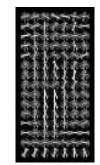
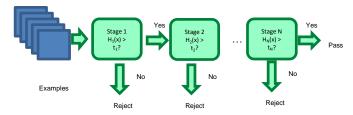


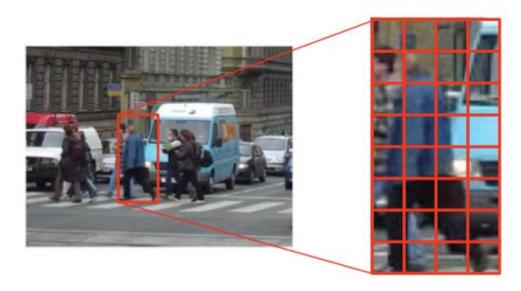
Object detection

- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
- Boosting for feature selection
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples





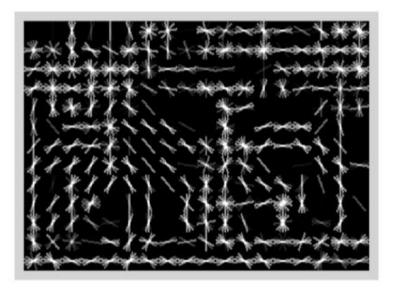
Starting point: sliding window classifiers



Feature vector $x = [\dots, \dots, \dots, \dots]$

- Detect objects by testing each subwindow
 - Reduces object detection to binary classification
 - Dalal & Triggs: HOG features + linear SVM classifier
 - Previous state of the art for detecting people

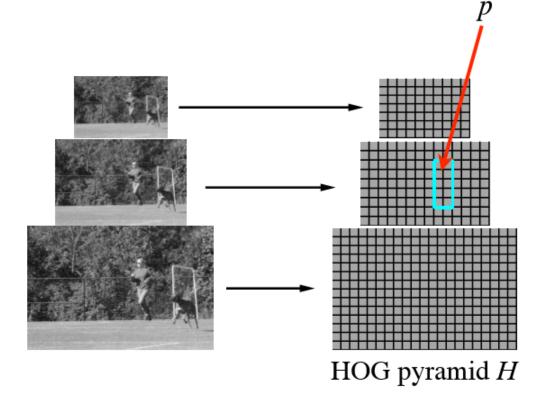
Histogram of Gradient (HOG) features



- Image is partitioned into 8x8 pixel blocks
- In each block we compute a histogram of gradient orientations
 - Invariant to changes in lighting, small deformations, etc.
- Compute features at different resolutions (pyramid)

HOG Filters

- Array of weights for features in subwindow of HOG pyramid
- Score is dot product of filter and feature vector

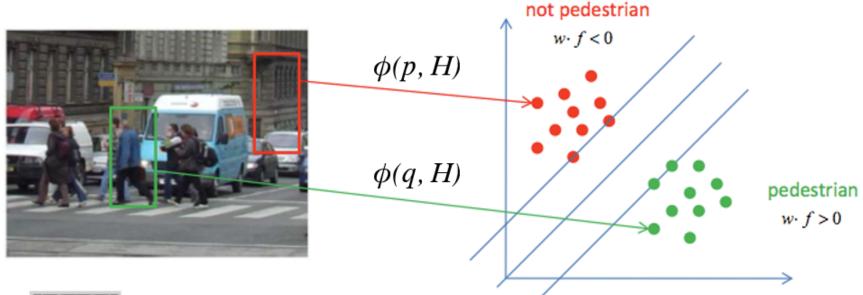


Filter F

Score of *F* at position *p* is $F \cdot \phi(p, H)$

 $\phi(p, H)$ = concatenation of HOG features from subwindow specified by *p*

Dalal & Triggs: HOG + linear SVMs



Typical form of a model

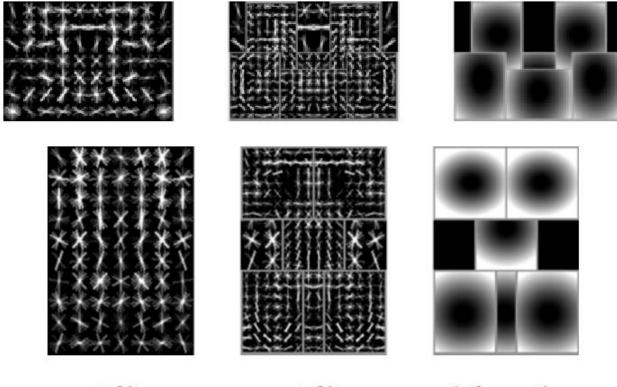
There is much more background than objects Start with random negatives and repeat:

1) Train a model

2) Harvest false positives to define "hard negatives"

Felzenszwalb

Discriminative part-based models

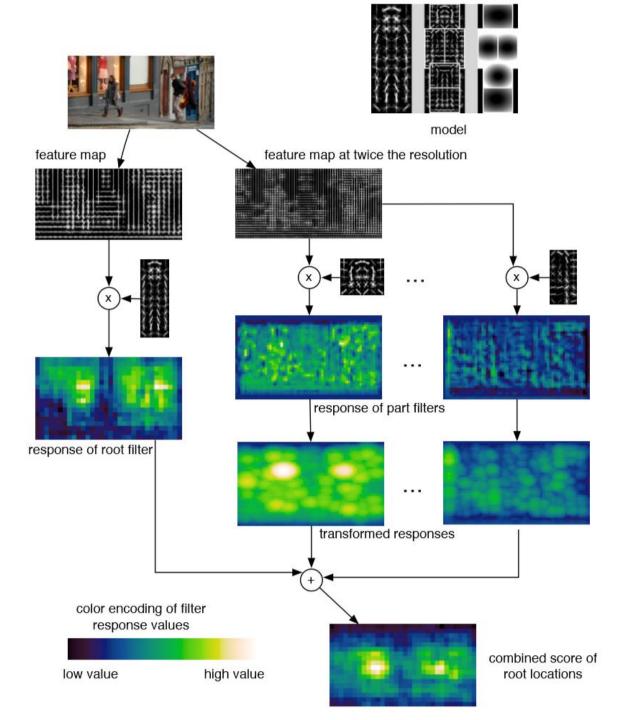


root filters coarse resolution

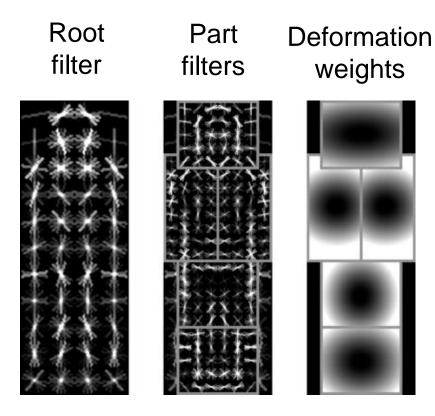
part filters finer resolution

deformation models

Each component has a root filter F_0 and *n* part models (F_i , v_i , d_i)



Discriminative part-based models

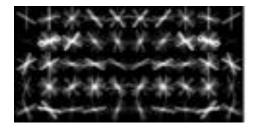


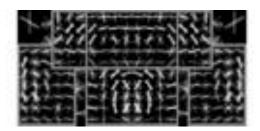
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection</u> with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

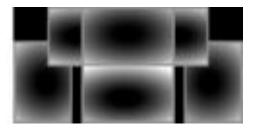
Felzenszwalb

Car model

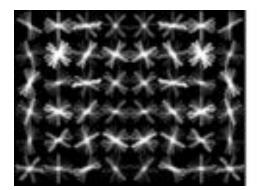
Component 1

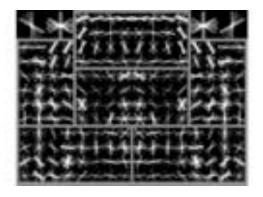


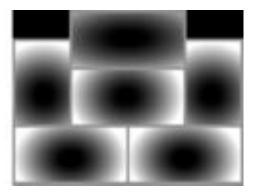




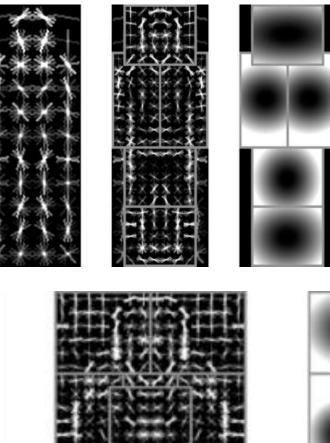
Component 2

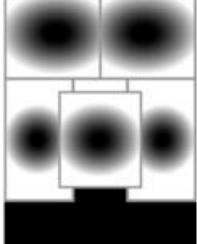




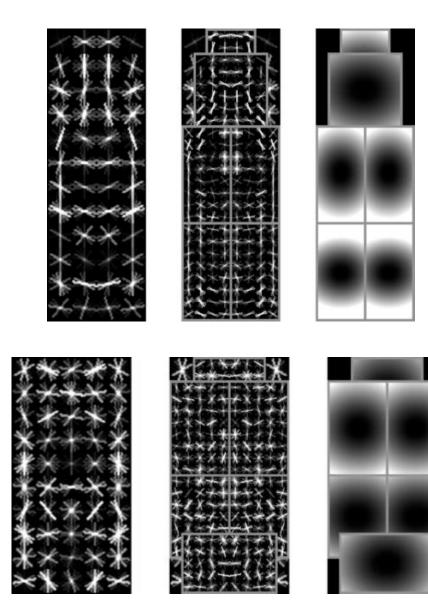


Person model





Bottle model



Good detections?

