

Perceptron:

This is convolution!

v

v

v v

Shared weights

Filter = ‘local’ perceptron.
Also called kernel.

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

AlexNet diagram (simplified)
Input size
227 x 227 x 3

Conv 1
11 x 11 x 3
Stride 4
96 filters

227

227

Conv 2
5 x 5 x 96
Stride 1
256 filters

3x3
Stride 2

3x3
Stride 2

[Krizhevsky et al. 2012]

Conv 3
3 x 3 x 256
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
256 filters

Training Neural Networks
Learning the weight matrices W

Gradient descent

x

f(x)

General approach

Pick random starting point.

𝑎1 x

f(x)

General approach

Compute gradient at point (analytically or by finite differences)

𝛻 𝑓(𝑎1)

x

f(x)

𝑎1

General approach

Move along parameter space in direction of negative gradient

𝑎2 = 𝑎1 − 𝛾𝛻 𝑓 𝑎1

x

f(x)

𝑎1 𝑎2

𝛾 = amount to move
= learning rate

General approach

Move along parameter space in direction of negative gradient.

𝑎3 = 𝑎2 − 𝛾𝛻 𝑓 𝑎2

x

f(x)

𝑎1 𝑎2

𝛾 = amount to move
= learning rate

𝑎3

General approach

Stop when we don’t move any more.

𝑎𝑠𝑡𝑜𝑝:

𝑎𝑛−1 − 𝛾𝛻 𝑓 𝑎𝑛−1 = 0

x

f(x)

𝑎1 𝑎2𝑎3 𝑎𝑠𝑡𝑜𝑝

Gradient descent

• Optimizer for functions.

• Guaranteed to find optimum for convex functions.
• Non-convex = find local optimum.

• Most vision problems aren’t convex.

• Works for multi-variate functions.
• Need to compute matrix of partial derivatives (“Jacobian”)

x

f(x)

Train NN with Gradient Descent

• 𝑥𝑖 , 𝑦𝑖 = n training examples

• 𝑓 𝒙 = feed forward neural network

• L(x, y; θ) = some loss function

• Loss function measures how ‘good’ our network is
at classifying the training examples wrt. the
parameters of the model (the perceptron weights).

Train NN with Gradient Descent

Model parameters
(perceptron weights)

𝑎1 𝑎2𝑎3 𝑎𝑠𝑡𝑜𝑝

Loss function
(Evaluate NN
on training data)

utput

What is an appropriate loss?

• Define some output threshold on detection

• Classification: compare training class to output class

• Zero-one loss 𝐿 (per class)

• Is it good?
• Nope – it’s a step function.

• I need to compute the gradient of the loss.

• This loss is not differentiable, and ‘flips’ easily.

𝑦 = 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙
ො𝑦 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙

Classification has binary outputs

Special function on last layer - ‘Softmax’:
• "squashes" a C-dimensional vector O of arbitrary real

values to a C-dimensional vector σ(O) of real values in the
range (0, 1) that add up to 1.

• Turns the output into a probability distribution on classes.

utput

Softmax

Softmax

Cross-entropy loss function

• Negative log-likelihood

• Is it a good loss?
• Differentiable

• Cost decreases as
probability increases

𝐿 𝒙, 𝑦; 𝜽 = −

𝑗

𝑦𝑗 log 𝑝(𝑐𝑗|𝒙)

L

p(cj|x)

utput

Softmax

But the ReLU is not differentiable at 0!

Right. Fudge!

- ‘0’ is the best place for this to occur, because we
don’t care about the result (it is no activation).

- ‘Dead’ perceptrons

- ReLU has unbounded positive response:
- Potential faster convergence / overstep

Optimization demo

• http://www.emergentmind.com/neural-network

• Thank you Matt Mazur

http://www.emergentmind.com/neural-network

Stochastic Gradient Descent

• Dataset can be too large to strictly apply gradient
descent.

