

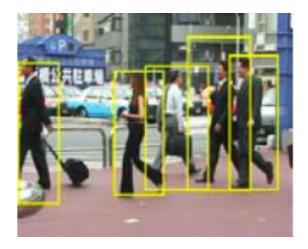
Category vs. instance recognition

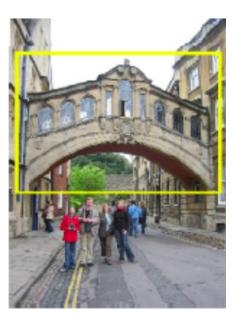
Category:

- Find all the people
- Find all the buildings
- Often within a single image
- Often 'sliding window'

Instance:

- Is this face James?
- Find this specific famous building
- Often within a database of images





Object detection vs. Scene Recognition

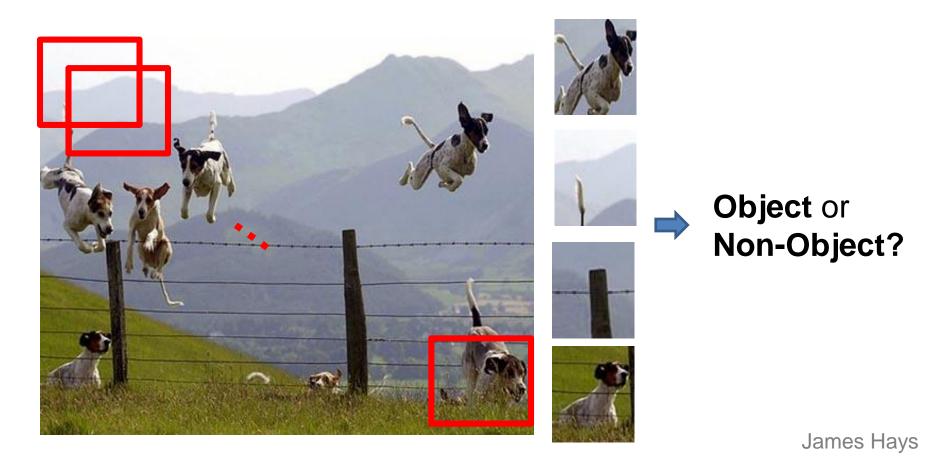
 Scenes can be defined by distribution of "stuff" – materials and surfaces with arbitrary shape.

• Objects are "things" that own their boundaries

• Bag of words models are less popular for object detection because they throw away shape info.

Object Category Detection

- Focus on object search: "Where is it?"
- Build templates that quickly differentiate object patch from background patch



Challenges in modeling the object class

Object pose

Illumination

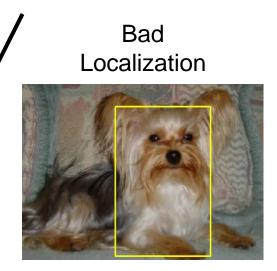
'Clutter'

Occlusions

Intra-class appearance

Challenges in modeling the non-object class

True Detections



Confused with Similar Object

Misc. Background

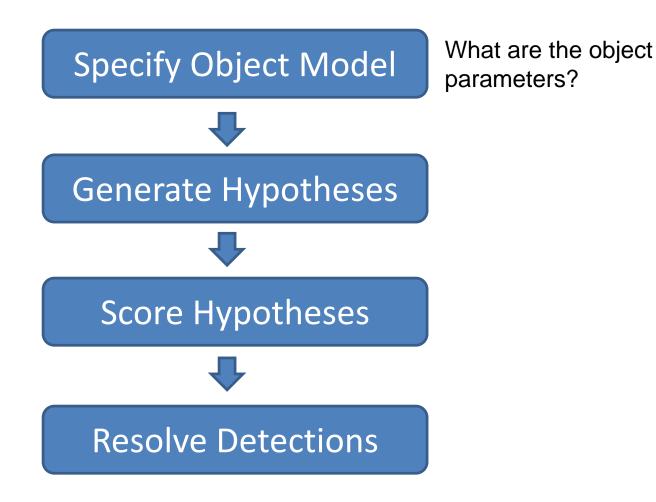
Confused with Dissimilar Objects

James Hays

Object Detection Design challenges

- How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales.
- Feature design and scoring
 - How should appearance be modeled?
 What features correspond to the object?
- How to deal with different viewpoints?
 - Often train different models for a few different viewpoints

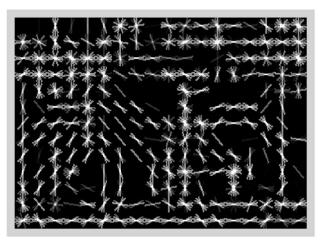
General Process of Object Recognition



James Hays

- 1. Statistical Template in Bounding Box
 - Object is some (x,y,w,h) in image
 - Features defined wrt bounding box coordinates