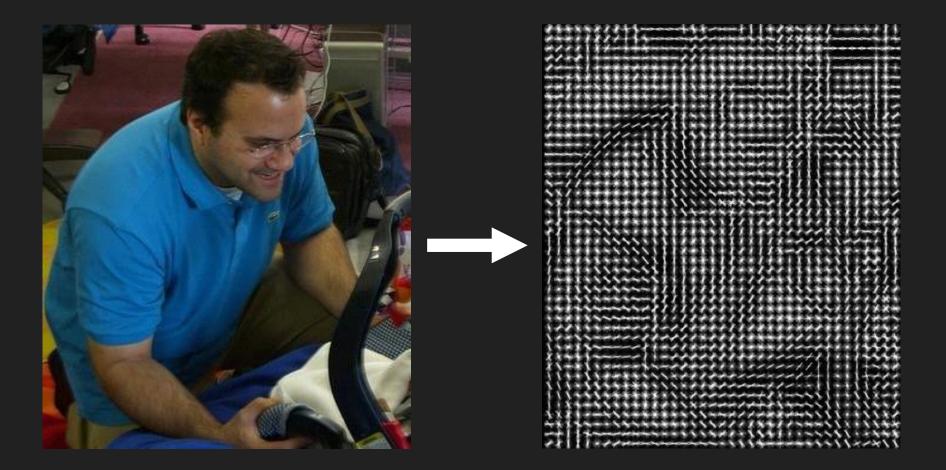
horse

HOGgles (Vondrick et al. ICCV 2013)

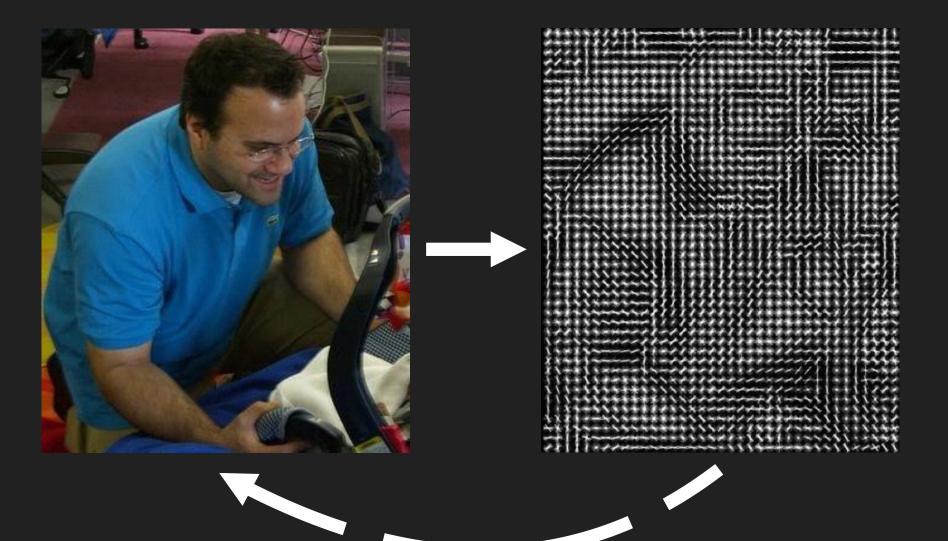


			10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
					an a	
						بلدمد مدومد مدرسه
-				() () () () () () () () () () () () () (1/mm	
and the second second second	, 0 0 0 0 0 0 0 0 0		to the second second	entre or	(****	
	**************************************		-0	en an	(1)	
		لا میدر به وزیروزمید میدوشید مید			1 Anno	ومستواسية مسترجعة ومسترجعاتهم
	وسودسود بالمراجع المراسود سودس	-		and and a second se		
			the comolect activity of	manager 1		-+-+
• •0• •0• •0• •0• •0• •0•					****	at the same
, 101-101-101-101-1 0	and the second second second		COLUMN TO STORY OF STORY OF STORY	and the state of the state of the state	And the set of the second	and man and and and and and and and and and a
a lite in our and he all in				A. A. B. B. C. C.		
	and services	app of a constrained and	a de la deservación d	****		- marine -
		and the second of	ugen og en gen gen gen gen gen gen ngen gen gen gen gen gen gen gen			and the second
,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ኯቘኯቘኯቘኯቘኯቘኯቘኯ ዀዀቘኯቘኯቘኯቘኯቘኯ ዸቘኯቘኯፙኯቘኯቘኯቘኯ			
			an a			
			2012 2012 2012 2012 2012 2012 2012 2012			
Car						
Car						
Car						
Car						
Car						
Car						
Car						
Car						
Car						
Car						

What information is lost?



What information is lost?



How can we 'invert' lossy HOG?

- Gradient computation
 - Without width or 'edge blur', i.e., not edges from Eldar 1999
- Oriented magnitude sum (via bins)
 - Loss of precision
 - Loss of specificity any number of values can sum to the same total
- Normalization
 - No way to unnormalize without knowing normalization factors

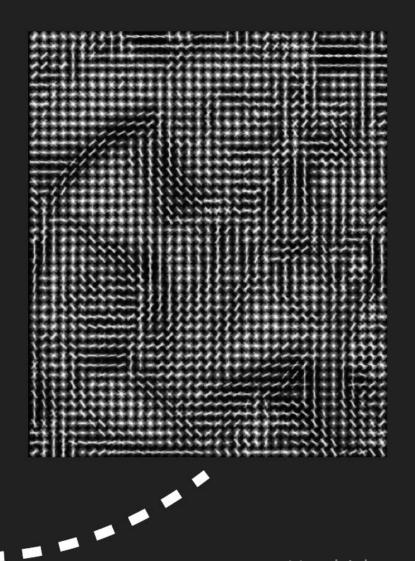
Many different image patches translate to the same HOG feature : (

What information is lost?

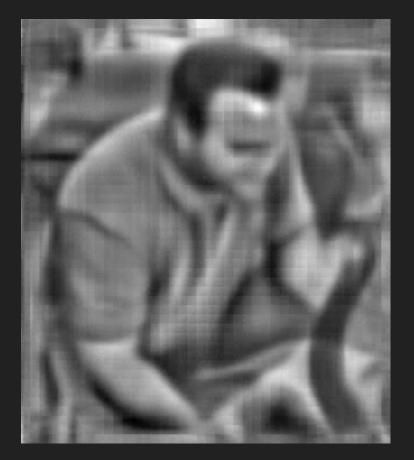
x = input patch y = HOG descriptor $\phi(x) = HOG transform$

$$\min_{x \in \mathbb{R}^d} ||\phi(x) - y||_2^2$$

Hard to optimize! Many-to-one = unconstrained!



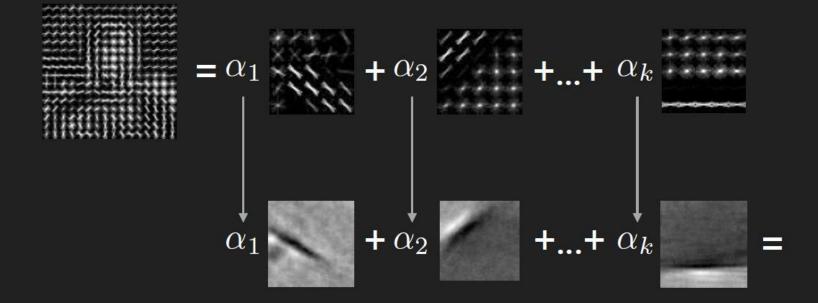
What information is lost?



20000	10000	100000
	11	122
2000	11222	11
2000	1111	
Times	101	
		12222
10.00	200	
1123		25511

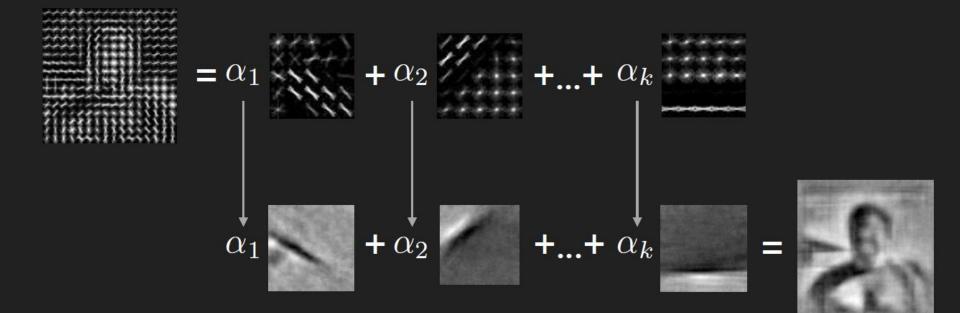
How to constrain (two parts):

1. Learn a basis over HOG windows



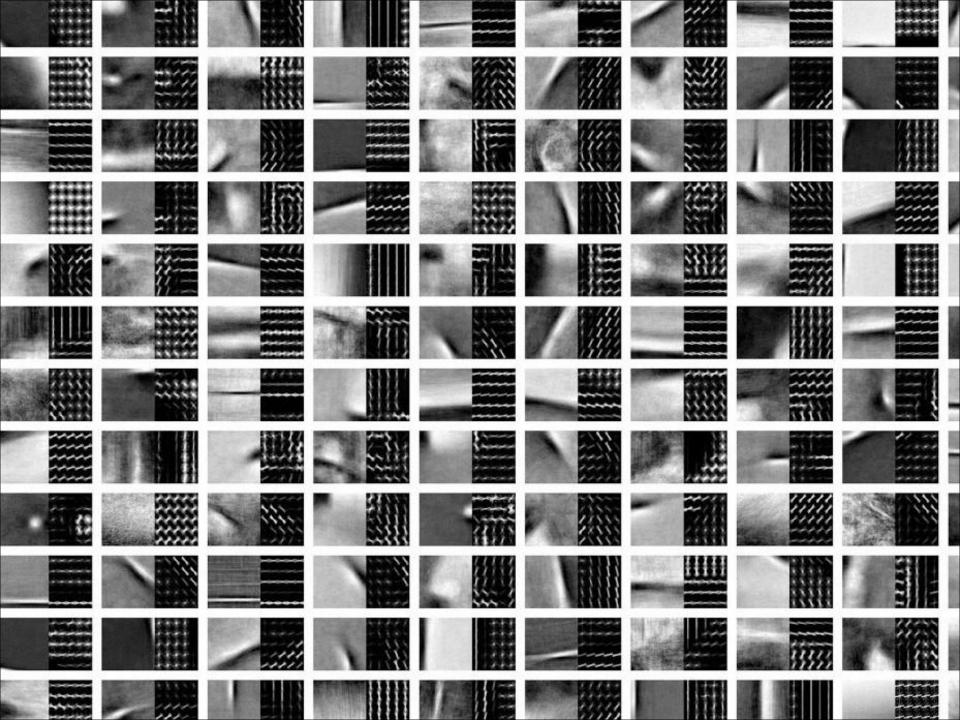
How to constrain (two parts):

