FUTURE VISION

COMPUTER VISION

Convolutional Layer

0 fw-z4+5b<0
1 ifw-z4+b>0

- ’

AL .| w-xr =) j WiT;.

v Share the same parameters across
» (S different locations (assuming input is

" f;" v, stationary):
11 = Convolutions with learned kernels

ST

_ ‘ Perceptron: output = {
A

36
Ranzaton

Convolutional Layer

10 1 TR RS |
%101 | = it
-101 PR
Shared weights é : -& j
i LT

Ranzaton

Convolutional Layer

Learn multiple filters.

Filter = ‘local’ perceptron.
g\ Also called kernel.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton

Pooling Layer

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

61
Ranzaton

[Krizhevsky et al. 2012]

AlexNet diagram (simplified)

Input size
227 x 227 x 3
25
2 dense dense
13 13 13 _— dense
11 ‘ .
t A B 3 2
i | M, 8 ' : 13 3 13 T ™M r
b 27 1 3
Input “NA 3 3
g - 354 | 334 256 1000
(RGB) - we | L
‘ Max = Max pooling 4096 4096
Stride 96 r— pooling
227 ofd 3x3 3x3
- Stride 2 Stride 2
Conv1 Conv 2 Conv3 Conv 4 Conv 4
11x11x3 5x5x96 3x3x256 3x3x192 3x3x192
Stride 4 Stride 1 Stride 1 Stride 1 Stride 1

96 filters 256 filters 384 filters 384 filters 256 filters

Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

Krizhevsky et al. “lmageNet Classification w'.t'HpéJéep CNNs” NIPS 2012

category
prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

Total nr. flops: 832M

4M

16M
37M

74M

224M
149M

223M

105M

96
Ranzaton

Training Neural Networks

Gradient descent

fix)

General approach

Pick random starting point.

fix)

General approach

Compute gradient at point (analytically or by finite differences)

fx)
. V/f(a)

General approach

Move along parameter space in direction of negative gradient

fix)

y = amount to move
= learning rate

v

General approach

Move along parameter space in direction of negative gradient.

fix)

y = amount to move
= learning rate

General approach

Stop when we don’t move any more.

fix)

Astop:
an-1 — vV flan_1) =0

a, apas Astop X

Gradient descent

e Optimizer for functions.

* Guaranteed to find optimum for convex functions.
* Non-convex = find local optimum. flx) 1

* Most vision problems aren’t convex. v

* Works for multi-variate functions.
* Need to compute matrix of partial derivatives (“Jacobian”)

»
|

X

Train NN with Gradient Descent

. xi,yi = n training examples
 f(x) = feed forward neural network
* L(x, y; ©) = some loss function

* Loss function measures how ‘good’ our network is
at classifying the training examples wrt. the
parameters of the model (the perceptron weights).

Train NN with Gradient Descent

Loss function N
(Evaluate NN
on training data)

1 \ >

a, a,as Astop Model parameters
(perceptron weights)

How Good is a Network?

What is an appropriate loss?

* Define some output threshold on detection
* Classification: compare training class to output class
e Zero-one loss L (per class)

y = true label A T
y = predicted label L(y’ y) o I(y 7 y)’
* Is it good?
* Nope —it’s a step function.
* | need to compute the gradient of the loss.
* This loss is not differentiable, and ‘flips’ easily.

Classification has binary outputs

Special function on last layer - ‘Softmax’:

* "squashes" a C-dimensional vector O of arbitrary real
values to a C-dimensional vector o(0) of real values in the
range (0, 1) that add up to 1.

* Turns the output into a probability distribution on classes.

p(ck:Hx): C

How Good is a Network?

Softmax

Cross-entropy loss function

* Negative log-likelihood

L(x,y:0) = =) y;logp(g;lx)
J

5

L,

* |s it a good loss? W
» Differentiable ol
e Cost decreases as 25|

probability increases

0.5

U Il L Il L L L Il [- =
0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

p(c;/x)

How Good is a Network?

