


Wikipedia - Mysid













Corners

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 4.1

Also called interest points, key points, etc.

Often described as ‘local’ features.

Filtering Edges

Feature 
points



Correspondence across views

• Correspondence: matching points, patches, 
edges, or regions across images.

≈

Hays



Example: estimate “fundamental matrix” 
that corresponds two views

Silvio Savarese



Example: structure from motion



Fundamental to Applications  

• Feature points are used for:
– Image alignment 

– 3D reconstruction

– Motion tracking (robots, drones, AR)

– Indexing and database retrieval

– Object recognition

– …

Hays



Example: Invariant Local Features

Detect points that are repeatable and distinctive.

I.E., invariant to image transformations:

- appearance variation (brightness, illumination) 

- geometric variation (translation, rotation, scale).

Keypoint Descriptors James Hays



Example application

• Panorama stitching
• We have two images – how do we combine them?



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description: 
Extract feature descriptor around 

each interest point as vector.

3) Matching: 
Compute distance between feature 

vectors to find correspondence.
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Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion

Kristen Grauman



Goal: interest operator repeatability

• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 

procedure independently per image.

With these points, there’s no chance to find true matches!

Kristen Grauman



Goal: descriptor distinctiveness

• We want to be able to reliably determine which 

point goes with which.

• Must provide some invariance to geometric and 

photometric differences between the two views.

?

Kristen Grauman



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around 

each interest point as vector.

3) Matching:
Compute distance between feature 

vectors to find correspondence.



Detection: Basic Idea

• We do not know which other image 

locations the feature will end up being 

matched against.

• But we can compute how stable a 

location is in appearance with respect 

to small variations in position u.

• Compare image patch against 

local neighbors.

A. Efros



Corner Detection: Basic Idea

• We might recognize the point by looking 
through a small window.

• We want a window shift in any direction to 
give a large change in intensity.

“Edge”:

no change 

along the edge 

direction

“Corner”:

significant 

change in all 

directions

“Flat” region:

no change in 

all directions

A. Efros



Corner Detection by Auto-correlation
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IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) for shift [u,v]:
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I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) for shift [u,v]:

Corner Detection by Auto-correlation
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E u v w x y I x u y v I x y   

Change in appearance of window w(x,y) for shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)

Corner Detection by Auto-correlation



As a surface

Think-Pair-Share:
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Correspond the three 

red crosses to (b,c,d).



Corner Detection by Auto-correlation
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We want to discover how E behaves for small shifts

Change in appearance of window w(x,y) for shift [u,v]:

But this is very slow to compute naively.

O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 

14.6 thousand per pixel in your image



Corner Detection by Auto-correlation
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But we know the response in E that we are looking 

for – strong peak.

Change in appearance of window w(x,y) for shift [u,v]:

We want to discover how E behaves for small shifts



Can we just approximate E(u,v) locally 

by a quadratic surface?

≈



Recall: Taylor series expansion

A function f can be represented by an infinite series 

of its derivatives at a single point a:

Approximation of 

f(x) = ex 

centered at f(0)

Wikipedia

As we care about window 

centered, we set a = 0

(MacLaurin series)



Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the 

second-order Taylor expansion:
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Notation: partial derivative



Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the 

second-order Taylor expansion:
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Ignore function 

value; set to 0 Ignore first 

derivative, 

set to 0

Just look at 

shape of 

second 

derivative



Corner Detection: Mathematics

The quadratic approximation simplifies to
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where M is a second moment matrix computed from image 

derivatives:
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Corners as distinctive interest points

2 x 2 matrix of image derivatives 

(averaged in neighborhood of a point)

Notation:

James Hays



The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Visualization of second moment matrices

James Hays



Visualization of second moment matrices

James Hays



Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the eigenvalues,

and the orientation is determined by a rotation matrix 𝑅.
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slowest change

direction of the 

fastest change

(max)
-1/2

(min)
-1/2

const][ 








v

u
Mvu

Diagonalization of M:

James Hays



Classification of image points using eigenvalues of M

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region



Classification of image points using eigenvalues of M

“Corner”

C > 0

“Edge” 

C < 0

“Edge” 

C < 0

“Flat” 

region

|C| small

1

22

2121 )(  C

Cornerness

α: constant (0.04 to 0.06)
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Classification of image points using eigenvalues of M

“Corner”

C > 0

“Edge” 

C < 0

“Edge” 

C < 0

“Flat” 

region

|C| small

2)(trace)det( MMC 

Determinant:

Trace:

1

2

Remember your linear algebra:

Cornerness

α: constant (0.04 to 0.06)



Harris corner detector

1) Compute M matrix for each window to recover 

a cornerness score 𝐶.
• Note: We can find M purely from the per-pixel image derivatives!

2) Threshold to find pixels which give large corner 

response (𝐶 > threshold).

3) Find the local maxima pixels,

i.e., suppress non-maxima.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Corner Detector [Harris88]

1. Compute image derivatives (optionally, blur first).

2. Compute 𝑀 components

as squares of derivatives.

3. Gaussian filter g() with width s

𝐼𝑥 𝐼𝑦

𝑔(𝐼𝑥
2) 𝑔(𝐼𝑦

2) 𝑔(𝐼𝑥 ∘ 𝐼𝑦)

4. Compute cornerness

𝑅 5. Threshold on 𝐶 to pick high cornerness

6. Non-maxima suppression to pick peaks.

James Hays

0. Input image

We want to compute M at each pixel.
𝐼

𝐼𝑥𝑦𝐼𝑥
2 𝐼𝑦

2

𝐶 = det 𝑀 − 𝛼 trace 𝑀 2

= 𝑔 𝐼𝑥
2 ∘ 𝑔 𝐼𝑦

2 − 𝑔 𝐼𝑥 ∘ 𝐼𝑦
2

−𝛼 𝑔 𝐼𝑥
2 + 𝑔 𝐼𝑦

2 2



Harris Detector: Steps



Harris Detector: Steps

Compute corner response 𝐶



Harris Detector: Steps

Find points with large corner response: 𝐶 > threshold



Harris Detector: Steps

Take only the points of local maxima of 𝐶



Harris Detector: Steps



Invariance and covariance

Are locations invariant to photometric transformations 

and covariant to geometric transformations?

• Invariance: image is transformed and corner locations do not change

• Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations