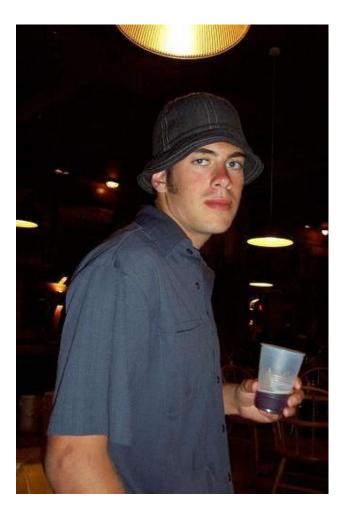
- 1. Learn a basis over HOG windows
- 2. Simultaneously learn a basis over input windows, and share the weights $\alpha_1 \dots \alpha_k$ over the training data



Inference to invert HOG:

- 1. Transform HOG patch into basis vectors
- 2. Take weights and apply to input basis





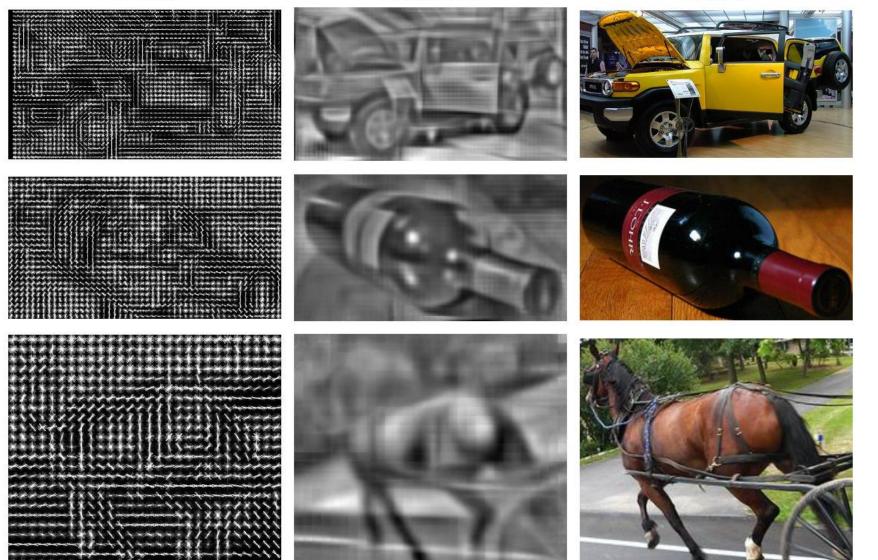
HumanVision

HOGgles (Vondrick et al. ICCV 2013)

HOG [1]

Inverse (Us)

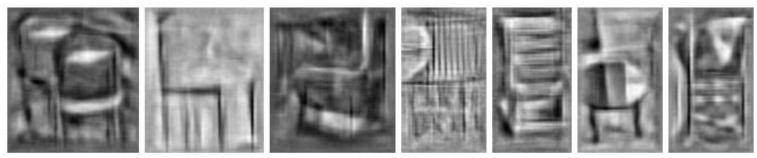
Original



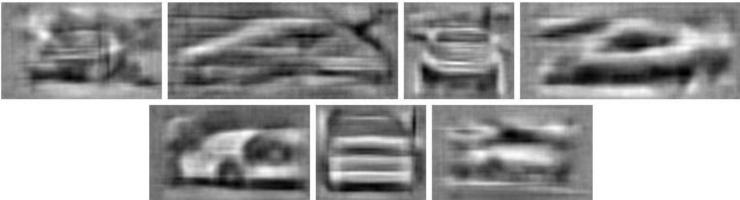
Visualizing Top Detections

We have visualized some high scoring detections from the deformable parts model. Can you guess which are false alarms? Click on the images below to reveal the corresponding RGB patch. You might be surprised!

Person



Chair

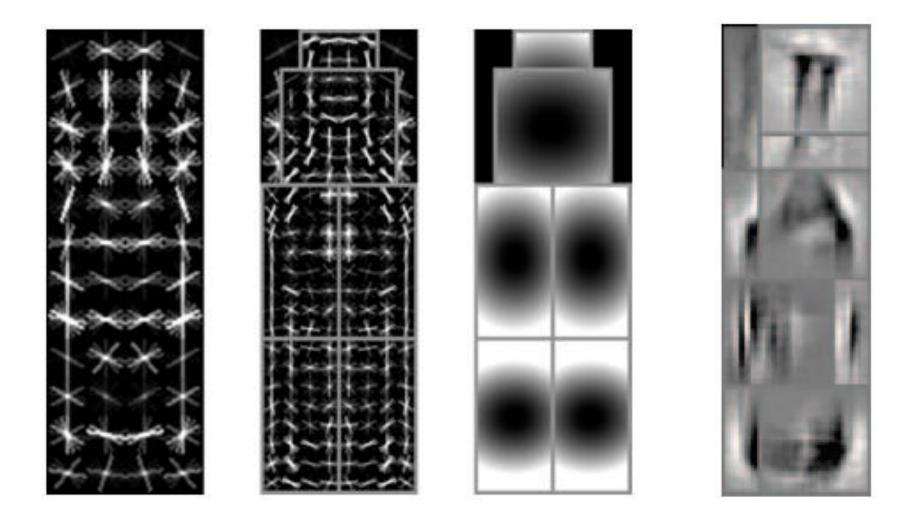


Recursive HOG!

Original x

Figure 11: We recursively compute HOG and invert it with a paired dictionary. While there is some information loss, our visualizations still do a good job at accurately representing HOG features. $\phi(\cdot)$ is HOG, and $\phi^{-1}(\cdot)$ is the inverse.

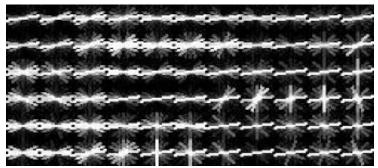
Bottle Deformable Parts Models + HOGgles



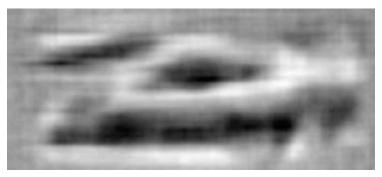
Why did the detector fail?



Why did the detector fail?



Why did the detector fail?



Code Available

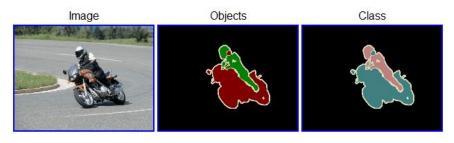
Try it on your projects!

http://web.mit.edu/vondrick/ihog/

ihog = invertHOG(feat);

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- Twenty object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge



- Images downloaded from flickr
 - 500,000 images downloaded and random subset selected for annotation

Dataset: Annotation

- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

Dataset: Annotation

- Complete annotation of all objects
- Annotated over web with <u>written guidelines</u>
 - High quality (?)

20 classes.

- Train / validation data has 11,530 images containing 27,450 ROI annotated objects and 6,929 segmentations.

Examples

Bicycle

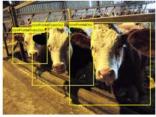
Bird

Boat

Bottle

Bus

Cow

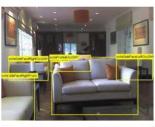


Examples

Dog

Horse

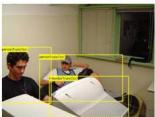
Sofa



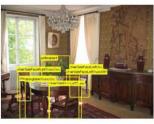
Motorbike

Person

TV/Monitor



Potted Plant





Classification Challenge

Predict whether at least one object of a given class is present in an image

is there a cat?

