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Goals

Build a classifier which is more powerful at
representing complex functions and more suited to
the learning problem.

What does this mean?

1. Assume that the underlying data generating
function relies on a composition of factors.

2. Learn a feature representation that is specific to
the dataset.



Neural Networks

* Basic building block for composition is a
perceptron (Rosenblatt c.1960)

* Linear classifier — vector of weights w and a ‘bias’ b

w = (W, Wy, W3)
X
1 b =03
Xo % Output (binary)
X3 /

0 fw-z4+b<0
output = - w-Tr = . WE ],
P { ifw-z+b>0 Zj 7



Mark 1 Perceptron
c.1960

4=

20x20 pixel
camera feed

i
3
R
j
a
l.
i
| S
<1
{ 1

\ R AT RRg e em DT

Wikipedia



Universality

A single-layer network can learn any function:
* So long as it is differentiable

* To some approximation;
More perceptrons = a better approximation

Visual proof (Michael Nielson):
http://neuralnetworksanddeeplearning.com/chap4.html



http://neuralnetworksanddeeplearning.com/chap4.html

If a single-layer network can learn any function...
...given enough parameters...

...then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow
networks at learning such hierarchies of knowledge.



Composition

Hidden Hidden
Layer 1 Layer 2

output

Layers that are in between the input and the output are
called hidden layers, because we are going to learn their
weights via an optimization process.

Nielson



Interpretation of many layers

[0010000100110010...]truckfeature

Exponentially more efficient than a
1-0f-N representation (a la k-means)

14
Ranzaton




Interpretation

1100010100001 10 1...] motorbike

001000010011 0010...] tuck

Ay
£

15
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Interpretation

prediction of class

high-level

parts
mid-level = distributed representations

parts « feature sharing

= compositionality

low level

parts \

| NOTE: Not actually the
Input image Bt =8 ~ weights; a demonstrative

visualization!

=== 1
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton




Activation functions:
Rectified Linear Unit

* RelLU

f(z) = max(0, x)

1.0+

0.8 -

0.6 -

0.4 -

0.2+

0.0

| T | T |
-4 -3 -2 -1 0 1

I
2



X

hl

Neural Networks: example

Input
1-st layer hidden units

h® 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).

7
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Does anyone pass along the weight without an
activation function?

No — this is linear chaining.

Input

Output vector
vector




Does anyone pass along the weight without an
activation function?

No — this is linear chaining.

Input

Output vector
vector



What is the relationship between SVMs and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.




What is the relationship between SVMs and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

A perceptron does not.
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal
stability’ is used in SVM:

Perceptron

+ optimal stability

+ kernel trick

= foundations of SVM

| I | |
| Y w %] (=] o (= (] w B w




Outline

« Convolutional Neural Networks

32
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Images as input to neural networks

i \\.\\_J

- '.h‘-‘h» LT 1Y

: -”.ﬂm._... \
S | IR
Y 3 P 1
i .......3 W P
C LT AR LR

33
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Images as input to neural networks

Example: 200x200 image
40K hidden units

m) ~2B parameters!!!

&
WUH LS S,

NEE
| | NS . .
M ,.1_\.'._ ’
| ”:‘ﬁ”."
n 1 " ;

33
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Images as input to neural networks

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

- 33
training samples anyway.. Ranzatol3
anzato




Motivation

* Sparse interactions — receptive fields

* Assume that in an image, we care about ‘local
neighborhoods’ only for a given neural network layer.

* Composition of layers will expand local -> global.



Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

SN Note: This parameterization is good
. when input image is registered (e.g.,
face recogpnition). Ranzatolh 3




STATIONARITY? Statistics is similar at

"__: ;
' ’ different locations

Example: 200x200 image
. 40K hidden units
Filter size: 10x10

. 4M parameters

Note: This parameterization is good
when input image Is registered (e.9.,
face recognition). Ranzaton




Motivation

* Sparse interactions — receptive fields

* Assume that in an image, we care about ‘local
neighborhoods’ only for a given neural network layer.

* Composition of layers will expand local -> global.

