

Wow

so misclassified

false positives

no good filtr

what class

cool kernel

Goals

Build a classifier which is more powerful at
representing complex functions and more suited to
the learning problem.

What does this mean?

1. Assume that the underlying data generating
function relies on a composition of factors.

2. Learn a feature representation that is specific to
the dataset.

Neural Networks

• Basic building block for composition is a
perceptron (Rosenblatt c.1960)

• Linear classifier – vector of weights w and a ‘bias’ b

𝒘 = (𝑤1, 𝑤2, 𝑤3)
𝒃 = 0.3

Output (binary)

𝑥1

𝑥2

𝑥3

Mark 1 Perceptron
c.1960

20x20 pixel
camera feed

Wikipedia

Universality

A single-layer network can learn any function:
• So long as it is differentiable

• To some approximation;
More perceptrons = a better approximation

Visual proof (Michael Nielson):

http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html

If a single-layer network can learn any function…
…given enough parameters…

…then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow
networks at learning such hierarchies of knowledge.

Composition

Layers that are in between the input and the output are
called hidden layers, because we are going to learn their
weights via an optimization process.

Hidden
Layer 1

Hidden
Layer 2

Nielson

Interpretation of many layers

NOTE: Not actually the
weights; a demonstrative
visualization!

Activation functions:
Rectified Linear Unit
• ReLU

Does anyone pass along the weight without an
activation function?

No – this is linear chaining.

Output vector
Input
vector

Output vector
Input
vector

Does anyone pass along the weight without an
activation function?

No – this is linear chaining.

What is the relationship between SVMs and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

What is the relationship between SVMs and perceptrons?

SVMs attempt to learn the support vectors which
maximize the margin between classes.

A perceptron does not.
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal
stability’ is used in SVM:

Perceptron
+ optimal stability
+ kernel trick
= foundations of SVM

Images as input to neural networks

Images as input to neural networks

Images as input to neural networks

Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.

Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.

• Parameter sharing
• ‘Tied weights’ – use same weights for more than one

perceptron in the neural network.

• Leads to equivariant representation
• If input changes (e.g., translates), then output changes similarly

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]I

Filtering reminder:
Correlation (rotated convolution) 111

111

111],[f

Credit: S. Seitz

],[],[],[
,

lnkmIlkfnmh
lk



Perceptron:

This is convolution!

v

v

v v

Shared weights

Filter = ‘local’ perceptron.
Also called kernel.

n = layer number
K = kernel size
j = # channels (input)
or # filters (depth)

Stride = 1

Stride = 1

Stride = 3

Stride = 3

Stride = 3

Stride = 3

By pooling responses at different locations,
we gain robustness to the exact spatial
location of image features.

Pooling is similar to downsampling

…except sometimes we don’t want to blur,
as other functions might be better for classification.

Wikipedia

Max pooling

N(x,y) = model pixel values in window
as a normal distribution

m = mean
σ = variance

Yann LeCun’s MNIST CNN architecture

Our connectomics diagram

Conv 1
3x3x4
64 filters

Max pooling
2x2 per filter

Conv 2
3x3x64
48 filters

Max pooling
2x2 per filter

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Conv 3
3x3x48
48 filters

Max pooling
2x2 per filter

Conv 4
3x3x48
48 filters

Max pooling
2x2 per filter

Input
75x75x4

Reading
architecture
diagrams

Layers
- Kernel sizes
- Strides
- # channels
- # kernels
- Max pooling

AlexNet diagram (simplified)
Input size
227 x 227 x 3

Conv 1
11 x 11 x 3
Stride 4
96 filters

227

227

Conv 2
5 x 5 x 48
Stride 1
256 filters

3x3
Stride 2

3x3
Stride 2

[Krizhevsky et al. 2012]

Conv 3
3 x 3 x 256
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
256 filters

Phew!

• Friday:

• Network training

More ConvNet explanations

• https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