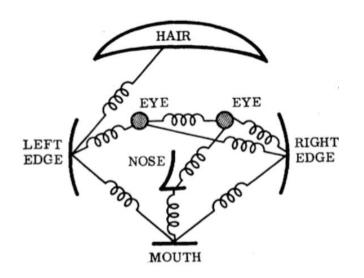
Image

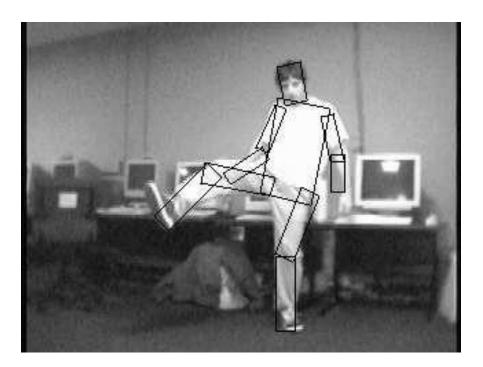


Template Visualization

Images from Felzenszwalb

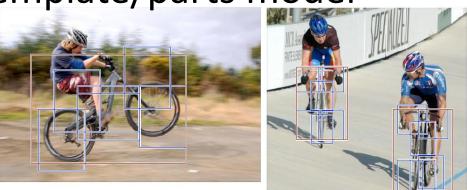
- 2. Articulated parts model
 - Object is configuration of parts
 - Each part is detectable

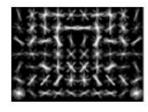


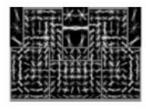


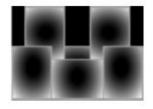
3. Hybrid template/parts model

Detections

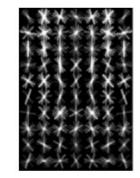


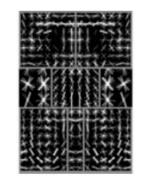


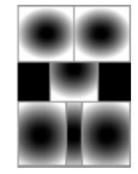




Template Visualization







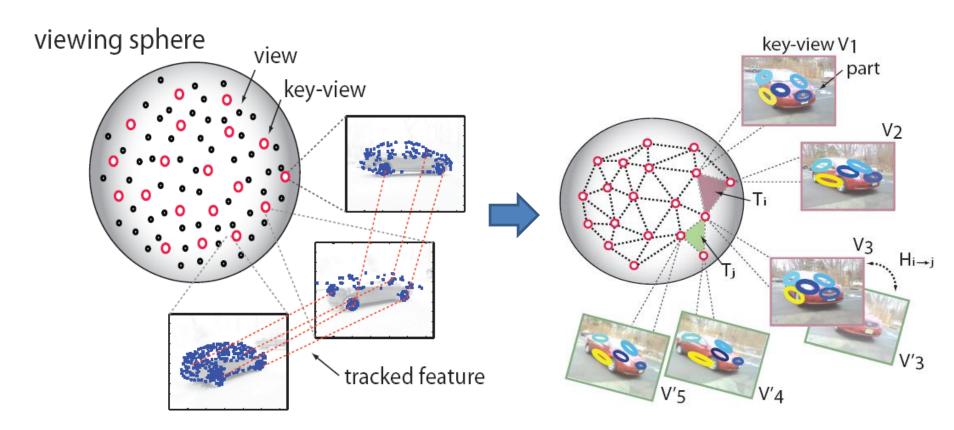
root filters coarse resolution

part filters finer resolution

deformation models

Felzenszwalb et al. 2008

- 4. 3D-ish model
- Object is collection of 3D planar patches under affine transformation



- 5. Deformable 3D model
- Object is a parameterized space of shape/pose/deformation of class of 3D object

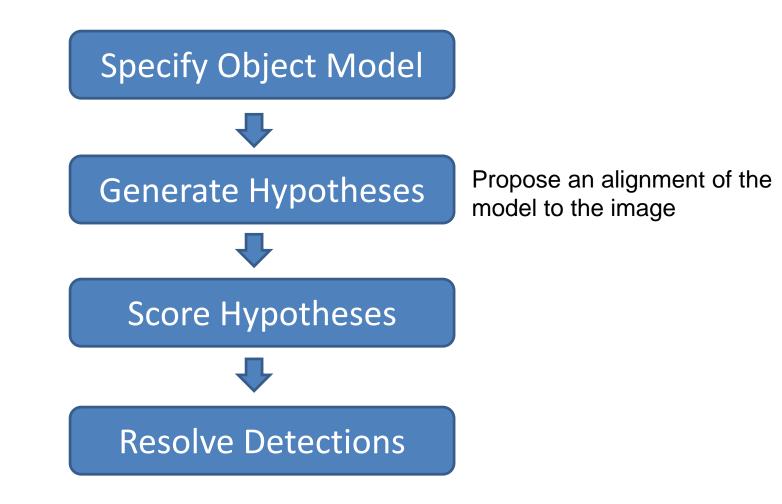
Learning a Model:

2) Shape Training

Why not just pick the most complex model?

