




Object detection

• Sliding window for search

• Features based on differences of intensity 
(gradient, wavelet, etc.)

• Boosting for feature selection

• Integral images, cascade for speed

• Bootstrapping to deal with many, many 
negative examples Examples
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Discriminative part-based models
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Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection 

with Discriminatively Trained Part Based Models, PAMI 32(9), 2010
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http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf


Car model

Component 1

Component 2
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Person model
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Bottle model
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Good detections?



Vondrick et al.

HOGgles (Vondrick et al. ICCV 2013)
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What information is lost?
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How can we ‘invert’ lossy HOG?

• Gradient computation
• Without width or ‘edge blur’, i.e., not edges from Eldar 1999

• Oriented magnitude sum (via bins)
• Loss of precision

• Loss of specificity – any number of values can sum to the same total

• Normalization
• No way to unnormalize without knowing normalization factors

Many different image patches translate to the same HOG feature : (



Vondrick et al.

𝑥 = 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑡𝑐ℎ
𝑦 = 𝐻𝑂𝐺 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟
𝜙 𝑥 = 𝐻𝑂𝐺 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚

Hard to optimize!

Many-to-one = unconstrained!



What information is lost?
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Method: Paired Dictionary

Vondrick et al.



Vondrick et al.

How to constrain (two parts):

1. Learn a basis over HOG windows
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How to constrain (two parts):

1. Learn a basis over HOG windows

2. Simultaneously learn a basis over input windows, 

and share the weights 𝛼1…𝑎𝑘 over the training data



Vondrick et al.

Inference to invert HOG:

1. Transform HOG patch into basis vectors

2. Take weights and apply to input basis





HumanVision HOGVision

vs

Vondrick et al.



HOGgles (Vondrick et al. ICCV 2013)
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Recursive HOG!



Bottle Deformable Parts Models + HOGgles



Car

Why did the detector fail?
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Why did the detector fail?
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Car

Why did the detector fail?

Vondrick et al.



CodeAvailable

Try it on your projects!

http://web.mit.edu/vondrick/ihog/

ihog = invertHOG(feat);

http://web.mit.edu/vondrick/ihog/


• Twenty object categories (aeroplane to 
TV/monitor) 

• Three challenges:

– Classification challenge (is there an X in this image?)

– Detection challenge (draw a box around every X)

– Segmentation challenge

Snavely
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20 classes. 

- Train / validation data has 11,530 images 

containing 27,450 ROI annotated objects and 

6,929 segmentations. 
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is there a cat?





AP = average precision



Set threshold on ‘detection’ 

to create one pair of 

precision / recall values.

Vary threshold across all 

values to generate precision 

/ recall curves:
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Chance essentially 0



















Shuicheng Yan



Opportunities of Scale

Many slides from James Hays, Alyosha Efros, and Derek Hoiem Graphic from Antonio Torralba



Computer Vision so far

• The geometry of image formation

– Ancient / Renaissance

• Signal processing / Convolution

– 1800, but really the 50’s and 60’s

• Hand-designed Features for recognition, 
either instance-level or categorical

– 1999 (SIFT), 2003 (Video Google), 2005 (Dalal-
Triggs), 2006 (spatial pyramid)

• Learning from Data

– 1991 (EigenFaces) but late 90’s to now especially



What has changed in the last decade?

• The Internet

• Crowdsourcing

• Learning representations from the data these 
sources provide (deep learning)



Google and massive data-driven algorithms

A.I. for the postmodern world:

– all questions have already been answered…many 
times, in many ways

– Google is dumb, the “intelligence” is in the data





Big Idea

• Do we need computer vision systems to have 
strong AI-like reasoning about our world?

• What if invariance / generalization isn’t 
actually the core difficulty of computer vision?

• What if we can perform high level reasoning 
with brute-force, data-driven algorithms?



What should the missing region contain?









Which is the original?

(a)

(b)

(c)



How it works

• Find a similar image from a large dataset

• Blend a region from that image into the hole

Dataset



General Principal
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Hopefully,  If you have enough images, the dataset will contain very 
similar images that you can find with simple matching methods. 



How many images is enough?



Nearest neighbors from a
collection of 20 thousand images



Nearest neighbors from a
collection of 2 million images



Image Data on the Internet

• Flickr (as of Nov 2013)

– 10 billion photographs 

– 100+ million geotagged images

– 3.5 million a day

• Facebook (as of Sept 2013)

– 250 billion+

– 300 million a day

• Instagram

– 55 million a day



Image completion: how it works

[Hays and Efros. Scene Completion Using Millions of Photographs. 
SIGGRAPH 2007 and CACM October 2008.]



The Algorithm



Scene Matching



Scene Descriptor



Scene Descriptor

Scene Gist Descriptor 
(Oliva and Torralba 2001)



Scene Descriptor

+

Scene Gist Descriptor 
(Oliva and Torralba 2001)



2 Million Flickr Images



… 200 total



Context Matching



Graph cut + Poisson blending



Result Ranking

We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
(color + texture)

The graph cut cost

















… 200 scene matches













Which is the original?