• Instead, randomly sample a data point, perform
gradient descent per point, and iterate.
• True gradient is approximated only
• Picking a subset of points: “mini-batch”

Pick starting 𝑊 and learning rate 𝛾

While not at minimum:
• Shuffle training set
• For each data point i=1…n (maybe as mini-batch)

• Gradient descent
“Epoch“

Stochastic Gradient Descent

Loss will not always
decrease (locally) as
training data point is
random.

Still converges over
time.

Wikipedia

Gradient descent oscillations

Wikipedia

Gradient descent oscillations

Slow to
converge to
the (local)
optimum

Wikipedia

Momentum

• Adjust the gradient by a weighted sum of the
previous amount plus the current amount.

• Without momentum: 𝜽𝑡+1 = 𝜽𝑡 − 𝛾
𝜕𝐿

𝜕𝜽

• With momentum (new 𝛼 parameter):

𝜽𝑡+1 = 𝜽𝑡 − 𝛾 𝛼
𝜕𝐿

𝜕𝜽 𝑡−1
+

𝜕𝐿

𝜕𝜽 𝑡

But James…

…I thought we were going to treat machine learning
like a black box? I like black boxes.

Deep learning is:
- a black box

ClassifierTraining data

But James…

…I thought we were going to treat machine learning
like a black box? I like black boxes.

Deep learning is:
- a black box
- also a black art.

http://www.isrtv.com/

But James…

…I thought we were going to treat machine learning
like a black box? I like black boxes.

Many approaches and hyperparameters:

Activation functions, learning rate, mini-batch size,
momentum…

Often these need tweaking, and you need to know
what they do to change them intelligently.

Nailing hyperparameters + trade-offs

Lowering the learning rate =
smaller steps in SGD

-Less ‘ping pong’

-Takes longer to get
to the optimum

Wikipedia

Flat regions in energy landscape

Problem of fitting

• Too many parameters = overfitting

• Not enough parameters = underfitting

• More data = less chance to overfit

• How do we know what is required?

Regularization

• Attempt to guide solution to not overfit

• But still give freedom with many parameters

Data fitting problem

[Nielson]

Which is better?
Which is better a priori?

1st order polynomial9th order polynomial

[Nielson]

Regularization

• Attempt to guide solution to not overfit

• But still give freedom with many parameters

• Idea:
Penalize the use of parameters to prefer small weights.

Regularization:

• Idea: add a cost to having high weights

• λ = regularization parameter

[Nielson]

𝜆

Both can describe the data…

• …but one is simpler.

• Occam’s razor:
“Among competing hypotheses, the one with the fewest
assumptions should be selected”

For us:
Large weights cause large changes in behaviour in
response to small changes in the input.
Simpler models (or smaller changes) are more robust
to noise.

Regularization

• Idea: add a cost to having high weights

• λ = regularization parameter

Normal cross-entropy
loss (binary classes)

Regularization term

[Nielson]

𝜆

𝜆

Regularization: Dropout

• Our networks typically start with random weights.

• Every time we train = slightly different outcome.

• Why random weights?

• If weights are all equal,
response across filters
will be equivalent.
• Network doesn’t train.

[Nielson]

Regularization

• Our networks typically start with random weights.

• Every time we train = slightly different outcome.

• Why not train 5 different networks with random
starts and vote on their outcome?
• Works fine!

• Helps generalization because error is averaged.

Regularization: Dropout

[Nielson]

Regularization: Dropout

At each mini-batch:
- Randomly select a subset of neurons.
- Ignore them.

On test: half weights outgoing to
compensate for training on half neurons.

Effect:
- Neurons become less dependent on

output of connected neurons.
- Forces network to learn more robust

features that are useful to more
subsets of neurons.

- Like averaging over many different
trained networks with different
random initializations.

- Except cheaper to train.

[Nielson]

Many forms of ‘regularization’

• Adding more data is a kind of regularization

• Pooling is a kind of regularization

• Data augmentation is a kind of regularization

