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Escher’s Circle Limit I1I



Escher’s Circle Limit I1I



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

- clustering
categorization

regression dlmensm_nallty
reduction




PCA: Principal Component Analysis

The best possible lower dimensional
representation based on linear projections.

A basis of directions of variance ordered by
their significance.

Throw away least variance dimensions to
reduce data representation.

10

-5} .

-5

10

R.P.W. Duin



http://rduin.nl/prtools.html

Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

cIaSS|f|o§1t|0|j or clustering
categorization

dimensionality

regression .
J reduction




K-means algorithm

L]
o o
1. Randomly 0 o
select K centers - E..
o
om

2. Assign each
point to nearest
center

Back to 2
3. Compute new d

center (mean) R {j

for each cluster .\:
(]

lllustration: http://en.wikipedia.org/wiki/K-means clustering



http://en.wikipedia.org/wiki/K-means_clustering

More techniques in notes

K-means
— Iteratively re-assign points to the nearest cluster center.

Agglomerative clustering

— Start with each point as its own cluster and iteratively
merge the closest clusters.

Mean-shift clustering
— Estimate modes of probability density function.

Spectral clustering

— Split the nodes in a graph based on assigned links with
similarity weights.



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning
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Dataset split
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- Train classifier

Random train/validate splits = cross validation

- Measure error
- Tune model
hyperparameters
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- Secret labels
- Measure error
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Slide credit: D. Hoiem and L. Lazebnik



Raw pixels
Histograms
Templates

SIFT descriptors
— GIST

— ORB

— HOG....

Features
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Recognition task and supervision

* Images in the training set must be annotated with the
“correct answer” that the model is expected to produce

Contains a motorbike

L. Lazebnik



Spectrum of supervision

Less More

—

E.G., MS Coco

Unsupervised “Weakly” supervised Fully supervised

N _
\/

Fuzzy; definition depends on task

‘Semi-supervised’: small partial labeling



Good training
example?




Good labels?
URL|:E Hzﬂl IMI

an elephant standing on top of a basket being held by a woman.
a woman standing holding a basket with an elephant in it.

a lady holding an elephant in a small basket.

a lady holds an elephant in a basket.

an elephant inside a basket lifted by a woman.




Google guesses from the 15t caption
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The machine learning framework

* Apply a prediction function to a feature representation of
the image to get the desired output:

f(EJ) = "apple’
f(Rd) = “tomato”
f() — “COW”



The machine learning framework

I(X) =y
N

Prediction function Image Output (label)
or classifier feature

Training: Given a training set of labeled examples:

{(X1:Y1)s -5 (XpoYN)}
Estimate the prediction function f by minimizing the
prediction error on the training set.

Testing: Apply f to a unseen test example x, and output the
predicted value y, = f(x,) to classify x,.



Classification

Assign x to one of two (or more) classes.

A decision rule divides input space into decision
regions separated by decision boundaries.




Classifiers: Nearest neighbor

m | ®
Y » .
Training Test O e':(r;rl]:“llﬁgs
examples [] example P
from class 1 from class 2
[]
[] @
o o

f(x) = label of the training example nearest to x

* All we need is a distance function for our inputs
* No training required!
« What does the decision boundary look like?



Decision boundary for Nearest
Neighbor Classifier

Divides input space into decision regions separated by decision
boundaries — Voronoi.

Voronoi partitioning
of feature space
for two-category

2D and 3D data




k-nearest neighbor
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Classifiers: Linear

\
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Find a linear function to separate the classes



Classifiers: Linear SVM

Find a linear function
to separate the X
classes: X y

f(x) = sgn(w - x + b) —

X2

x1



Classifiers: Linear SVM

Find a linear function

to separate the . X
classes: y .
f(x) = sgn(w - X + b) -
0 : "
0
How? 0
X = all data points X2 7

x1

Define hyperplane tX-b = 0, where t is tangent to hyperplane.

Minimize |[[t|| s.t. tX-b produces correct label for all X



Classifiers: Linear SVM

Find a linear function

to separate the . X
classes: x o
f(x) = sgn(w - X + b) -
0 "
O @

X2

x1

What if my data are not linearly separable?