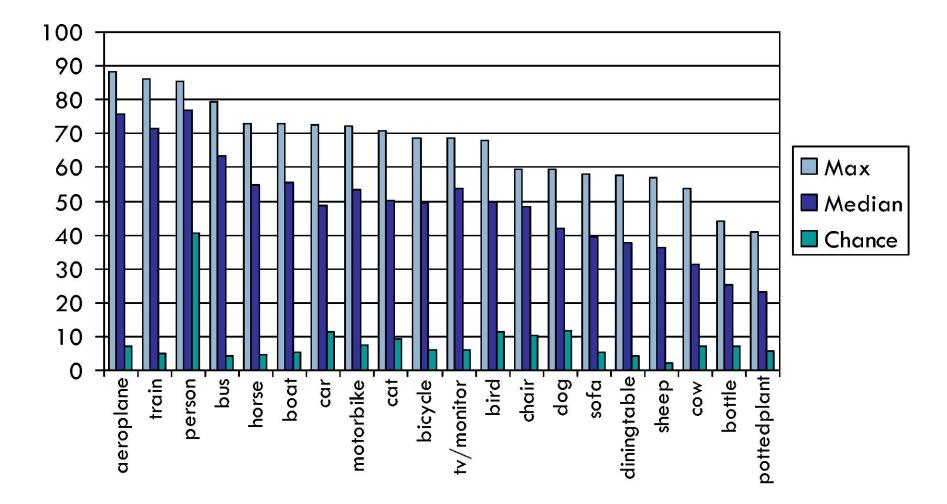
Results: AP by Method and Class

	aero plane	bicycle	bird	boat	bottle	bus	car	cent	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor
CVC_FLAT	85.3	57.8	66.0	66.1	36.2	70.6	60.6	63.5	55.1	44.6	53.4	49.1	64.4	66.8	84.8	37.4	44.1	47.9	81.9	67.5
CVC_FLAT-HOG-ESS	86.3	60.7	66.4	65.3	41.0	71.7	64.7	63.9	55.5	40.1	51.3	45.9	65.2	68.9	85.0	40.8	49.0	49.1	81.8	68.6
CVC_PLUS	86.6	58.4	66.7	67.3	34.8	70.4	60.0	64.2	52.5	43.0	50.8	46.5	64.1	66.8	84.4	37.5	45.1	45.4	82.1	67.0
FIRSTNIKON_AVGSRKDA	83.3	59.3	62.7	65.3	30.2	71.6	58.2	62.2	54.3	40.7	49.2	50.0	66.6	62.9	83.3	34.2	48.2	46.1	83.4	65.5
FIRSTNIKON_AVGSVM	83.8	58.2	62.6	65.2	32.0	69.8	57.7	61.1	54.5	44.0	50.3	49.6	64.6	61.7	83.2	33.4	46.5	48.0	81.6	65.3
FIRSTNIKON_BOOSTSRKDA	83.0	59.2	61.4	64.6	33.2	71.1	57.5	61.0	54.8	40.7	48.3	50.0	65.5	63.4	82.8	32.8	47.0	47.1	83.3	64.6
FIRSTNIKON_BOOSTSVMS	83.5	56.8	61.8	65.5	33.2	69.7	57.3	60.5	54.6	43.1	48.3	50.3	64.3	62.4	82.3	32.9	46.9	48.4	82.0	64.2
LEAR_CHI-SVM-MULT-LOC	79.5	55.5	54.5	63.9	43.7	70.3	66.4	56.5	54.4	38.8	44.1	46.2	58.5	64.2	82.2	39.1	41.3	39.8	73.6	66.2
NECUIUC_CDCV	88.1	68.0	68.0	72.5	41.0	78.9	70.4	70.4	58.1	53.4	55.7	59.3	73.1	71.3	84.5	32.3	53.3	56.7	86.0	66.8
NECUIUC_CLS-DTCT	88.0	68.6	67.9	72.9	44.2	79.5	72.5	70.8	59.5	53.6	57.5	59.0	72.6	72.3	85.3	36.6	56 . 9	57 . 9	85.9	68.0
NECUIUC_LL-CDCV	87.1	67.4	65.8	72.3	40.9	78.3	69.7	69.7	58.5	50.1	55.1	56.3	71.8	70.8	84.1	31.4	51.5	55.1	84.7	65.2
NECUIUC_LN-CDCV	87.7	67.8	68.1	71.1	39.1	78.5	70.6	70.7	57.4	51.7	53.3	59.2	71.6	70.6	84.0	30.9	51.7	55.9	85.9	66.7
UVASURREY_BASELINE	84.1	59.2	62.7	65.4	35.7	70.6	59.8	61.3	56.7	45.3	52.4	50.6	66.1	66.6	83.7	34.8	47.2	47.7	80.8	65.9
UVASURREY_MKFDA+BOW	84.7	63.9	66.1	67.3	37.9	74.1	63.2	64.0	57.1	46.2	54.7	53.5	68.1	70.6	85.2	38.5	47.2	49.3	83.2	68.1
UVASURREY_TUNECOLORKERNELSEL	85.0	62.8	65.1	66.5	37.6	73.5	62.1	62.0	57.4	45.1	54.5	52.5	67.7	69.8	84.8	39.1	46.8	49.9	82.9	68.1
UVASURREY_TUNECOLORSPECKDA	84.6	62.4	65.6	67.2	39.4	74.0	63.4	62.8	56.7	43.8	54.7	52.7	67.3	70.6	85.0	38.8	46.9	50.0	82.2	66.2

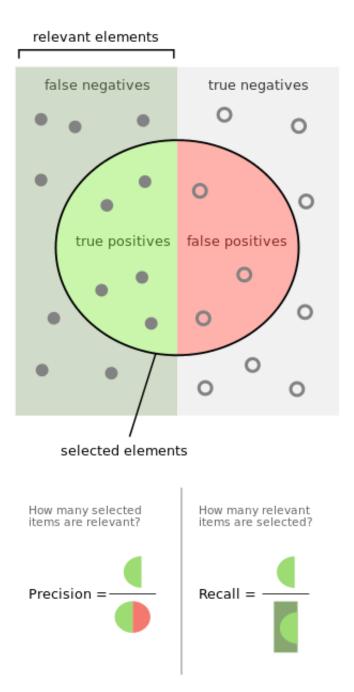
- Only methods in 1st, 2nd or 3rd place by group shown
- Groups: CVC, FIRST/Nikon, NEC/UIUC, UVA/Surrey

AP by Class

AP = average precision

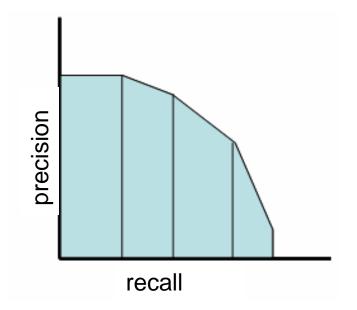


Max AP: 88.1% (aeroplane) ... 40.8% (potted plant)

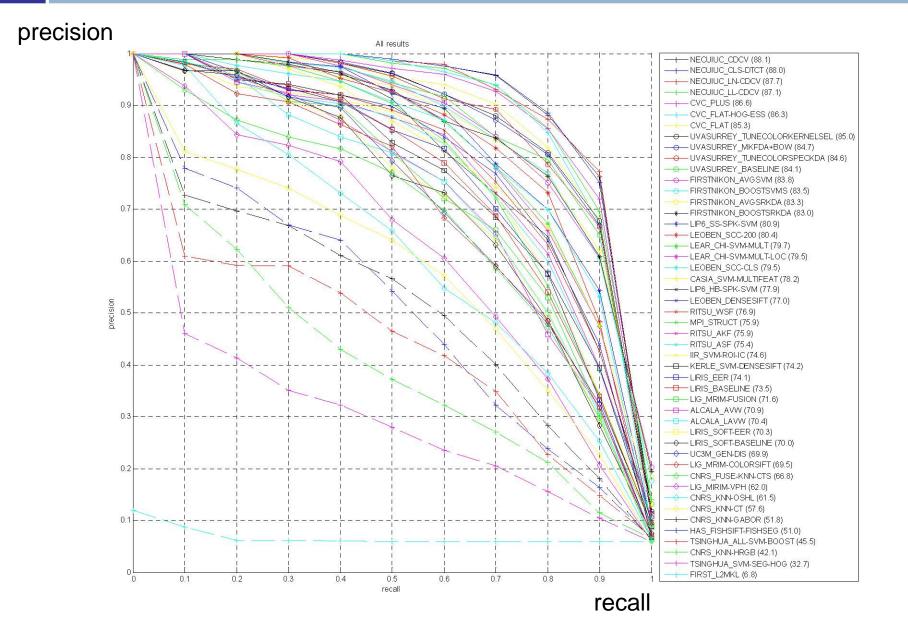


Set threshold on 'detection' to create one pair of precision / recall values.

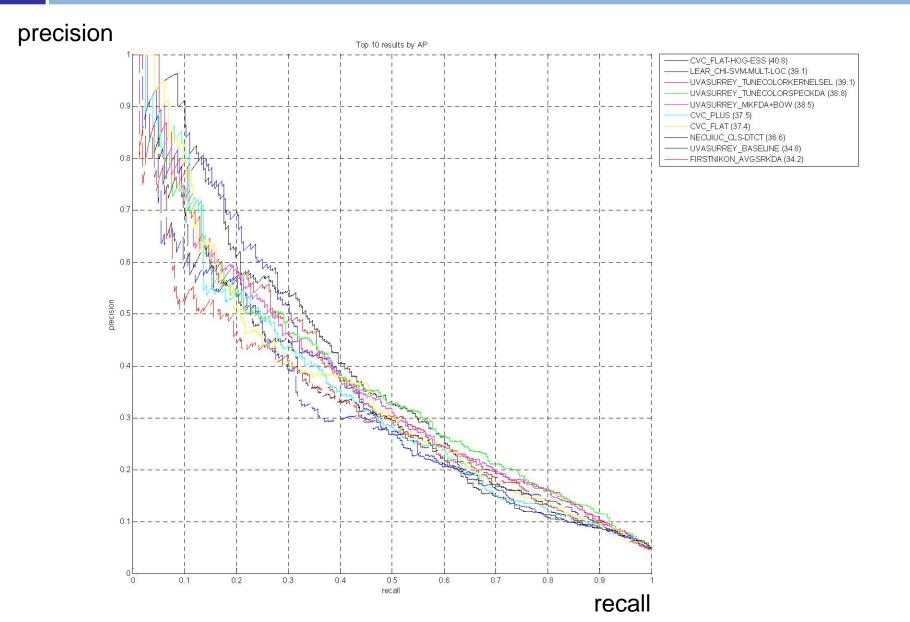
Vary threshold across all values to generate precision / recall curves:



Precision/Recall: Aeroplane (All)



Precision/Recall: Potted plant (Top 10 by AP)

