-NC by edwin.11

(b)

Photo CC-BY-NC by jonathanfh

Namibia / Botswana

to by st



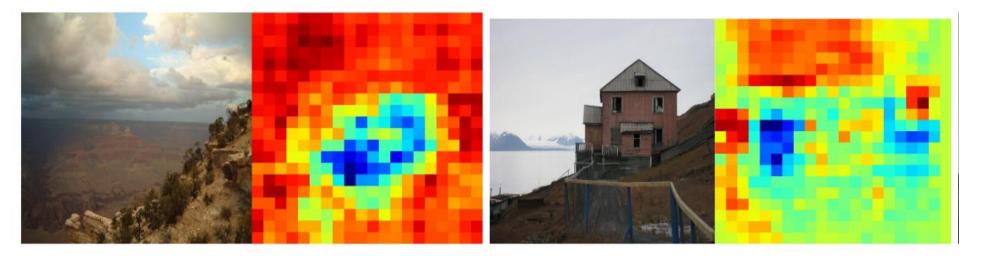
Galapagos Islands

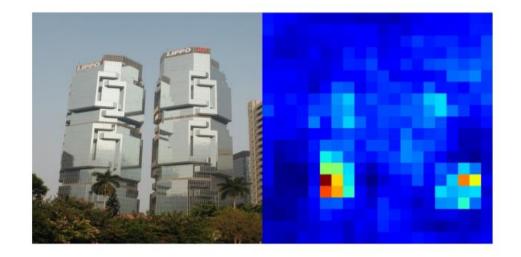
PlaNet vs im2gps (2008, 2009)

	Street	City	Region	Country	Continent
Method	1 km	25 km	200 km	750 km	2500 km
Im2GPS (orig) [17]		12.0%	15.0%	23.0%	47.0%
Im2GPS (new) [18]	2.5%	21.9%	32.1%	35.4%	51.9%
PlaNet	8.4%	24.5%	37.6%	53.6%	71.3%

Method		Natural Landmark	•	Natural Scene	Animal
Im2GPS (new)	61.1	37.4	3375.3	5701.3	6528.0
PlaNet	74.5	61.0	212.6	1803.3	1400.0

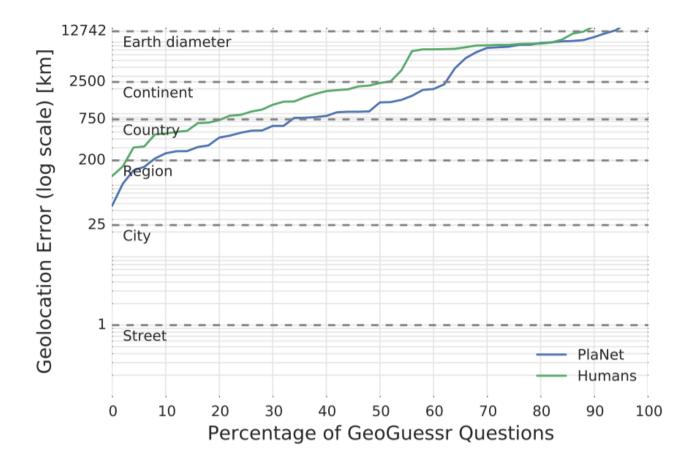
Spatial support for decision





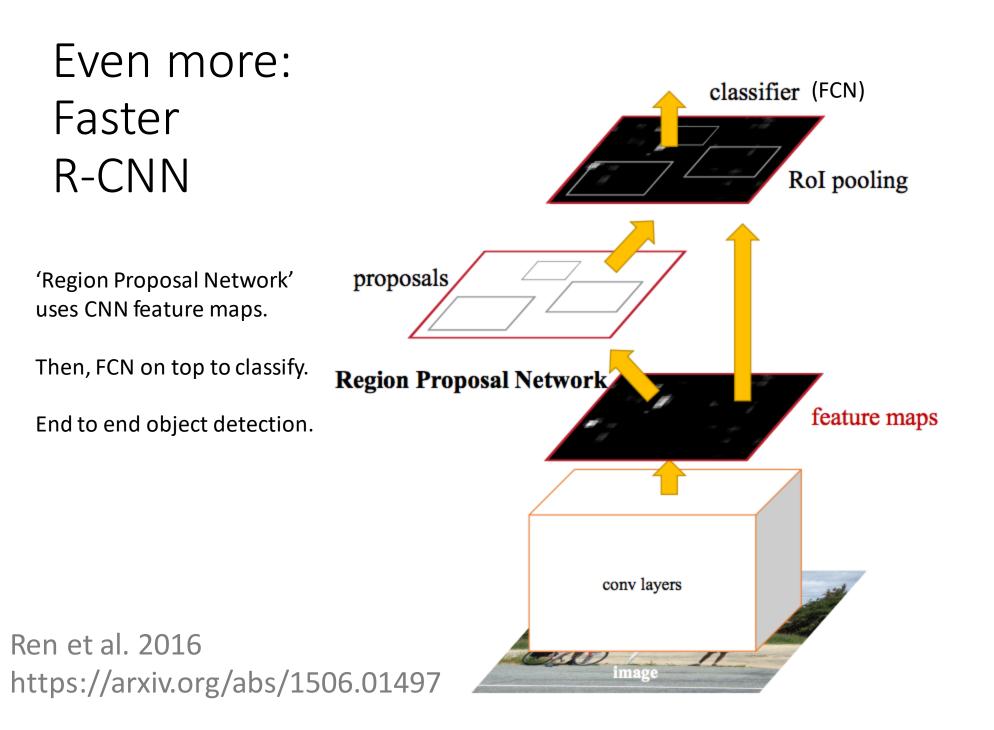
PlaNet vs Humans

PlaNet vs. Humans



PlaNet summary

- Very fast geolocalization method by categorization.
- Uses far more training data than previous work (im2gps)
- Better than humans!



Even more! Mask R-CNN

Extending Faster R-CNN for Pixel Level Segmentation He et al. - https://arxiv.org/abs/1703.06870