Softmax

Probability of class k given input (softmax):

o

e
p(Ck — 1 |x) — C
2., ¢
j=1
(Per-sample) Loss; e.g., negative log-likelihood (good for classification
of small number of classes):

L(xayfe):_zj yflogp(CJ"x) Ranzaltgon

k

Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0~ =arg min, anl L(x",y",0)

Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0~ =arg min, anl L(x",y";0)

Question: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure
to compute gradients of the loss w.r.t. parameters in a multi-layer
neural network.

19

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986

Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y;0\W"

i j?

W, +e)

Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y; 0\ W:,J.+e)

i Jj?

Then, update:
W:,J.<—Wf,j+e sgn(L(x,y:0)—L(x,y;0\W'

i, J?

W, +e))

Ranzaton

Derivative w.r.t. Input of Softmax

ple=1lx)= Z =

1 k C
L(x,y;@):—zj_yjlogp(cj|x) y=[00..010..0]|

By substituting the fist formula in the second, and taking the
derivative w.rt. 0 we get:

0L

6_0: p(ch)—y

21
Ranzaton

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

oL OL oo

ow® 0o oW’

22

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

0L 9L do 0L 8L do

ow® 0o oW’ oh> 00 on

22

Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the

Jacobian of each module, we have:

0L oL do 0L 0L 0o
ow® 0o oW’ oh> 00 on
oL oL
= (plc|x)—y) b =W (plex)—y)=

oW’ oh’

Backward Propagation

oL
oh’

oL 0L on’ oL oL ol

ow® on® ow? oh' ohn’ on'

Given

we can compuie now:

24
Ranzaton

Backward Propagation

oL
oh'

0L OL Oh'
ow' on ow'

Given

we can compuie now:

25
Ranzaton

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

But the RelU is not differentiable at 0!

Right. Fudge!

- ‘0’ is the best place for this to occur, because we
don’t care about the result (it is no activation).

- ‘Dead’ perceptrons

- ReLU has unbounded positive response:
- Potential faster convergence / overstep

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).

Note: FPROP and BPROP are dual of each other. E.g.,:

FPROP BPROP
= <=1
- | I
w 1
- ==

COPY
A

26
. f
N Ranzato

Optimization demo

 http://www.emergentmind.com/neural-network

* Thank you Matt Mazur

http://www.emergentmind.com/neural-network

Toy Code (Matlab): Neural Net Trainer

for i = 1 : nr layers - 1
[h{i} Jac{i}] = nonlinearity(W{i} * h{i-1} + b{il});
end
h{nr_ layers-1} = W{nr_layers-1} * h{nr layers-2} + b{nr layers-1};
prediction = softmax(h{l-11});
loss = - sum(sum(log(prediction) .* target)) / batch_size;
dh{l-1} = prediction - target;
for i = nr layers — 1 : -1 : 1
Wgrad{i} = dh{i} * h{i-1}";
bgrad{i} = sum(dh{i}, 2);
dh{i-1} = (W{i}' * dh{i}) .* Jac{i-1};
end
for i = 1 : nr layers - 1
W{i} = W{i} - (lr / batch_size) * Wgrad{i};
b{i} = b{i} - (lr / batch_size) * bgrad{i};
end

28
Ranzaton

Stochastic Gradient Descent

» Dataset can be too large to strictly apply gradient
descent.

* Instead, randomly sample a data point, perform
gradient descent per point, and iterate.

* True gradient is approximated only
* Picking a subset of points: “mini-batch”

Pick starting W and learning rate y
While not at minimum:

e Gradient descent

» Shuffle training set
* For each data point i=1...n (maybe as mini-batch) } “Epoch”

Stochastic Gradient Descent

Loss will not always
decrease (locally) as
training data point is

(
o

random.
Still converges over
time.

I 1 I I I 1
1] SO0 1000 1500 2000 2500 3000 3500

Wikipedia

Gradient descent oscillations

Wikipedia

Gradient descent oscillations

Slow to
converge to
the (local)
optimum

Wikipedia

Momentum

e Adjust the gradient by a weighted sum of the
previous amount plus the current amount.

