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Goals

Build a classifier which is more powerful at 
representing complex functions and more suited to 
the learning problem.

What does this mean?

1. Assume that the underlying data generating 
function relies on a composition of factors.

2. Learn a feature representation that is specific to 
the dataset.



Neural Networks

• Basic building block for composition is a 
perceptron (Rosenblatt c.1960)

• Linear classifier – vector of weights w and a ‘bias’ b

𝒘 = (𝑤1, 𝑤2, 𝑤3)
𝒃 = 0.3

Output (binary)

𝑥1

𝑥2

𝑥3



Mark 1 Perceptron
c.1960

20x20 pixel 
camera feed

Wikipedia



Universality

A single-layer network can learn any function:
• So long as it is differentiable

• To some approximation;
More perceptrons = a better approximation

Visual proof (Michael Nielson):

http://neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html


If a single-layer network can learn any function…
…given enough parameters…

…then why do we go deeper?

Intuitively, composition is efficient because it allows reuse.

Empirically, deep networks do a better job than shallow 
networks at learning such hierarchies of knowledge.



Composition

Layers that are in between the input and the output are 
called hidden layers, because we are going to learn their 
weights via an optimization process.

Hidden 
Layer 1

Hidden 
Layer 2

Nielson



Interpretation of many layers





NOTE: Not actually the 
weights; a demonstrative 
visualization!



Activation functions:
Rectified Linear Unit
• ReLU





Does anyone pass along the weight without an
activation function?

No – this is linear chaining.

Output vector
Input
vector



Output vector
Input
vector

Does anyone pass along the weight without an
activation function?

No – this is linear chaining.



What is the relationship between SVMs and perceptrons?

SVMs attempt to learn the support vectors which 
maximize the margin between classes.



What is the relationship between SVMs and perceptrons?

SVMs attempt to learn the support vectors which 
maximize the margin between classes.

A perceptron does not. 
Both of these perceptron classifiers are equivalent.

‘Perceptron of optimal 
stability’ is used in SVM:

Perceptron
+ optimal stability
+ kernel trick 
= foundations of SVM





Images as input to neural networks



Images as input to neural networks



Images as input to neural networks



Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local 

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.







Motivation

• Sparse interactions – receptive fields
• Assume that in an image, we care about ‘local 

neighborhoods’ only for a given neural network layer.

• Composition of layers will expand local -> global.

• Parameter sharing
• ‘Tied weights’ – use same weights for more than one 

perceptron in the neural network.

• Leads to equivariant representation
• If input changes (e.g., translates), then output changes similarly
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Perceptron:

This is convolution!
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Shared weights



Filter = ‘local’ perceptron.
Also called kernel.





n = layer number
K = kernel size
j = # channels (input) 
or # filters (depth)







Stride = 1



Stride = 1



Stride = 3



Stride = 3



Stride = 3



Stride = 3





By pooling responses at different locations, 
we gain robustness to the exact spatial 
location of image features.



Pooling is similar to downsampling

…except sometimes we don’t want to blur,
as other functions might be better for classification.







Wikipedia

Max pooling













N(x,y) = model pixel values in window 
as a normal distribution

m = mean
σ = variance











Yann LeCun’s MNIST CNN architecture















Our connectomics diagram

Conv 1
3x3x4
64 filters

Max pooling
2x2 per filter

Conv 2
3x3x64
48 filters

Max pooling
2x2 per filter

Auto-generated from network declaration by nolearn (for Lasagne / Theano)

Conv 3
3x3x48
48 filters

Max pooling
2x2 per filter

Conv 4
3x3x48
48 filters

Max pooling
2x2 per filter

Input
75x75x4



Reading 
architecture 
diagrams

Layers
- Kernel sizes
- Strides
- # channels
- # kernels
- Max pooling



AlexNet diagram (simplified)
Input size
227 x 227 x 3

Conv 1
11 x 11 x 3
Stride 4
96 filters

227

227

Conv 2
5 x 5 x 48
Stride 1
256 filters

3x3 
Stride 2

3x3 
Stride 2

[Krizhevsky et al. 2012]

Conv 3
3 x 3 x 256
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
384 filters

Conv 4
3 x 3 x 192
Stride 1
256 filters























Phew!

• Friday: 

• Network training



More ConvNet explanations

• https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