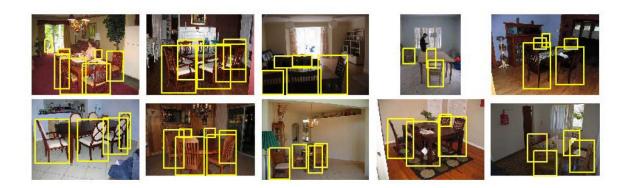


Ranked Images: Aeroplane

Class images:
 Highest ranked

Ranked Images: Chair

Class images:
 Highest ranked

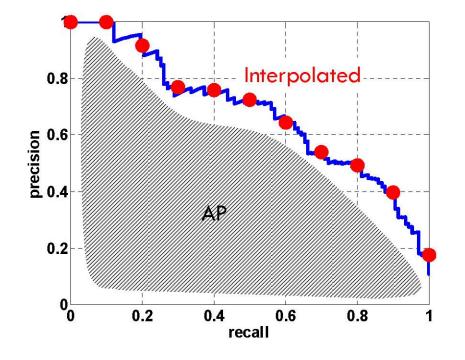


Detection Challenge

 Predict the bounding boxes of all objects of a given class in an image (if any)

Evaluation

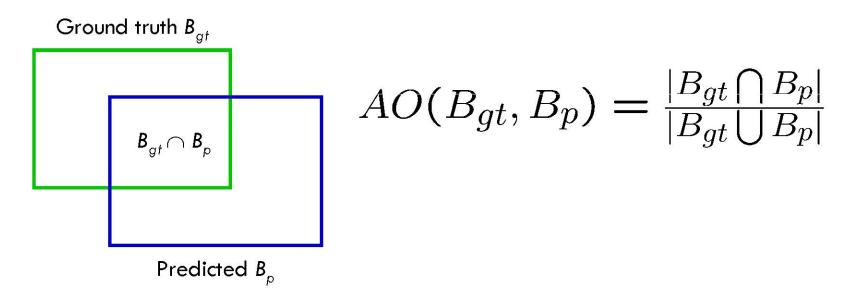
- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"



- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

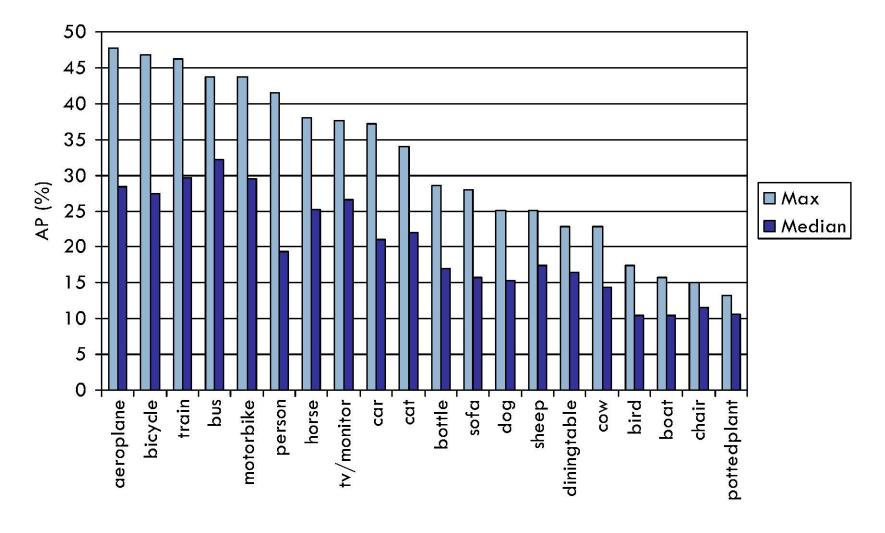
Evaluating Bounding Boxes

Area of Overlap (AO) Measure



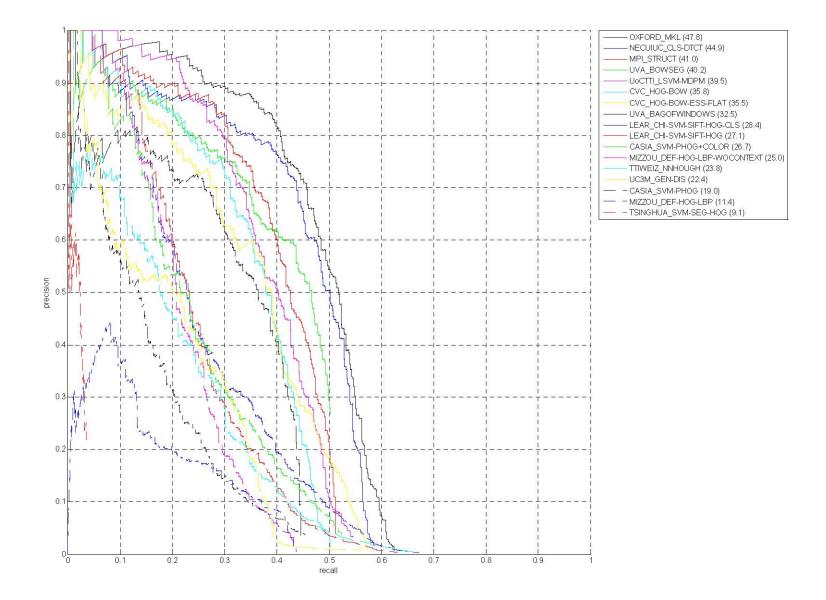
• Need to define a threshold *t* such that $AO(B_{gt}, B_p)$ implies a correct detection: 50%

AP by Class

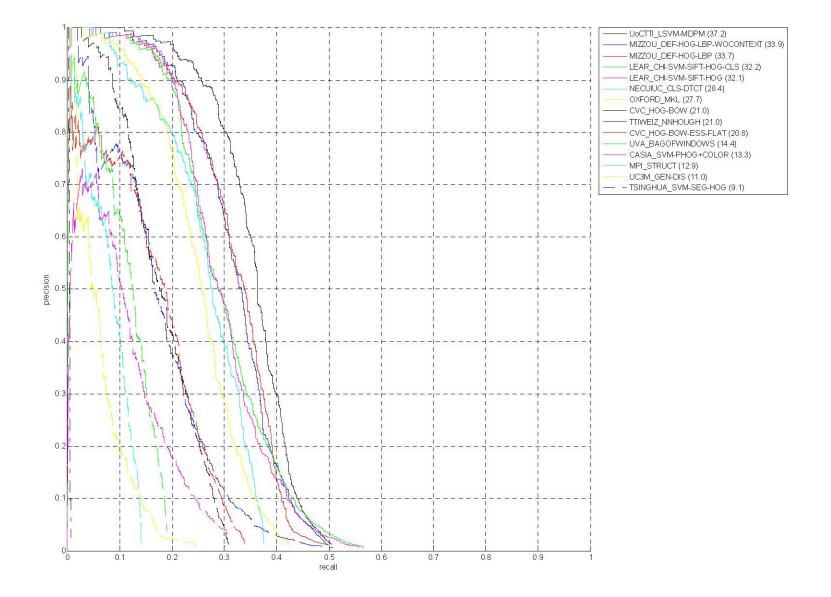


Chance essentially 0

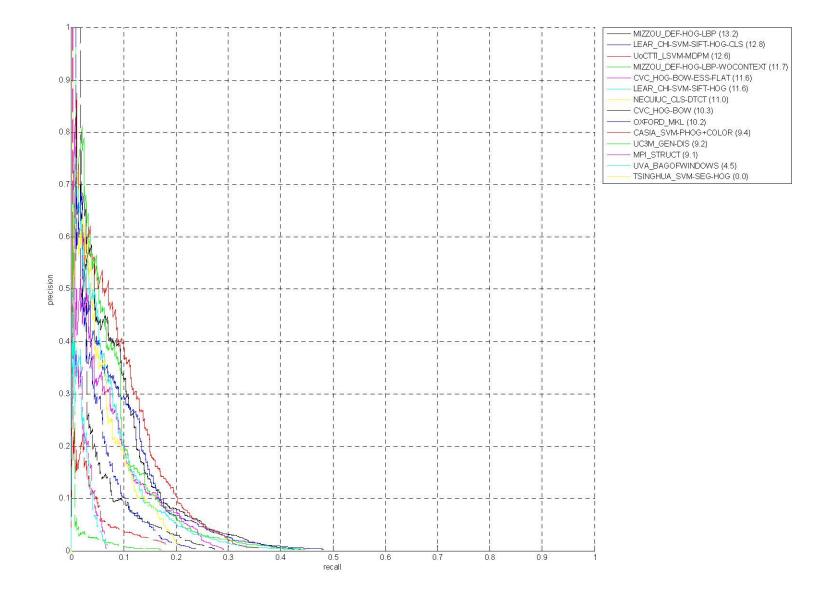
Precision/Recall - Aeroplane



Precision/Recall - Car



Precision/Recall – Potted plant



True Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

False Positives - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

"Near Misses" - Person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

True Positives - Bicycle

UoCTTI_LSVM-MDPM

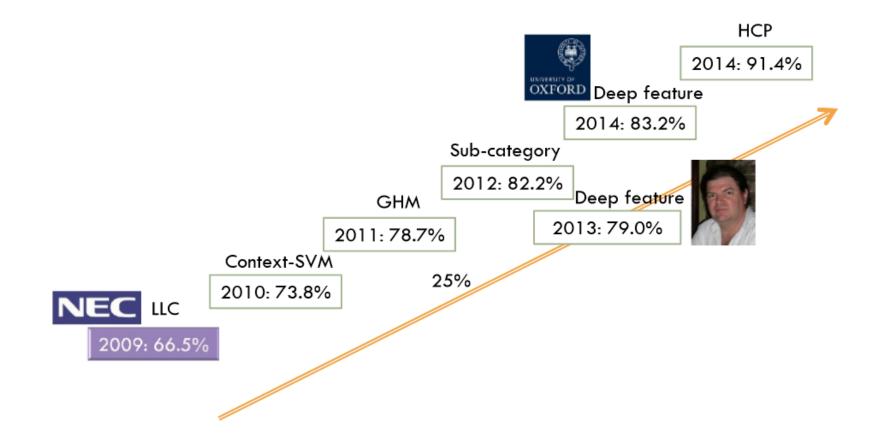
OXFORD_MKL

False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

PASCAL VOC: 2010-2014



Shuicheng Yan

Opportunities of Scale

Many slides from James Hays, Alyosha Efros, and Derek Hoiem

Graphic from Antonio Torralba

Computer Vision so far

- The geometry of image formation
 Ancient / Renaissance
- Signal processing / Convolution
 1800, but really the 50's and 60's
- Hand-designed Features for recognition, either instance-level or categorical
 - 1999 (SIFT), 2003 (Video Google), 2005 (Dalal-Triggs), 2006 (spatial pyramid)
- Learning from Data
 - 1991 (EigenFaces) but late 90's to now especially

What has changed in the last decade?