* Parameter sharing

* ‘Tied weights’ — use same weights for more than one
perceptron in the neural network.

* Leads to equivariant representation
* Ifinput changes (e.g., translates), then output changes similarly



a4 Share the same parameters across
B . T ( $ different locations (assuming input is
stationary):

g o
& o =
E F
A /
i ¥
-y P
& 1 f
=
i
o o
g B
'R
!
]
T

f

N

.“
N

36
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Filtering reminder: £l .1 [
Correlation (rotated convolution) ARE

1] l.,.]

O~

him,n] =3 £k, 1] 1[m+k,n+1]

Credit: S. Seitz



Convolutional Layer

: 0 fw-z24+b<0
(

' Perceptron: output = { .
/1 / 1 fw-z+b>0
B

N 4

4
Y 4 P
_ - ’
" s

. This is convolution!

Share the same parameters across
N different locations (assuming input is

1 -’"’ Y, stationary):
® . :
1L \ Convolutions with learned kernels

36
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Convolutional Layer



















Convolutional Layer

MAMNR.AA

VAR




Convolutional Layer




Convolutional Layer




Convolutional Layer

NARNAN.

VAN



















Convolutional Layer




Convolutional Layer

101 i Il ' |
*(-101| =
-101 B
Shared weights é , -ﬁ j
i At

Ranzaton




Convolutional Layer

Learn multiple filters.

Filter = ‘local’ perceptron.
a3\ Also called kernel.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton




high-level
parts

mid-level
parts

low level
parts

Lee et al. “Convolutional DBN's ...” IC

Interpretation

prediction of class

= distributed representations
= feature sharing
= compositionality

| 16
ML 2009 Ranzatolh 3



Convolutional Layer

n = layer number

n
h max 0 z _ K = kernel size
=1 j =#channels (input)
or # filters (depth)

output input feature kernel
feature map map

Conv.
layer

55
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Convolutional Layer

K
n__ n—1 n
h'=max (0, D B xwy)

/

output input feature kernel
feature map map

56
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Convolutional Layer

K
n__ n—1 n
h'=max (0, D B xwy)

/

output input feature kernel
feature map map

57
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Stride =1

\_\ X 'dr"




Stride =1




Stride =3




Stride =3




Stride =3




Stride =3




Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60
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Pooling Layer

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

61
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Pooling is similar to downsampling

Level 4
Blur and 4 1/16 resolution
subsample S | Level3
Blur and : 1/8 resolution
subsample ' g Level 2
. 1/4 resolution
Blur and
subsample .
L ; Level 1
- 1/2 resolution
Blur and
subsample ‘
| Level 0
Original
P L image
- o

...except sometimes we don’t want to blur,
as other functions might be better for classification.



Pooling Layer: Receptive Field Size




Pooling Layer: Examples
Max-pooling:
h};(-x:y):max?ceN(x),jzeN(y) j

Average pooling'

I/sze ), VEN(y };_1



Max pooling

Single depth slice

-

Wikipedia




Pooling Layer: Examples
Max-pooling:
L n—1;,_ _
hf('x’y):maxZEN(x),j/EN(y)hj (-x,y)
Average pooling'

)=UK D, o VA R)

), VEN(y
L2-pooling:

n — n—1/_ _\2
hf'(x’y)_\/zfeN(x),jzeN(y) hj (.X,y)

L2-pooling over features:

Wy(x, )=V 2y (0]

62
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Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

(P+K-1)x(P+K-1)
T
f=!’
995
:;gtz,
$s2e

66
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Pooling Layer: Receptive Field Size

hn_l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

67
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Local Contrast Normalization

68
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Local Contrast Normalization

69
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Local Contrast Normalization

i+1 _hi(x’y)_mi(N(xay))
= N y)

N(x,y) = model pixel values in window
as a normal distribution

m = mean
O = variance

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




Local Contrast Normalization
hHl(x, y): hi(x’ yi)_mi(N(x’ y))
o (N(x,y))

Performed also across features
and in the higher layers..