L

_ d
* Without momentum: 0;,; = 0; — Y38

e With momentum (new a parameter):

0r11 = Ht_y([ae]t 1+[])

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box

Training data Classifier

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Deep learning is:
- a black box
- also a black art.

http://www.isrtv.com/

But James...

...l thought we were going to treat machine learning
like a black box? | like black boxes.

Many approaches and hyperparameters:

Activation functions, learning rate, mini-batch size,
momentum...

Often these need tweaking, and you need to know
what they do to change them intelligently.

Nailing hyperparameters + trade-offs

agokasla .54 pn
uploaded and commented on this image: image.png ~

WOOT! Nailed the hyperparameters. 4 generator updates per discriminator update. Wait extra long before you
initiate the switch.

jamestompkin «.:
Well done - | wonder if we can turn hyperparameter nailing into the next e-5port?

agokasla 4

. | am starting to think that the numeric instability of the model is starting to become a real issue. Lowering the
learning rate could make it more stable, but it would require lowering it by two orders of magnitude which would
make it take 100x longer to train right? =

Lowering the learning rate =
smaller steps in SGD

-Less ‘ping pong’

-Takes longer to get
to the optimum

Wikipedia

Flat

regions in energy landscape

Y — sGb g = SGD
| — Momentum —— Momentum
~ NAG - — NAG
— Adagrad | —— Adagrad
Adadelta Adadelta
Rmsprop 4 Rmsprop
— 2
0

1.0

Problem of fitting

* Too many parameters = overfitting
* Not enough parameters = underfitting

* More data = less chance to overfit

* How do we know what is required?

Regularization

* Attempt to guide solution to not overfit
e But still give freedom with many parameters

Data fitting problem

—
o]
@

g -]
8- ®
9
7 []
G [
V 5. °
4 °
3,.
n ®
2 ®
.1
0
0 1 2 3 4 5
X

[Nielson]

nich is better?
nich is better a priori?

==

10-
?
///1-. II ’
,9/ \ | 8 P
_— . \J 7 ,/"/
./ 6 /./,
/ V s f‘/
-«) .
\ .
|'II N\ // 3 ~ ’
| e e
‘ L,
I| 1 -
I! 1 2 3 14 5 0 .
| X 0 1 2 3
X
9t order polynomial 1t order polynomial

[Nielson]

Regularization

* Attempt to guide solution to not overfit
e But still give freedom with many parameters

* |dea:
Penalize the use of parameters to prefer small weights.

Regularization:

* |dea: add a cost to having high weights
e A = regularization parameter

C=Co+ A Y w

[Nielson]

Both can describe the data...

e ...but one is simpler.

* Occam’s razor:
“Among competing hypotheses, the one with the fewest
assumptions should be selected”

For us:
Large weights cause large changes in behaviour in
response to small changes in the input.

Simpler models (or smaller changes) are more robust
to noise.

Regularization

* |dea: add a cost to having high weights
e A = regularization parameter

C=Co+ A Y w

C = —%Z [yjlﬂﬂ? +(1—yj)111(1—a§')] + A Zwi.
\ o)
f f

Normal cross-entropy Regularization term
loss (binary classes)

[Nielson]

Regularization: Dropout

* Our networks typically start with random weights.
* Every time we train = slightly different outcome.

* Why random weights?

* If weights are all equal,
response across filters
will be equivalent.

e Network doesn’t train.

mputs < KA

[Nielson]

Regularization

* Our networks typically start with random weights.
* Every time we train = slightly different outcome.

* Why not train 5 different networks with random
starts and vote on their outcome?
* Works fine!
* Helps generalization because error is averaged.

Regularization: Dropout

[Nielson]

Regularization: Dropout

At each mini-batch:

Randomly select a subset of neurons.
lgnore them.

On test: half weights outgoing to
compensate for training on half neurons.

Effect:

Neurons become less dependent on
output of connected neurons.
Forces network to learn more robust
features that are useful to more
subsets of neurons.

Like averaging over many different
trained networks with different
random initializations.

Except cheaper to train.

[Nielson]

Many forms of ‘regularization’

* Adding more data is a kind of regularization
* Pooling is a kind of regularization
* Data augmentation is a kind of regularization