- The Internet
- Crowdsourcing
- Learning representations from the data these sources provide (deep learning)

Google and massive data-driven algorithms

A.I. for the postmodern world:

- all questions have already been answered...many times, in many ways
- Google is dumb, the "intelligence" is in the data

💥 Google Se	rch: clime stairs - Nets	саре										
File Edit Vie	💥 Google Search: clim	ne punishment - Ne	tscape									
ack	File Edit View Go C											
Back	i 🔺 🔉	3. 🚯	1	mg.	4	e£.	ô.			N		
🧃 💘 Bool	Back Forward	Reload Home	Search	Netscape	Print	Security	Shop	Stop				
🦉 🖳 WebM	🕴 🦋 Bookmarks 🧃	🎄 Location: http://w	ww.google.con	n/search?hl=	=en&lr=&ie	=ISO-8859-18	q=clime+p	unishment	💽 🎧 🕻 What's F	elated		
	🛛 🖳 WebMail 🖳 C	alendar 🖳 Radio	🖳 People	🖳 Yellow F	Pages 🛛	🔋 Download	🖳 Cus	tomize				
C	<u> </u>	Ad	vanced Se	earch	Prefer	rences	Langua	age Tools	Search Tips	-		
	(-00)	🍼 🥐 Cli	me pun	ishmei	nt							
	Google Search											
Web			Guugie 3	bearch								
Searche	Web Images		ectory N									
	Searched the w		-		ilts 1 -	10 of ab	out 4 2	50 Seard	h took 0 06 seo	ond		
Did you				<u>n</u> . 10000			our 4,2		1100h 0.00 300			
Did you	Did you moo	n: orimo pi	nichmo	nt								
	Did you mea			: <u> L</u>								

The Unreasonable Effectiveness of Data

Peter Norvig Google

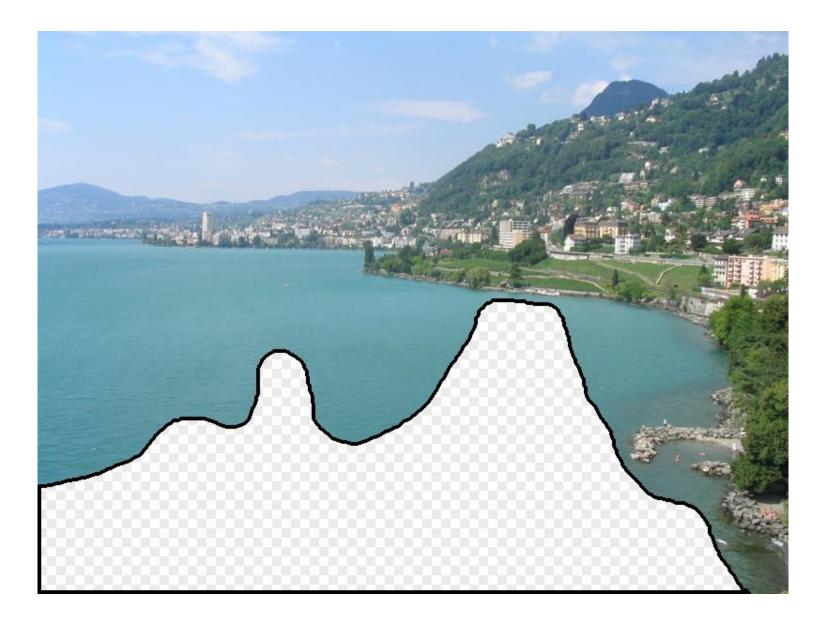
Peter Norvig

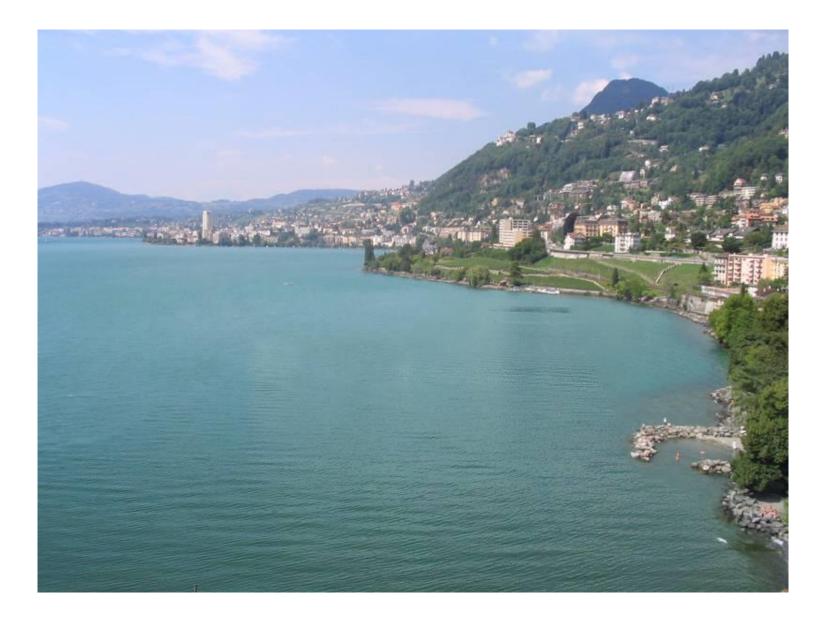
The Unreasonable Effectiveness of Data

Big Idea

- Do we need computer vision systems to have strong AI-like reasoning about our world?
- What if invariance / generalization isn't actually the core difficulty of computer vision?
- What if we can perform high level reasoning with brute-force, data-driven algorithms?

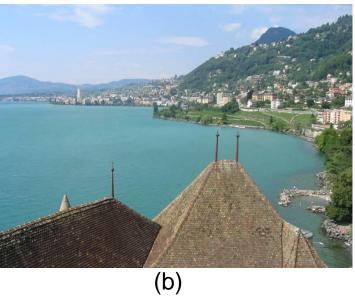
What should the missing region contain?





Which is the original?

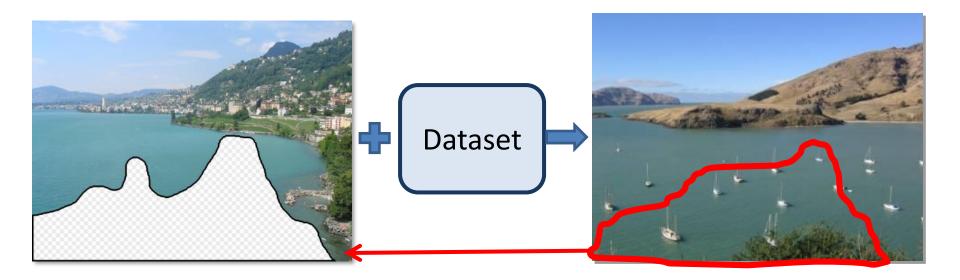
(a)



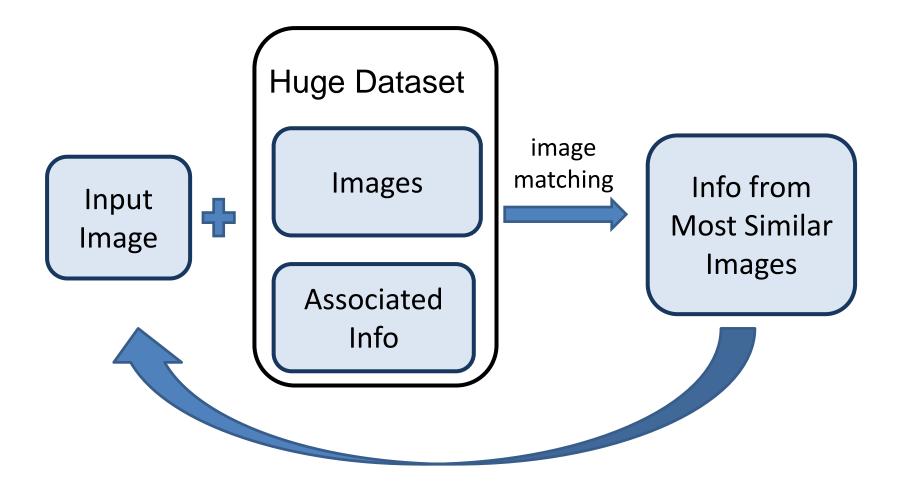
(C)

How it works

- Find a similar image from a large dataset
- Blend a region from that image into the hole



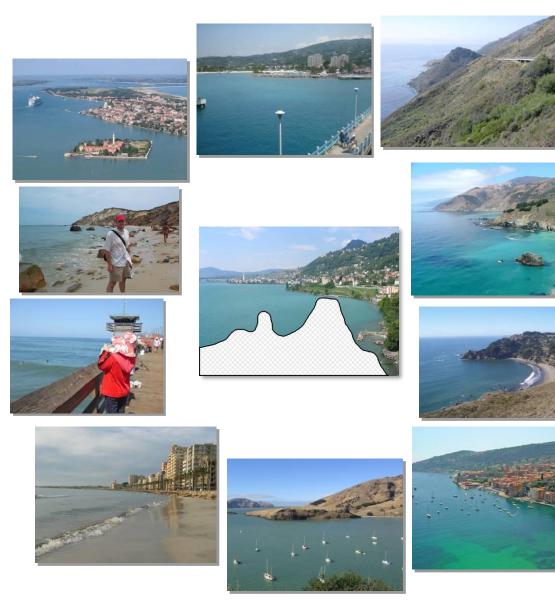
General Principal



Hopefully, If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

How many images is enough?

