

Course so far

Image formation and color!

Filtering!

Image frequency!

Feature points!

Bags of words!

Classifiers!

Sliding windows!

Big data!

Course coming up

Neural Nets

Convolutional Neural Nets

– Project 4

Current state of the art

- - -

Camera geometry

Stereo

– Project 5 (not very long)

Project 6 - WebGazer

• Team project – of 4 -> no single person teams

– Show to class on Dec 11th

– Report/code due Dec 12th

• Starts after project 4 CNNs (~Nov 10th)

• But _organize now_

IJCAI 2016

WebGazer - https://webgazer.cs.brown.edu/

Pure Javascript real-time eye tracking
Exploits gaze/mouse click interaction coherence

Yuze (Harry) He

Why eye tracking?

Eye gaze is important cue in human-human
communication.

-> Implicitly a fundamental technique to
future natural computing interfaces

Some state of the art stuff

Mturk-based CNN for eye tracking

• https://blogs.nvidia.com/blog/2016/08/30/eye-tracking-deep-learning/

AI-based Co-Pilot for driving

• https://www.youtube.com/watch?v=h9npvMFI-mc

Eyetracking for avatar eye capture (e.g., for virtual reality)

Eyetracking for foveated rendering for virtual reality

https://venturebeat.com/2017/09/06/eye-tracking-is-virtual-realitys-next-
frontier/

https://blogs.nvidia.com/blog/2016/08/30/eye-tracking-deep-learning/
https://www.youtube.com/watch?v=h9npvMFI-mc
https://venturebeat.com/2017/09/06/eye-tracking-is-virtual-realitys-next-frontier/

Some state of the art stuff

Alexandra projects (user behavior analysis):

- Eye tracking for remote studies of Web search

- Eye tracking as a typing aid; for touch typist identification

- Eye tracking as a human development aid,
as a cue to learning disability or disease

How does WebGazer work right now?

Step 1: Detailed face detection

clmtrackr -> Javascript learning-based facial feature tracker

Returns image locations of these landmarks.

How does WebGazer work right now?

Step 2: Pupil detection

-> Compute integral image of eye region

-> Sliding window detector

-> 2D Haar-like feature
Maximize ratio of
inner to outer regions.

How does WebGazer work right now?

Step 3: Eye feature (120 dim)

-> Extract 6x10 pixel rectangle around pupil (!)

-> Grayscale intensity

-> Histogram
equalization

How does WebGazer work right now?

Step 4: Linear regression (with regularization)

Goal: Learn a function which maps
eye feature to screen position.

f(x) = y
x = eye feature
y = mouse click data – you look where you click!

• Eye features

• Display click horizontal

• Estimate
s.t.

• Closed-form solution
(matrix notation)

Reminder: linear regression

Regularization!

Train one function for horizontal, one for vertical.

Hypothetical program loop pseudocode

Thread 1:

while(true)

eyeloc = clmtracker.trackFace(webcam.getImage());

Thread 2:

allEyeFeats = []; % Eye feature storage

allClickLocations = []; % 2D click locations

onMouseClick(MouseEvent me)

allEyeFeats(i) = extractEyeFeat(findPupil(eyeloc));

allClickLocations(i) = me.xy;

f = linearRegression(allEyeFeats, allClickLocations);

Thread 3:

gaze = predict(f, extractEyeFeat(findPupil(eyeloc)));

How do we know if it works?

Tobii Pro X3-120 eye tracker
Accurate to 1 degree at desktop range
~ 1.7 cm
Or ~ 50 pixels at 72 dpi

WebGazer error against Tobii EyeX number is
150 pixel mean, 140 std.dev.

Can we do better?

• WebGazer assumes no prior knowledge

• It learns as you click –
advantages/disadvantages?

• Could we improve it in this scenario?

• What about with a little data?

Training data

51 participants, 30 minutes each @ 30 Hz

Webcam videos

Mouse click data

Tobii Pro X3-120 eyetracking data

Screen captures

Alexandra collected all of this, and wants us to exploit it!
http://cs.brown.edu/courses/csci1430/proj_webgazer/webgazer_data.pdf

• Mention the calibration process, James!

Training data, but show them to me

Train / test split

We will give you some of the data.

We will use the rest as a testing set to measure
both WebGazer’s performance and your
performance.

Compute

We will get you some compute.

Still sorting things out…

Project 6 - WebGazer

• ‘Pure’ challenge

– Must work in ~real time in browser

– Must be deployable as Javascript library

• Fallback ‘wild’ challenge

– No restrictions.

Project 6 - WebGazer

• It is a real research problem.

• It is multifaceted, and it can be as much of a
challenge as you wish.

• You can use anything and everything.

Jeff’s Carrot

If you can “visibly improve the eye tracking”,
and keep the Web/real-time constraints…

…then Jeff has money for you to integrate your
work with WebGazer,
for you to become co-authors on the project,
and for you to share the IP.

Go Jeff.

Rest of today: Challenge discussion

• Medium groups – 6-10 (not your project groups!)

• Identify possible WebGazer problems.

• Discuss different solutions.

• Investigate what might be done.

• ‘Back of envelope’ computation costs.

• Write! Sketch! Ask me questions!

• Last 10 minutes: class discussion on what you

came up with.

http://cs.brown.edu/courses/csci1430/proj_webgazer/webgazer_data.pdf

First steps

• Try out WebGazer

• Use the library on a page of your own

• Read the Webgazer paper
http://cs.brown.edu/people/alexpap/papers/ijcai2016webgazer.pdf
Don’t get hung up on things you might not understand yet; barrel through.

• Fork it.

• Test it on the challenge data (next few weeks).

http://cs.brown.edu/people/alexpap/papers/ijcai2016webgazer.pdf