- Inference is harder
 - More parameters
 - Harder to 'fit' (infer / optimize fit)
 - Longer computation

General Process of Object Recognition



James Hays

Generating hypotheses

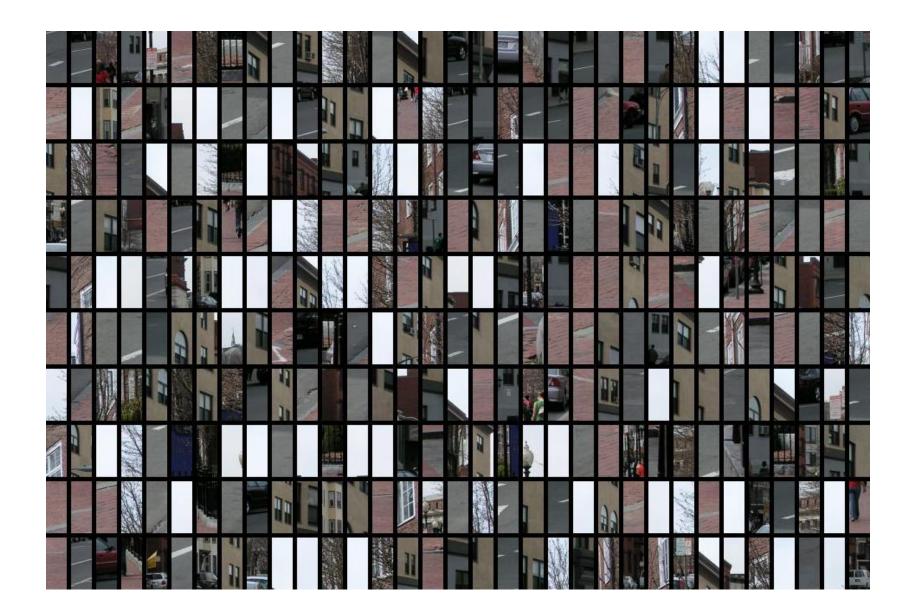
- 1. Sliding window
 - Test patch at each location and scale

Generating hypotheses

- 1. Sliding window
 - Test patch at each location and scale

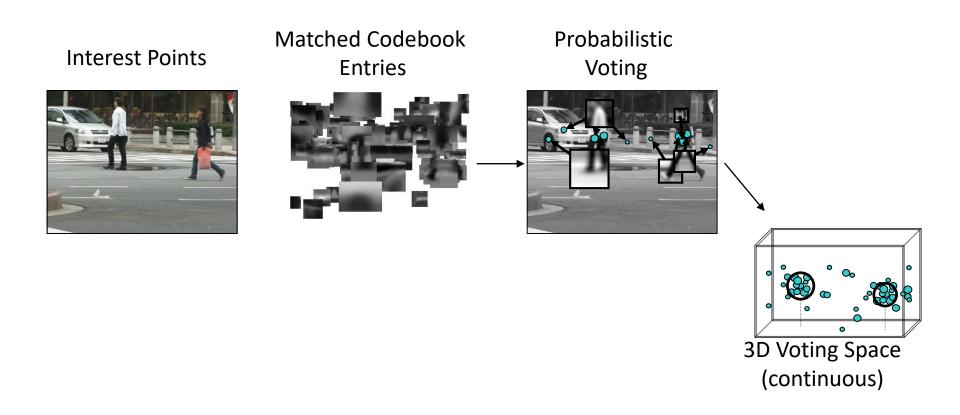
Note – Template did not change size

Each window is separately classified



Generating hypotheses

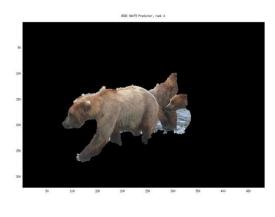
2. Voting from patches/keypoints

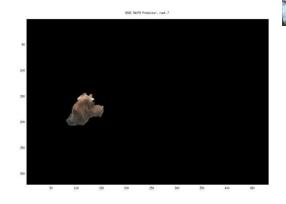


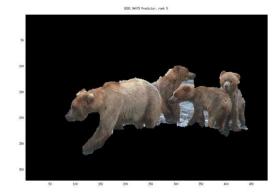
Implicit Shape Model by Leibe et al.

