


Motion illusion, rotating snakes



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around 

each interest point as vector.

3) Matching: 
Compute distance between feature 

vectors to find correspondence.
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Review: Harris corner detector

• Approximate distinctiveness by local 
auto-correlation.

• Approximate local auto-correlation by  
second moment matrix M.

• Distinctiveness (or cornerness) relates 
to the eigenvalues of M.

• Instead of computing eigenvalues
directly, we can use determinant 
and trace of M.
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Trace / determinant and eigenvalues

• Given n x n matrix A with eigenvalues λ1…n

• R = λ1λ2 – α(λ1+λ2)2 = det(M) – αtrace(M)2



HOW INVARIANT ARE 
HARRIS CORNERS?



Affine intensity change

• Only derivatives are used => 

invariance to intensity shift I  I + b

• Intensity scaling: I  a I

R

x (image coordinate)

Threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I  a I + b

James Hays



Image translation

• Derivatives and window function are shift-invariant.

Corner location is covariant w.r.t. translation

James Hays



Image rotation

Second moment ellipse rotates but its shape 

(i.e., eigenvalues) remains the same.

Corner location is covariant w.r.t. rotation

James Hays



Scaling

All points will 

be classified 

as edges

Corner

Corner location is not covariant to scaling!

James Hays



WHAT IS THE ‘SCALE’ OF A 
FEATURE POINT?



Automatic Scale Selection

K. Grauman, B. Leibe
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How to find patch sizes at which f response is equal?

What is a good f ?



Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection

• Function responses for increasing scale (scale signature) 
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1st Derivative of Gaussian

(Laplacian of Gaussian)

Earl F. Glynn

What Is A Useful Signature Function f ?



What Is A Useful Signature Function f ?

• “Blob” detector is common for corners

– - Laplacian (2nd derivative) of Gaussian (LoG)

K. Grauman, B. Leibe
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Find local maxima in position-scale space

K. Grauman, B. Leibe
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Alternative approach

Ruye Wang

Approximate LoG with Difference-of-Gaussian (DoG).



Approximate LoG with Difference-of-Gaussian (DoG).

1. Blur image with   σ Gaussian kernel

2. Blur image with kσ Gaussian kernel

3. Subtract 2. from 1.

Alternative approach

K. Grauman, B. Leibe
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Find local maxima in position-scale space of DoG

K. Grauman, B. Leibe
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Results: Difference-of-Gaussian

• Larger circles = larger scale

• Descriptors with maximal scale response

K. Grauman, B. Leibe



Maximally Stable Extremal Regions [Matas ‘02]

• Based on Watershed segmentation algorithm

• Select regions that stay stable over a large 
parameter range

K. Grauman, B. Leibe



Example Results: MSER

K. Grauman, B. Leibe



Review: Interest points

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Harris, DoG, MSER



Review: Choosing an interest point detector

• Why choose?
– Collect more points with more detectors, for more possible matches

• What do you want it for?
– Precise localization in x-y: Harris
– Good localization in scale: Difference of Gaussian
– Flexible region shape: MSER

• Best choice often application dependent
– Harris-/Hessian-Laplace/DoG work well for many natural categories
– MSER works well for buildings and printed things

• There have been extensive evaluations/comparisons
– [Mikolajczyk et al., IJCV’05, PAMI’05]
– All detectors/descriptors shown here work well



Comparison of Keypoint Detectors

Tuytelaars Mikolajczyk 2008



Local Image Descriptors

Acknowledgment: Many slides from James Hays, Derek Hoiem and Grauman & Leibe 2008 AAAI Tutorial

Read Szeliski 4.1



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around each 
interest point as vector.

3) Matching: 
Compute distance between feature 
vectors to find correspondence.
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Space Shuttle 

Cargo Bay

Image Representations: Histograms

Global histogram to represent 
distribution of features

– Color, texture, depth, …

Local histogram per detected point

Images from Dave Kauchak



For what things do we compute histograms?

• Color

• Model local appearance

L*a*b* color space HSV color space 

James Hays



• Texture

• Local histograms of oriented gradients

• SIFT: Scale Invariant Feature Transform

– Extremely popular (40k citations)

SIFT – Lowe IJCV 2004

For what things do we compute histograms?

James Hays



SIFT

• Find Difference of Gaussian scale-space extrema

• Post-processing

– Position interpolation

– Discard low-contrast points

– Eliminate points along edges



SIFT

• Find Difference of Gaussian scale-space extrema

• Post-processing

– Position interpolation

– Discard low-contrast points

– Eliminate points along edges

• Orientation estimation



T. Tuytelaars, B. Leibe

SIFT Orientation Normalization

• Compute orientation histogram

• Select dominant orientation ϴ

• Normalize: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]

0 2p



SIFT

• Find Difference of Gaussian scale-space extrema

• Post-processing

– Position interpolation

– Discard low-contrast points

– Eliminate points along edges

• Orientation estimation

• Descriptor extraction

– Motivation: We want some sensitivity to spatial 
layout, but not too much, so blocks of histograms 
give us that.



SIFT Descriptor Extraction

• Given a keypoint with scale and orientation:

– Pick scale-space image which most closely matches 
estimated scale

– Resample image to match orientation OR

– Subtract detector orientation from vector to give 
invariance to general image rotation.



T. Tuytelaars, B. Leibe

SIFT Orientation Normalization

• Compute orientation histogram

• Select dominant orientation ϴ

• Normalize: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]

0 2p



SIFT Descriptor Extraction

• Given a keypoint with scale and orientation

Utkarsh Sinha

Gradient 

magnitude 

and 

orientation

8 bin ‘histogram’

- add magnitude 

amounts!



