










!!! Warning !!!

Learning jargon is always painful…

…even if the concepts behind the jargon are not hard.

So, let’s get used to it. 

“In mathematics you don't understand things. 
You just get used to them.” 

von Neumann (a joke)



Gartner Hype Cycle
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The limits of learning?



So far…

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

Smart human brains used intuition and understanding 
of how we think vision works, and it’s pretty good.



Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building (compression)

Classifier (decision making)

Classification Object DetectionRecognition:

Hand designed.

Hand designed.

Hand designed.

Learned.

Captured+manual.

Segmentation



Well, what do we have?

Best performing visions systems have commonality:

• Hand designed features
• Gradients + non-linear operations 

(exponentiation, clamping, binning)
• Features in combination (parts-based models)
• Multi-scale representations

• Machine learning from databases

• Linear classifiers (SVM)



But it’s still not that good…

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

Problems:

- Lossy features

- Lossy quantization

- Imperfect classifier



But it’s still not that good…

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

How to solve?
• Features: More principled modeling?

We know why the world looks (it’s physics!); 
Let’s build better physically-meaningful models.

• Quantization: More data and more compute?
It’s just an interpolation problem; let’s represent the 
space with less approximation.

• Classifier: …



“The Unreasonable Effectiveness of Data” - Norvig

Previous claim:

It is more important to have 
more or better labeled data than to use 
a different supervised learning technique.



No free lunch theorem

Hume (c.1739):

“‘Even after the observation of the frequent or 
constant conjunction of objects, we have no reason 
to draw any inference concerning any object beyond 
those of which we have had experience.”

-> Learning beyond our experience is impossible.



No free lunch theorem

Wolpert (1996):

‘No free lunch’ for supervised learning:

“In a noise-free scenario where the loss function is 
the misclassification rate, if one is interested in off-
training-set error, then there are no a priori 
distinctions between learning algorithms.”

-> Averaged over all possible datasets, no learning 
algorithm is better than any other.



OK, well, let’s give up. Class over.

No, no, no!

We can build a classifier which better matches the 
characteristics of the problem!



But…didn’t we just do that?

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

We used intuition and understanding of how we 
think vision works, but it still has limitations.

Why?



Linear spaces - separability

• + kernel trick to transform space.

Kawaguchi 

Linearly separable data 
+ linear classifer = good.



Non-linear spaces - separability

• Take XOR – exclusive OR

• E.G., human face has two eyes XOR sunglasses

Kawaguchi 



Non-linear spaces - separability

• Linear functions are insufficient on their own.

Kawaguchi 



Curse of Dimensionality

Every feature that we 
add requires us to 
learn the useful 
regions in a much 
larger volume.

d binary variables = 
O(2d) combinations



Curse of Dimensionality

• Not all regions of this high-dimensional space are 
meaningful.

>> I = rand(256,256);

>> imshow(I);

@ 8bit = 256 values ^ 65,536



Local constancy / smoothness of feature space

All existing learning algorithms we have seen assume 
smoothness or local constancy.

-> New example will be near existing examples

-> Each region in feature space requires an example

Smoothness is ‘averaging’ or ‘interpolating’.



Local constancy / smoothness of feature space

• At the extreme: Take k-NN classifier.

• The number of regions cannot be more than the 
number of examples.

-> No way to generalize beyond examples

How to try and represent a complex function with 
more factors than regions?



More specialization?

• PASCAL VOC = ~75%

• ImageNet = ~75%; human performance = ~95%

Is there a way to make our system 
better suited to the problem?



Wouldn’t it be great if we could…

Image formation (+database+labels)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building (compression)

Classifier (decision making)

Classification Object DetectionRecognition:

Learned.
(space specified a bit)

Learned.

Learned.

Learned.

Captured+manual.

Segmentation

End to end 
learning!



Well if we can do that, then what about…

Image formation (+database)

Filtering (gradients/transforms)

Feature points (saliency+description)

Dictionary building (compression)

Classifier (decision making)

Classification Object DetectionRecognition:

Learned.
(space specified a bit)

Learned.

Learned.

Learned.

Captured+no labels.

Segmentation

End to end 
learning!

Unsupervised



Goals

Build a classifier which is more powerful 
at representing complex functions 

and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function 
relies on a composition of factors in a hierarchy.

Dependencies between regions in feature space
= factor composition



Example

Nielsen, National Geographic



Example

Nielsen, National Geographic



Non-linear spaces - separability

• Composition of linear functions can represent 
more complex functions.