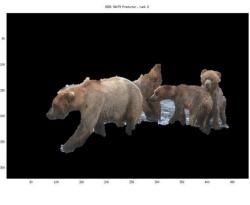
Generating hypotheses

3. Region-based proposal



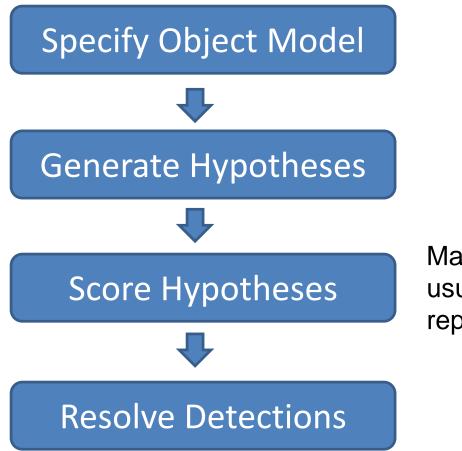






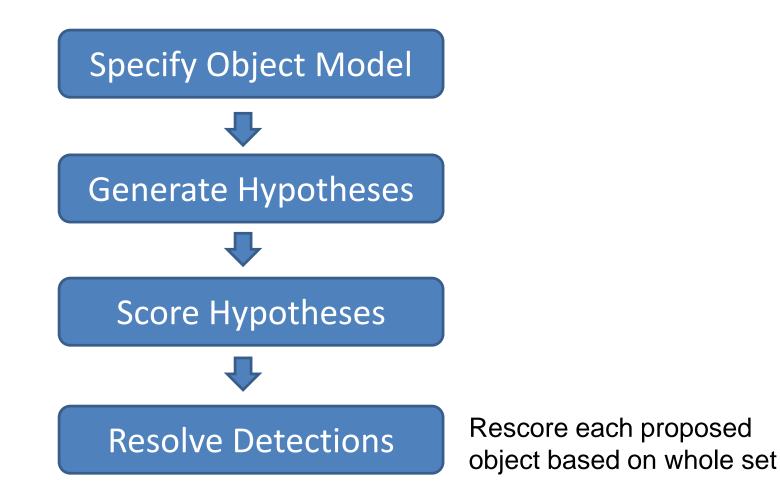
Endres Hoiem 2010

General Process of Object Recognition



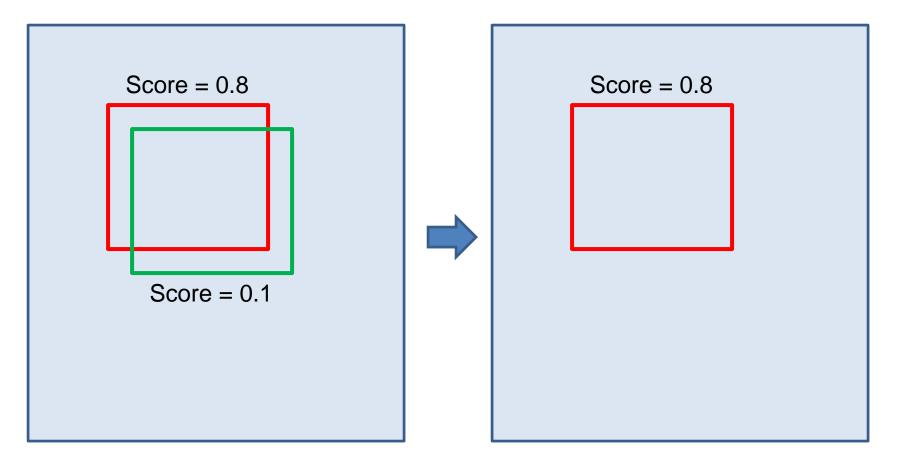
Mainly-gradient based features, usually based on summary representation, many classifiers