Effects:

— improves invariance
— improves optimization
— Increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast
Normalization

Filter Bank
courtesy of
K. Kavukcuoglu

Ranzaton



ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
o

Class
Fully Conn, |Labels
Layers

73
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ConvNets: Typical Architecture

Whole system

Input Class
mage | Fully Conn. [Labels
Layers
1% stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling — SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012

74
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Yann LeCun’s MINIST CNN architecture

G301 maps 16E10x10
NEUT (31: feafure maps Sd: 1 maps 168585

BE@2ZEx2E
3232 52: f. maps C5: layer .
B@14x14 P ol iiad

Full connectian Gaussian connections
i Subsamplin |Lati Subsamplin Full ection
Ganvolutians pling  Convolutions piing AR P Ranzato n




Convolutions: More detall

32x32x3 image

32 height

3 depth

Andrej Karpathy




Convolutions: More detall

32x32x3 image

5x5x3 filter

32 IA"

32

Andrej Karpathy



Convolutions: More detall

Convolution Layer

activation map

_— 32X%32x3 Image

T 5x5x3 filter /
2
@>O :
convolve (slide) over all

spatial locations
32 28

Andre] Karpathy




Convolutions: More detall

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:
activation maps
Z

ANINR

32

28

Convolution Layer

7

32 s 28
3 6

We stack these up to get a “new image” of size 28x28x6!

Andrej Karpathy



Convolutions: More detall

32

Andrej Karpathy

32

CONYV,
RelLU
eg. 6
IX9X3
filters

28

28

CONV,
RelLU
e.g. 10
IXOX6
filters

10

24

CONYV,
RelLU

24




Convolutions: More detail
N

Output size:
(N - F) / stride + 1

Andrej Karpathy



Our connectomics diagram

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Input
75x75x4
Image 4X75X75 64x73x73 64x36x36 48x34x34 48x17x17 48x15x15 48X7X7 48x5x5 48x2x2 512 2
Prob. 3x3p ox2p 3x3p ox2p 3x3p ox2p 3xap oxo % 1: Split Error
0: Correct
' Y N
Label Input Convolution Pooling  Convolution Pooling Convolution Pooling Convolution Pooling Dense Dense
B (Max) (Max) (Max) (Max) ReLU  softmax
Dropout Dropout Dropout Dropout Dropout

Border p=.2 p=.2 p=.2 p=.2 p=.5

Conv1 Conv 2 Conv 3 Conv4

3x3x4 3x3x64 3x3x48 3x3x48

64 filters 48 filters 48 filters 48 filters

Max pooling Max pooling Max pooling Max pooling

2x2 per filter 2x2 per filter 2x2 per filter 2x2 per filter



Reading
architecture
diagrams

Layers

- Kernel sizes
- Strides

- #channels

- #kernels

- Max pooling

params AlexNet FLOPs

442K || Conv 3x3s1, 25
884K

223M

307K

35K




[Krizhevsky et al. 2012]

AlexNet diagram (simplified)

Input size
227 x 227 x3
85 |
a7 ' dense dense
13 13 11 — dense
11 \ ¥ :
? ’ 3 y | 3 - [ I S
ot B, ¥ 3 13 3
. > 3
Input A 3 3
27| image 6 36+ . 3 236 1000
(RGB) - Max | ]
Max . Max pooling 4096 4096
Stride pooling pooling
227 of 4 % 3x3 3x3
‘3 Stride 2 Stride 2
Conv1 Conv 2 Conv3 Conv 4 Conv 4
11x11x3 5x5x48 3x3x256 3x3x192 3x3x192
Stride 4 Stride 1 Stride 1 Stride 1 Stride 1

96 filters 256 filters 384 filters 384 filters 256 filters



Outline

« Examples
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CONV NETS: EXAMPLES

- OCR / House number & Traffic sign classification

| HTWEHNE K

~H2NEN 20
B [ IR
- IIIIM&IWII
lllt il
IIIHIW

L Wl 5T

2343

Ilﬂiglllmm

Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013 82
Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014



CONV NETS: EXAMPLES

- Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 85
Pinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Segmentation 3D volumetric images

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012

86
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzaton



CONV NETS: EXAMPLES

- Object detection

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Face Verification & Identification

g ‘ |
— \ |
E|\#& S
{ ll IA _Q
= Y |
=l A 1=
{ Aal
3 sy | 1
w/
= |
ks " i Cl: M2 C3: L4; L5: LE: F7 E&
Colistn_Flackhort_ 0002 jpg Frontalization: 32x11x11x3 EREETETE R 16x9x9x33 16x2xex1 6 1exfaixle  16xGxGxlé 40%6d 4030
Dietection & Localization @152X152x3 @142x142 @7 1x71 EIaG3 A55x5EE 25525 @21%21

92
Taigman et al. “DeepFace...” CVPR 2014 Ranzaton




Dataset: ImageNet 2012

WRH ES @

55 i Tar (0 M 4T
S By ] A B E

mammal —— placental — camivore —— canine — working dog

# 5 () Eskimo dog, busky (breed of heavy-coated Arctic shed dog)
& diract iypermym | inkerited Rypernym | sister term
* §: () working dog (anv of several breeds of usually large powerfil dogs bred to work as draft anmals and puard and mide dogs)
» 5 (n) dog, domestic dog, Cands famibianis (2 member of the genns Canis (probably descended from the common welf) that has been demesticated by man since prebistoric times; occurs in many
breeds) "the dog barked all might”
® 5 (n) canme, canid (any of various fissiped mamemals with noneetractle claws and typically long amzzles)
® 5 (n) camnivese (3 terrestrial o aquatc flash-eating mammal) "ferrestrial carnivores have four or five clawed digits on each Timb"
* 5 (p) placental, placental mammal, sutherian, eutherian mammal {mammals having 2 placenta; all mammals except monotremes and marsupials)
* 5 (n) mammal mammalian (any wam-blooded vertebrate having the skin more or less covered with hair; young are bommn alive except for the small subclass of
menotremes wed noursshed with oalk)
® 5 (o) vertebrats, craniate (animals having a bomy or cartilamnons ckeleton with a sagmented spinal columa and a larps brain anclosed i a skl or crannem)
® 5 {n) chordate (any arsmal of the phylem Chordata having a notochord or spinal coloma)
* 5 (1) animal, animate being, beact, brote, creature, fama (2 Bing organism charactenzed by vohmtary movement)
® & (n) orgenism, being (a living thing that has (or can develop) the abiity to act or function independenty)
o 5 (1) bving thing, ansmate thing (a Fvng (or ence ving) entify)
& 5 () whole, unit (an assemblaze of parts that is regarded as a ingle entity) "how big is that part compared to the
whole?"s "the feam is a wiit”
* 5 {0 object, physical object (a tangible and visble enfity, an entity that can cast a shadow) "it was fill of rackets,
balls and other objects"
» 5 (1) physical entify (an ety that has physical existence)
® 5 (n) entity (that which is percerved or known or inferrad to have its own distinct axistence (lving o
nonliving)

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009
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mite  container ship motor scooter  leop

mite container ship motor scooter ledpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick r fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

- N NV
N ‘(4 L """‘#A
1 B L - 4 -
. 3 % oo
’ .»,
.

s o . = B0 =k B
grille mushroom cherry Madagascar cat
convertible | agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey




Architecture for Classification

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

Krizhevsky et al. “ImageNet Classification wiidsep CNNs” NIPS 2012

category
prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

Total nr. flops: 832M

4M

16M
37M

74M

224M
149M

223M

105M

96
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Results: ILSVRC 2012

TASK 1 - CLASSIFICATION
36 g w g !

TASK2 - DETECTION

CNN  SIFT+FV  SVM1  SVM2 NCM

CNN

DPM-SVM1 DPM-SVM2

o938
Krizhevsky et al. “imageNet Classification with deep CNNs” NIPS 2012 Ranzatoll 8




Phew!

* Friday:

* Network training



More ConvNet explanations

e https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/



https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