Nearest neighbors from a collection of 20 thousand images



Nearest neighbors from a collection of 2 million images

Image Data on the Internet

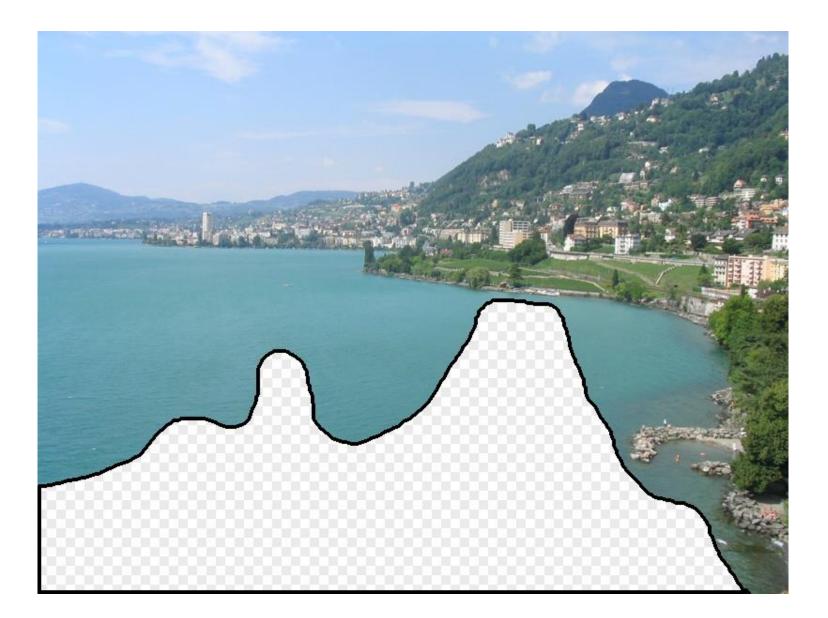
- Flickr (as of Nov 2013)
 - 10 billion photographs
 - 100+ million geotagged images
 - 3.5 million a day
- Facebook (as of Sept 2013)
 - 250 billion+
 - 300 million a day
- Instagram
 - 55 million a day

Image completion: how it works

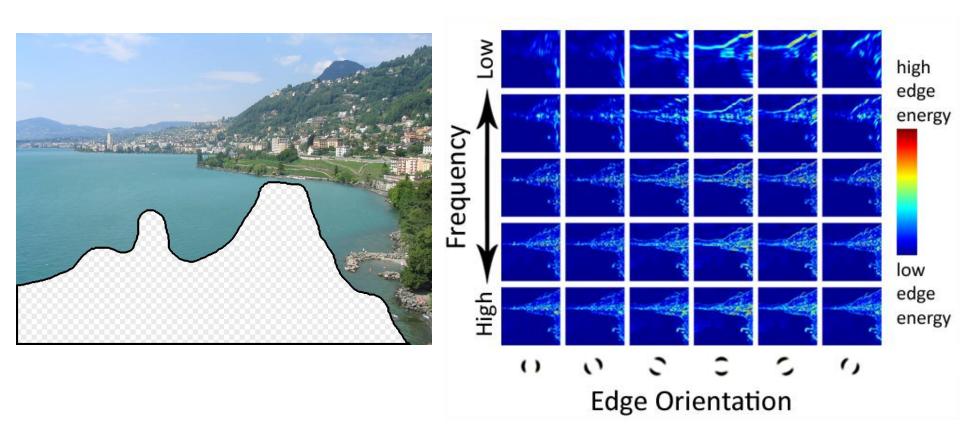
[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

The Algorithm

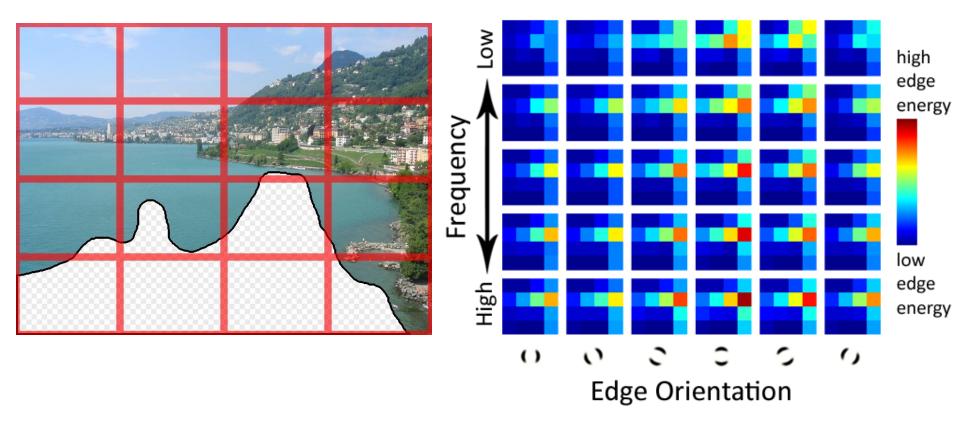
Scene Matching



Scene Descriptor

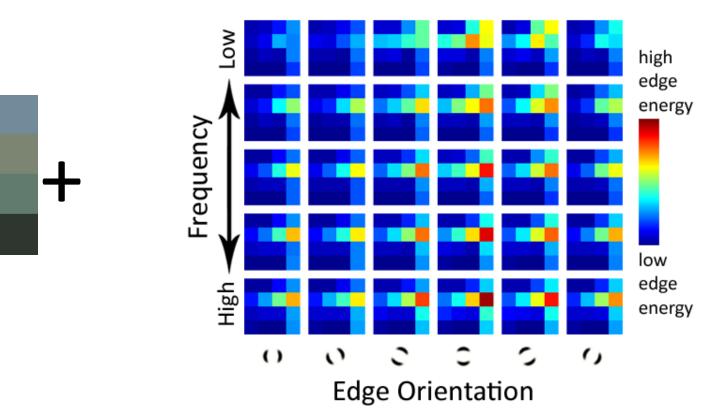


Scene Descriptor



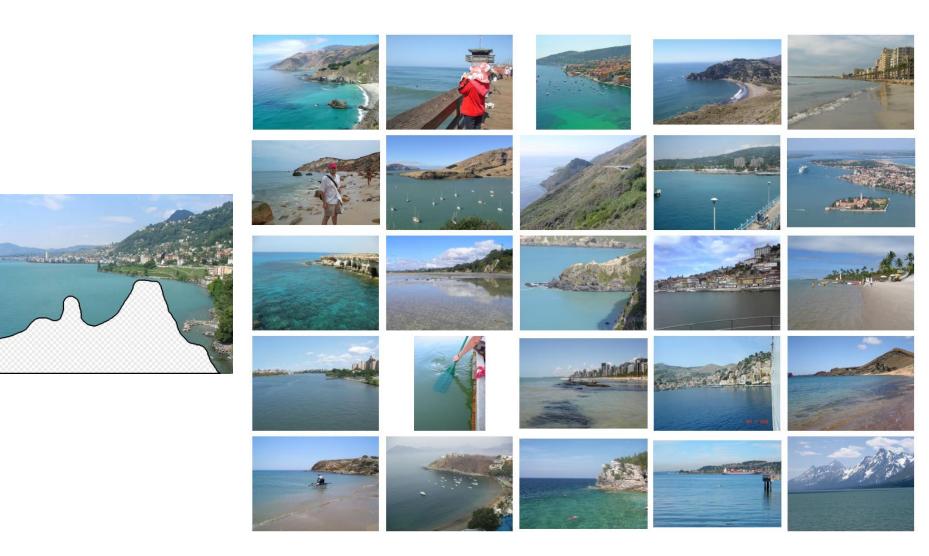
Scene Gist Descriptor (Oliva and Torralba 2001)

Scene Descriptor



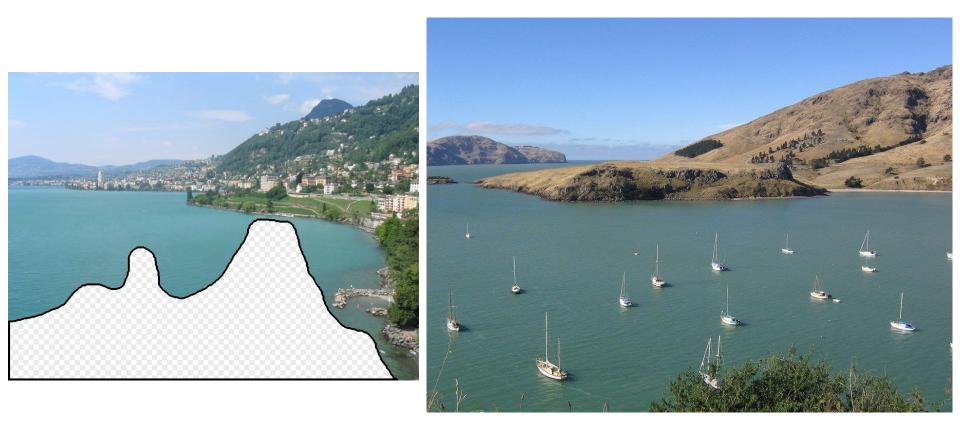
Scene Gist Descriptor (Oliva and Torralba 2001)