General Process of Object Recognition



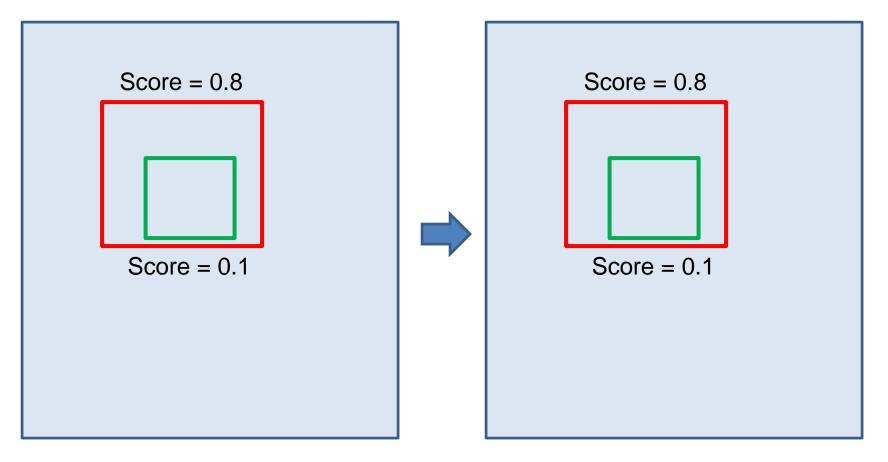
Resolving detection scores

1. Non-max suppression



Resolving detection scores

1. Non-max suppression

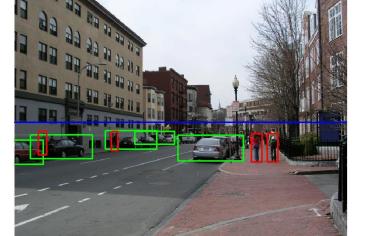


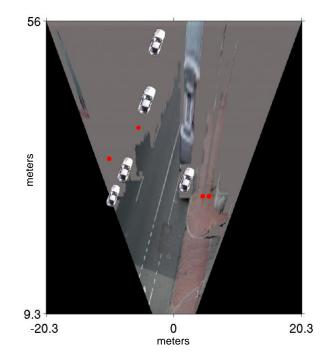
"Overlap" score is below some threshold

Resolving detection scores

2. Context/reasoning

(g) Car Detections: Local (h) Ped Detections: Local





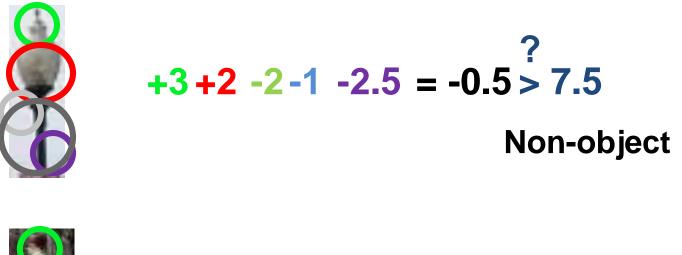
Hoiem et al. 2006

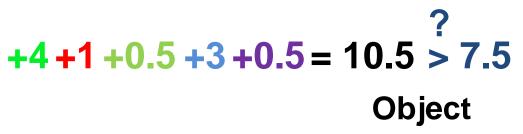
Dalal Triggs: Person detection with HOG & linear SVM

- Histograms of Oriented Gradients for Human Detection, <u>Navneet Dalal</u>, <u>Bill Triggs</u>, International Conference on Computer Vision & Pattern Recognition - June 2005
- http://lear.inrialpes.fr/pubs/2005/DT05/

Statistical Template

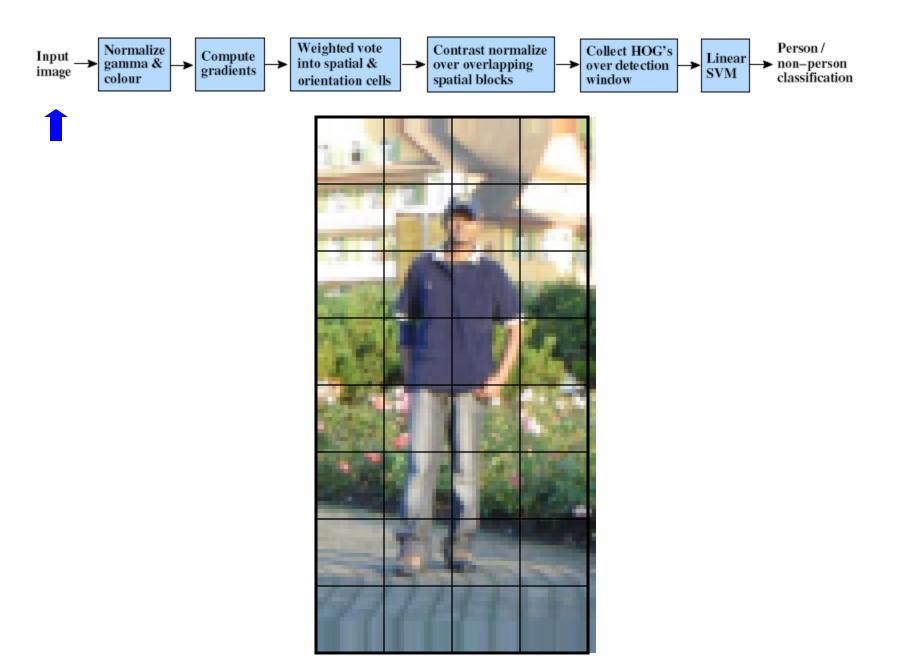
Object model = sum of scores of features at fixed positions