Kawaguchi 



Goals

Build a classifier which is more powerful 
at representing complex functions 

and more suited to the learning problem.

What does this mean?

1. Assume that the underlying data generating function 
relies on a composition of factors in a hierarchy.

2. Learn a feature representation specific to the dataset.

10k/100k + data points + factor composition 
= sophisticated representation.



Reminder: Viola Jones Face Detector

Combine thousands of ‘weak classifiers’

Two-rectangle features Three-rectangle features Etc.

-1 +1

CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=801361

Learn how to combine in cascade with boosting

Examples

Stage 1
H1(x) > t1?

Reject

No

Yes

Stage 2
H2(x) > t2?

Stage N
HN(x) > tN?

Yes

…
Pass

Reject

No

Reject

No



Viola Jones

Image formation 
(+database+labels)

Features 
(saliency+description)

Classifier 

(decision making)

Object DetectionRecognition:

Specified space, but 
selected automatically.

Learned combination.

Captured+manual.



Neural Networks



Neural Networks

• Basic building block for composition is a 
perceptron (Rosenblatt c.1960)

• Linear classifier – vector of weights w and a ‘bias’ b

𝒘 = (𝑤1, 𝑤2, 𝑤3)
𝒃 = 0.3

Output (binary)

𝑥1

𝑥2

𝑥3



Binary classifying an image

• Each pixel of the image would be an input.

• So, for a 28 x 28 image, we vectorize.

• x = 1 x 784

• w is a vector of weights for each pixel, 784 x 1

• b is a scalar bias per perceptron

• result = xw + b     ->  (1x784) x (784x1) + b = (1x1)+b



Neural Networks - multiclass

• Add more perceptrons

Binary output

𝑥1

𝑥2

𝑥3

Binary output

Binary output



Multi-class classifying an image

• Each pixel of the image would be an input.

• So, for a 28 x 28 image, we vectorize.

• x = 1 x 784

• W is a matrix of weights for each pixel/each perceptron
• W = 10 x 784  (10-class classification)

• b is a bias per perceptron (vector of biases); (1 x 10)

• result = xW + b   -> (1x784) x (784 x 10) + b

-> (1 x 10) + (1 x 10) = output vector



Bias convenience

• To turn this classification operation into a 
multiplication only:
• Create a ‘fake’ feature with value 1 to represent the bias

• Add an extra weight that can vary

1

𝒘 = (𝑏,𝑤1, 𝑤2, 𝑤3)

Output (binary)

𝑥1

𝑥2

𝑥3



Composition

Attempt to represent complex functions as compositions 
of smaller functions.

Outputs from one perception are fed into inputs of 
another perceptron.

Nielsen



Composition

Sets of layers and the connections (weights) between 
them define the network architecture.

Layer 1 Layer 2

Nielsen



Composition

Layers that are in between the input and the output are 
called hidden layers, because we are going to learn their 
weights via an optimization process.

Hidden 
Layer 1

Hidden 
Layer 2

Nielsen



Composition

It’s all just matrix multiplication!
GPUs -> special hardware for fast/large matrix multiplication.

Hidden 
Layer 1

Hidden 
Layer 2

Matrix! Matrix!Matrix!

Multiple

Nielsen



Problem 1 with all linear functions

• We have formed chains of linear functions.

• We know that linear functions can be reduced
• g = f(h(x))

Our composition of functions is really 
just a single function : (



Problem 2 with all linear functions

• Linear classifiers: small change in input can cause 
large change in binary output 
= problem for composition of functions

Activation 
function

Nielsen



Problem 2 with all linear functions

• Linear classifiers: small change in input can cause 
large change in binary output.

• We want:

Nielsen



Let’s introduce non-linearities

• We’re going to introduce non-linear functions to 
transform the features.

Nielsen



Multi-layer perceptron (MLP)

• …is a ‘fully connected’ neural network with non-
linear activation functions.

• ‘Feed-forward’ neural network

Nielson



MLP

• Use is grounded in theory
• Universal approximation theorem (Goodfellow 6.4.1)

• Can represent a NAND circuit, from which any 
binary function can be built by compositions of 
NANDs

• With enough parameters, it can approximate 
any function (next lecture).













Why do we need many layers?

- A hierarchical structure is potentially more efficient because we
can reuse intermediate computations.

- Different representations can be distributed across classes.