2 Million Flickr Images



... 200 total

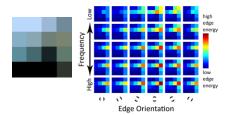
Context Matching



Graph cut + Poisson blending

Result Ranking

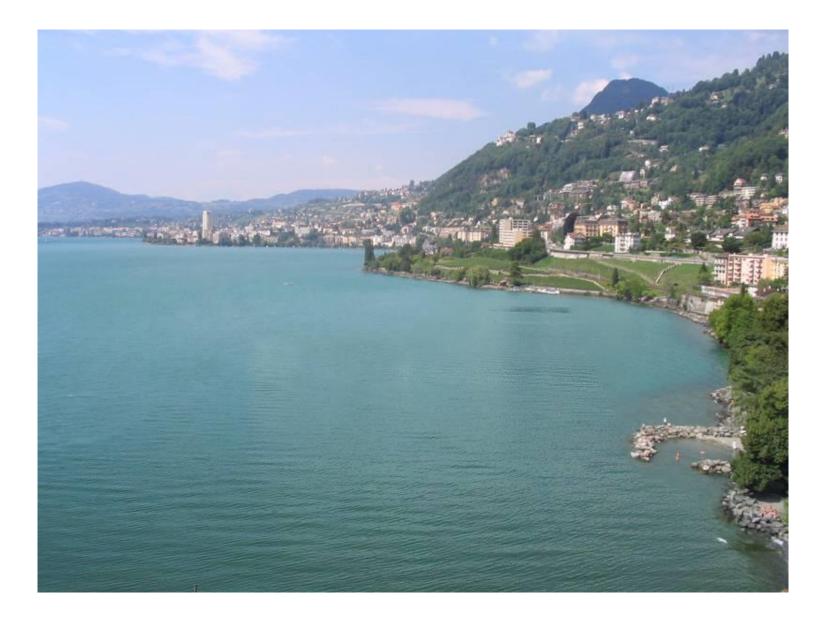
We assign each of the 200 results a score which is the sum of:

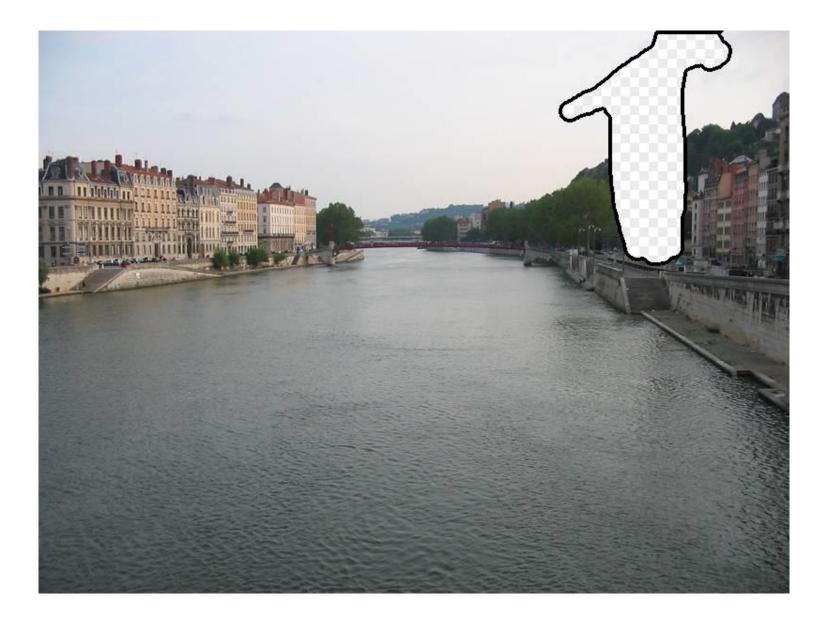


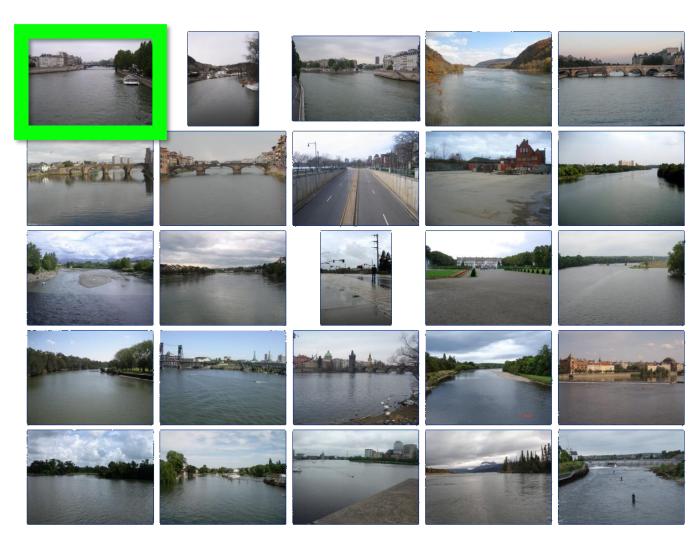
The scene matching distance

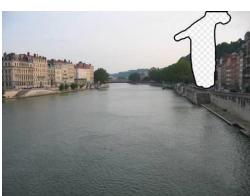
The context matching distance (color + texture)

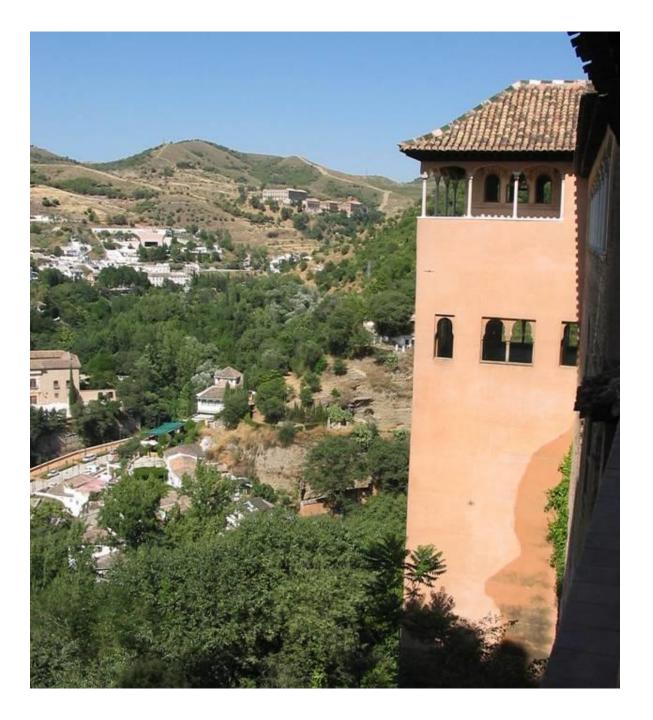
The graph cut cost

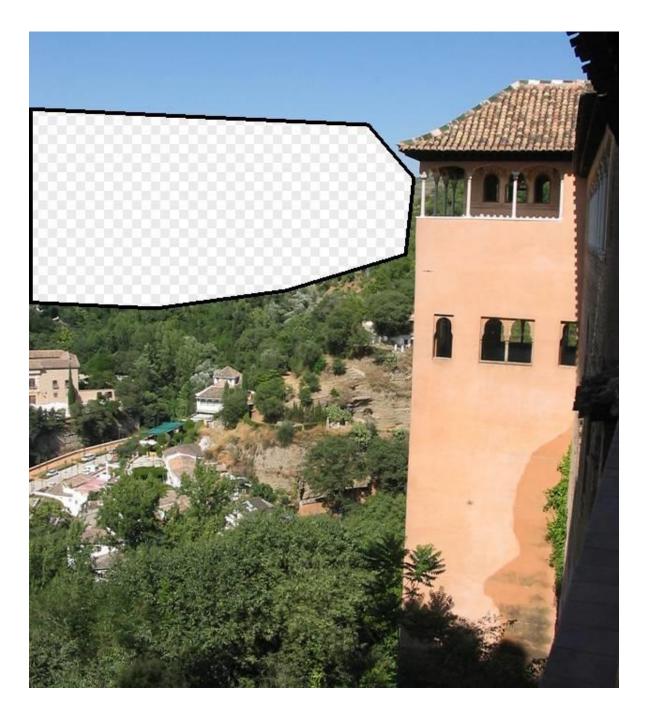


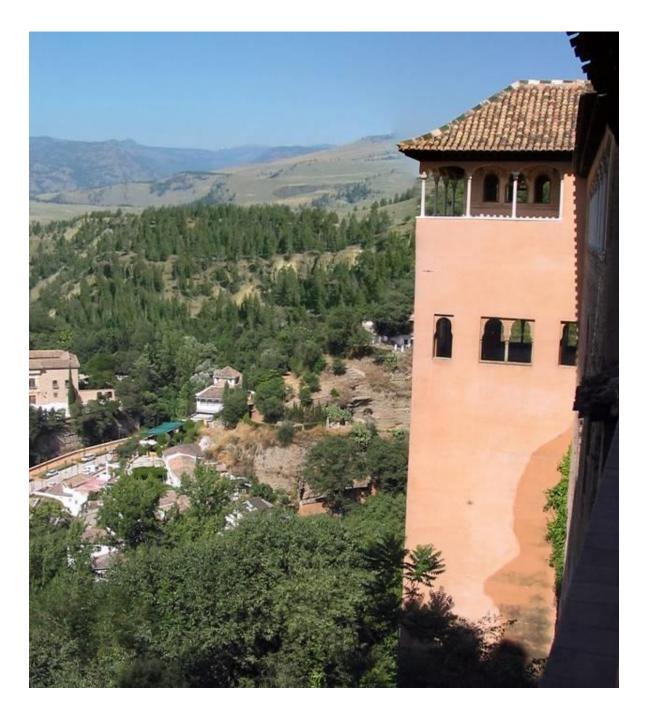












Which is the original?