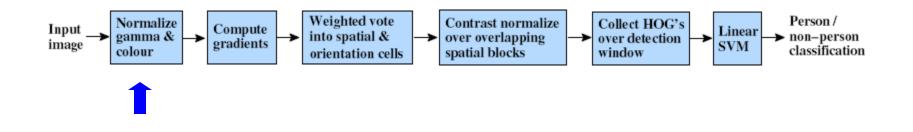


Example: Dalal-Triggs pedestrian detector

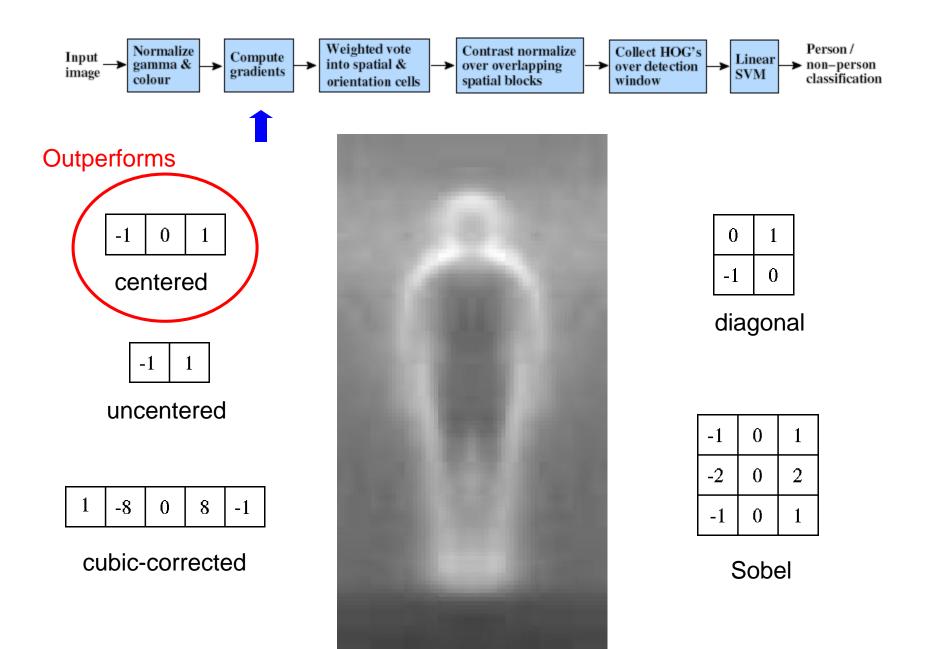
- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores



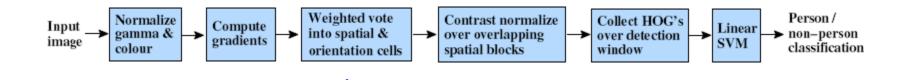
Slides by Pete Barnum



- Tested with
 - RGB
 Slightly better performance vs. grayscale
 LAB
 - Grayscale
- Gamma Normalization and Compression
 - Square root Very slightly better performance vs. no adjustment
 - Log

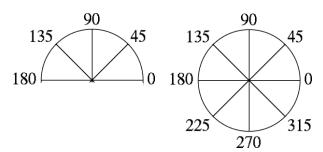


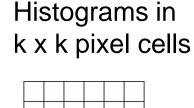
Slides by Pete Barnum

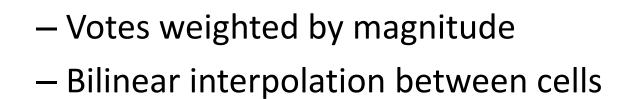


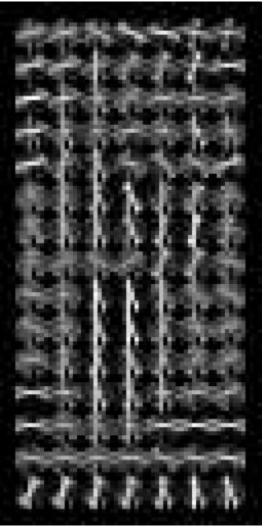
Histogram of Oriented Gradients

Orientation: 9 bins (for unsigned angles 0 -180)

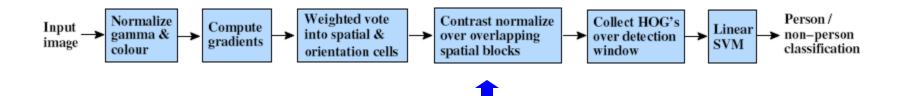






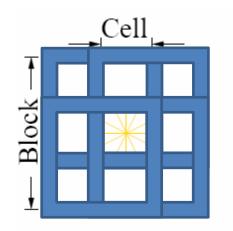


Slides by Pete Barnum



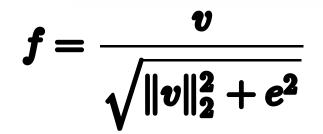
Normalize with respect to surrounding cells

Rectangular HOG (R-HOG)

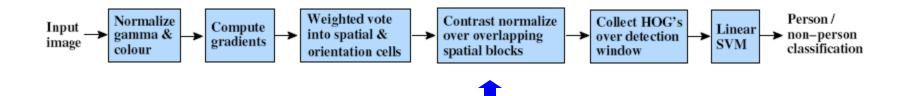


How to normalize?

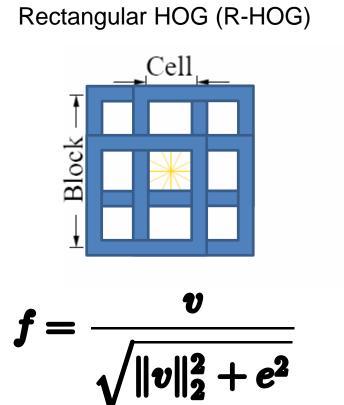
- Concatenate all cell responses from block into vector.
- Normalize vector.
- Extract responses from cell of interest.