Introduce flexible ‘hinge’ loss (or ‘soft-margin’)



Nonlinear SVMs

« Datasets that are linearly separable work out great:

« But what if the dataset is just too hard?

*—& *—0— o-0—@ *—o o—>

0 X

 We can map it to a higher-dimensional space:

Andrew Moore



Nonlinear SVMs

Map the original input space to some higher-
dimensional feature space where the training set
IS separable:
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Slide credit: Andrew Moore



What about multi-class SVMs?

Unfortunately, there is no “definitive” multi-class SVM.
In practice, we combine multiple two-class SVMs

One vs. others

— Training: learn an SVM for each class vs. the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One vs. one

— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the
test example



SVMs: Pros and cons

* Pros

— Many publicly available SVM packages:
http://www.kernel-machines.org/software

— Kernel-based framework is very powerful, flexible

— SVMs work very well in practice, even with very small
training sample sizes

e Cons
— No “direct” multi-class SVM, must combine two-class SVMs

— Computation, memory
« During training time, must compute matrix of kernel
values for every pair of examples
« Learning can take a very long time for large-scale
problems


http://www.kernel-machines.org/software

What to remember about classifiers

* No free lunch: machine learning algorithms are
tools, not dogmas

* Try simple classifiers first

* Better to have smart features and simple classifiers
than simple features and smart classifiers

 Use increasingly powerful classifiers with more
training data (bias-variance tradeoff)
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Features and distance measures
define visual similarity.

Training labels
dictate that examples are the same or different.

Classifiers

learn weights (or parameters) of features and
distance measures...
so that visual similarity predicts label similarity.



Generalization

Training set (labels known) Test set (labels
unknown)

How well does a learned model generalize from the
data it was trained on to a new test set?



Generalization Error

Bias:
» Difference between the expected (or average) prediction
of our model and the correct value.

« Error due to inaccurate assumptions/simplifications.

Variance:

- Amount that the estimate of the target function will
change if different training data was used.



Bias/variance trade-off

Low Variance

Low Bias

High Bias

Bias = accuracy
Variance = precision Scott Fortmann-



Generalization Error Effects

« Underfitting: model is too “simple” to represent all the
relevant class characteristics
— High bias (few degrees of freedom) and low variance
— High training error and high test error

Y. Sample 2




Generalization Error Effects

« Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
— Low bias (many degrees of freedom) and high variance
— Low training error and high test error

ACCESS

y Sample 2




Bias-Variance Trade-off

Ya

Sample 2

Models with too few parameters are
inaccurate because of a large bias.
* Not enough flexibility!

* Too many assumptions

Models with too many parameters are
inaccurate because of a large variance.
* Too much sensitivity to the sample.

* Slightly different data ->
very different function.



Bias-variance tradeoff

Underfitting Overfitting
A
A
5 Generalization Error
L]
\ 4
High Bias i Low Bias
Low Variance CompleXIty High Variance



Bias-variance tradeoff

Overfitting
N

§ |
L]
..(7; - -
2 | Underfitting

High Bias i Low Bias

Low Variance Comp|6XIty High Variance



Error

Effect of Training Size

Fixed prediction model

Number of Training Examples



Discriminative Generative

®
® o
® A
®

“Learn the data boundary” “Represent the data + boundary”

Bayesian methods:
Condition model on
data probabilistically

evolvingai.org
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Many classifiers to choose from...

* K-nearest neighbor

e SVM

* Naive Bayes

e Bayesian network

* Logistic regression
 Randomized Forests

* Boosted Decision Trees

e Restricted Boltzmann Machines
* Neural networks

 Deep Convolutional Network

Which is
the best?



Claim:

The decision to use machine learning
is more important than the choice of a
particular learning method.

*Deep learning seems to be an exception to this,
currently, because it learns the feature representation.



Claim:

[t is more important to have more or
better labeled data than to use a
different supervised learning
technique.

*Again, deep learning may be an exception here for the
same reason, but deep learning _needs_ a lot of
labeled data in the first place.

“The Unreasonable Effectiveness of Data” - Norvig