SIFT Descriptor Extraction

• Within each 4x4 window

Utkarsh Sinha

Gradient 

magnitude 

and 

orientation

8 bin ‘histogram’

- add magnitude 

amounts!

Weight magnitude 

that is added to 

‘histogram’ by 

Gaussian



SIFT Descriptor Extraction

• Extract 8 x 16 values into 128-dim vector

• Illumination invariance:

– Working in gradient space, so robust to I = I + b

– Normalize vector to [0…1]

• Robust to I = αI brightness changes

– Clamp all vector values > 0.2 to 0.2.

• Robust to “non-linear illumination effects” 

• Image value saturation / specular highlights

– Renormalize



Specular highlights move between image pairs!





SIFT-like descriptor in Project 2

• SIFT is hand designed based on intuition

• You implement your own SIFT-like descriptor
– Ignore scale/orientation to start.

• Parameters: stick with defaults + minor tweaks

• Feel free to look at papers / resources for inspiration

2017 Spring TA Martin Zhu recommends this tutorial:

http://aishack.in/tutorials/sift-scale-invariant-feature-transform-features/

Lowe’s original paper: http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

65

http://aishack.in/tutorials/sift-scale-invariant-feature-transform-features/
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Efficient Implementation

• Filter using oriented kernels based on
directions of histogram bins.

• Called ‘steerable filters’



Local Descriptors: SURF

K. Grauman, B. Leibe

• Fast approximation of SIFT idea
➢ Efficient computation by 2D box filters & 

integral images
 6 times faster than SIFT

➢ Equivalent quality for object identification

[Bay, ECCV’06], [Cornelis, CVGPU’08]

• GPU implementation available
➢ Feature extraction @ 200Hz

(detector + descriptor, 640×480 img)

➢ http://www.vision.ee.ethz.ch/~surf



Local Descriptors: Shape Context

Count the number of points 

inside each bin, e.g.:

Count = 4

Count = 10
...

Log-polar binning: 

More precision for nearby 

points, more flexibility for 

farther points.

Belongie & Malik, ICCV 2001
K. Grauman, B. Leibe



Shape Context Descriptor



Self-similarity Descriptor

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007

James Hays



Self-similarity Descriptor

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007

James Hays



Self-similarity Descriptor

Matching Local Self-Similarities across Images 
and Videos, Shechtman and Irani, 2007

James Hays



Learning Local Image Descriptors 
Winder and Brown, 2007



Review: Local Descriptors

• Most features can be thought of as templates, 
histograms (counts), or combinations

• The ideal descriptor should be

– Robust and Distinctive

– Compact and Efficient

• Most available descriptors focus on 
edge/gradient information

– Capture texture information

– Color rarely used

K. Grauman, B. Leibe



Available at a web site near you…

• Many local feature detectors have executables 
available online:

– http://www.robots.ox.ac.uk/~vgg/research/affine

– http://www.cs.ubc.ca/~lowe/keypoints/

– http://www.vision.ee.ethz.ch/~surf

K. Grauman, B. Leibe



Feature Matching

Many slides from James Hays, Derek Hoiem, and Grauman&Leibe 2008 AAAI Tutorial

Read Szeliski 4.1



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around each 
interest point as vector.

3) Matching: 
Compute distance between feature 
vectors to find correspondence.
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Distance: 0.34, 0.30, 0.40

Distance: 0.61, 1.22

How do we decide which features match?



Think-Pair-Share

• Design a feature point matching scheme.

• Two images, I1 and I2

• Two sets X1 and X2 of feature points
– Each feature point x1 has a descriptor 

• Distance, bijective/injective/surjective, noise, 
confidence, computational complexity, 
generality…
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Euclidean distance vs. Cosine Similarity

• Euclidean distance:

• Cosine similarity:

Wikipedia



Feature Matching

• Criteria 1: 

– Compute distance in feature space, e.g., Euclidean 
distance between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)

• Problems:

– Does everything have a match?



Feature Matching

• Criteria 2: 

– Compute distance in feature space, e.g., Euclidean 
distance between 128-dim SIFT descriptors

– Match point to lowest distance (nearest neighbor)

– Ignore anything higher than threshold (no match!)

• Problems:

– Threshold is hard to pick

– Non-distinctive features could have lots of close 
matches, only one of which is correct



Nearest Neighbor Distance Ratio

Compare distance of closest (NN1) and second-
closest (NN2) feature vector neighbor.

• If NN1 ≈ NN2,     ratio 
𝑁𝑁1

𝑁𝑁2
will be ≈ 1   -> matches too close.

• As NN1 << NN2, ratio 
𝑁𝑁1

𝑁𝑁2
tends to 0.

Sorting by this ratio puts matches in order of confidence.

Threshold ratio – but how to choose?



Nearest Neighbor Distance Ratio

• Lowe computed a probability distribution functions of ratios

• 40,000 keypoints with hand-labeled ground truth

Lowe IJCV 2004

Ratio threshold 

depends on your 

application’s view on 

the trade-off between 

the number of false 

positives and true 

positives!



Efficient compute cost

• Naïve looping: Expensive

• Operate on matrices of descriptors

• E.g., for row vectors,

features_image1 * features_image2T

produces matrix of dot product results 
for all pairs of features



HOW GOOD IS SIFT?



SIFT Repeatability

Lowe IJCV 2004



SIFT Repeatability
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SIFT Repeatability

Lowe IJCV 2004



SIFT Repeatability

Lowe IJCV 2004



Review: Interest points

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Harris, DoG

• Descriptors: robust and selective

– Spatial histograms of orientation

– SIFT