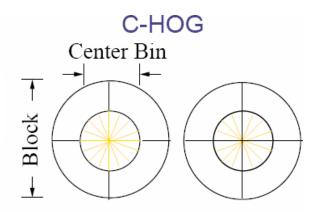
e is a small constant (for empty bins)



Normalize with respect to surrounding cells



Circular HOG also exist, but trickier implementation

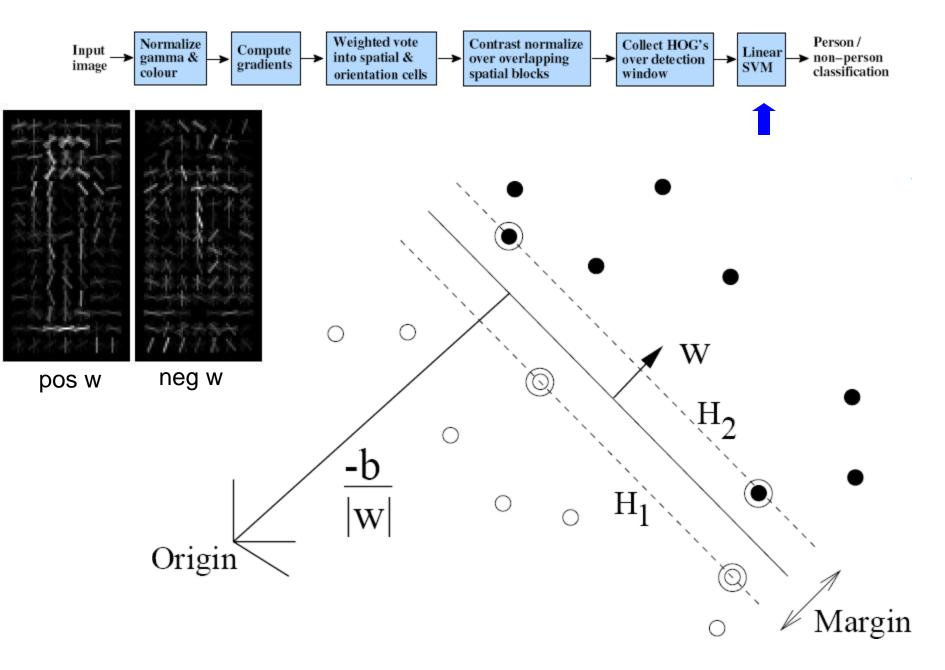


Radial Bins, Angular Bins

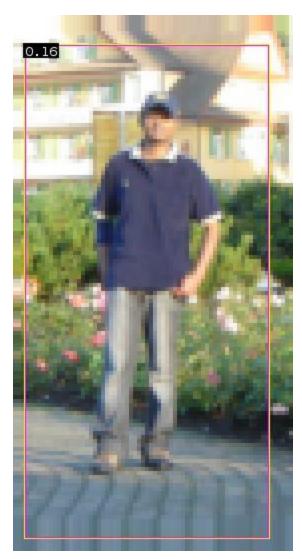
e is a small constant (for empty bins)

$$X = \begin{cases} X = \begin{cases} X = 1 \\ Y = 1 \\$$

Slides by Pete Barnum



Slides by Pete Barnum



 $0.16 = w^T x - b$

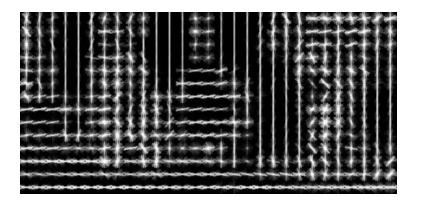
sign(0.16) = 1

=> pedestrian

Slides by Pete Barnum

Pedestrian detection with HOG

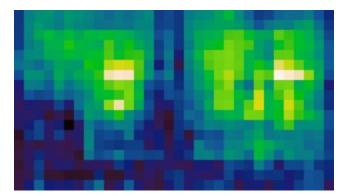
- Learn a pedestrian template using a support vector machine
- At test time, compare feature map with template over sliding windows.
- Find local maxima of response
- *Multi-scale*: repeat over multiple levels of a HOG pyramid



HOG feature map

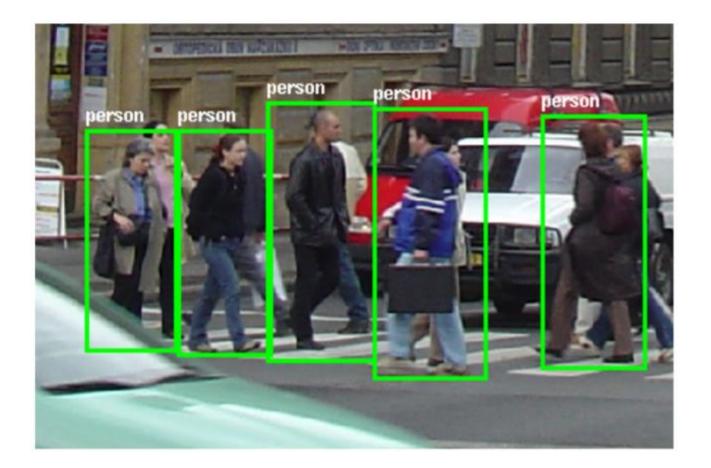
Template

Detector response map



Can be continuous for more sophisticated maxima finding

INRIA pedestrian database



INRIA pedestrian database issues

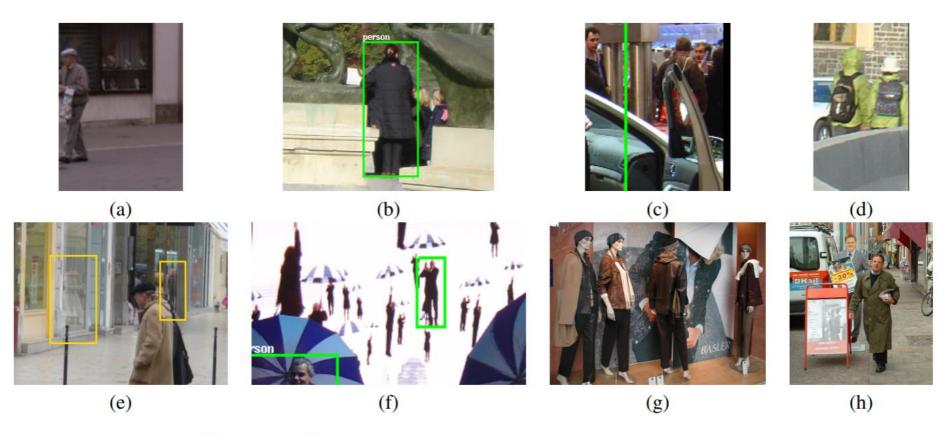
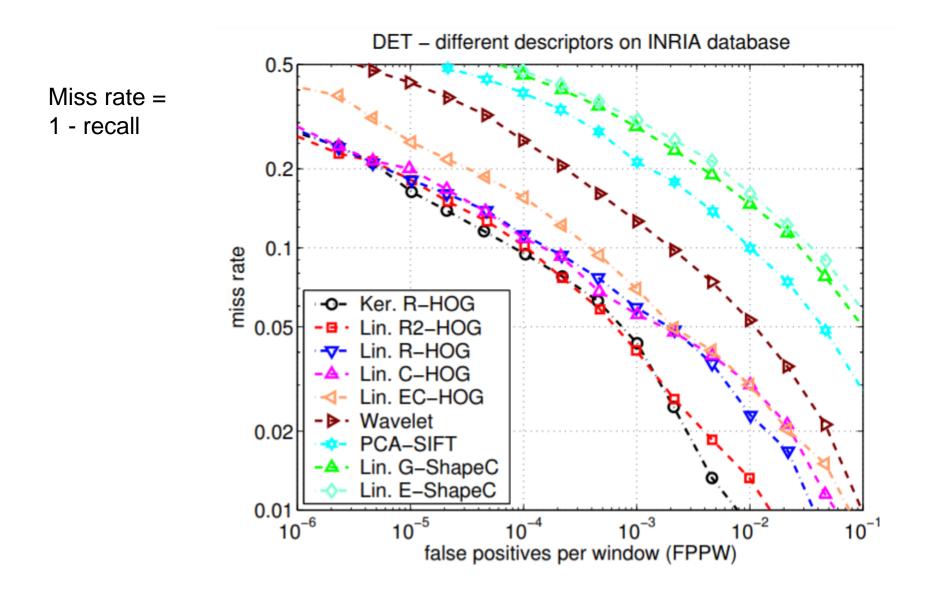


Figure 1. Details from the INRIA test set highlighting some limitations. (a–d) Unlabelled persons. (e–h) Ambiguous cases. (e) Reflections of persons on a shop window, not labelled. (f) Some persons drawn on a wall, only one of them is labelled. (g) Some mannequins, all labelled. (h) A poster depicting a man, not labelled.

How good is HOG at person detection?



Something to think about...

- Sliding window detectors work
 - *very well* for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs
- Why are some classes easier than others?

Strengths/Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
- Fast detection

Weaknesses

- Not so well for highly deformable objects or "stuff"
- Not robust to occlusion
- Requires lots of training data

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate
- Template size
 - Typical choice is size of smallest expected detectable object
- "Jittering" or "augmenting" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples.
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - 2. Train detector
 - 3. Sample negative examples that score > -1
 - 4. Repeat until all high-scoring negative examples fit in memory