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Filtering - Edges - Corners

Feature
points

Also called interest points, key points, etc.
Often described as ‘local’ features.

Szeliski 4.1



Correspondence across views

* Correspondence: matching points, patches,
edges, or regions across images.

Hays
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Example

that corresponds two views

Silvio Savarese




Example: structure from motion




Fundamental to Applications

* Feature points are used for:

— Image alignment
— 3D reconstruction il
— Motion tracking (robots, drones, AR)
— Indexing and database retrieval )

— Object recognition

Hays



Example: Invariant Local Features

Detect points that are repeatable and distinctive.
|.LE., invariant to image transformations:

- appearance variation (brightness, illumination)
- geometric variation (translation, rotation, scale).

Keypoint Descriptors James Hays



Example application

« Panorama stitching
« We have two images — how do we combine them?




Local features: main components

1) Detection:
Find a set of distinctive key points.

Description:
Extract feature descriptor around
each interest point as vector.

X, X, =[x*,...,xP]

Matching:
Compute distance between feature
vectors to find correspondence.

d(X;,X,)<T

K. Grauman, B. Leibe



Characteristics of good features

Repeatability

 The same feature can be found in several images despite geometric
and photometric transformations

Saliency
 Each feature is distinctive

Compactness and efficiency
« Many fewer features than image pixels

Locality

» A feature occupies a relatively small area of the image; robust to
clutter and occlusion

Kristen Grauman



Goal: interest operator repeatabllity

« We want to detect (at least some of) the
same points in both images.

* Yet we have to be able to run the detection
procedure independently per image.

Kristen Grauman



Goal: descriptor distinctiveness

* We want to be able to reliably determine which
point goes with which.

« Must provide some invariance to geometric and
photometric differences between the two views.

Kristen Grauman



Local features: main components

1) Detection:
Find a set of distinctive key points.

2) Description:
Extract feature descriptor around
each interest point as vector.

3) Matching:
Compute distance between feature
vectors to find correspondence.



Detection: Basic Idea

* We do not know which other image
locations the feature will end up being
matched against.

* But we can compute how stable a
location Is In appearance with respect
to small variations in position u.

« Compare image patch against
local neighbors.

A. Efros



Corner Detection: Basic

We might recognize the point by
through a small window.

give a large change in intensity.

dea

ooking

We want a window shift in any direction to

“Flat” region: “Edge”:

no change in no change

all directions along the edge
direction

“Corner”:
significant
change in all
directions

A. Efros



Corner Detection by Auto-correlation

Change in appearance of window w(X,y) for shift [u,V]:

E(u,v) =) w(x, y)[1(x+u,y+Vv)—1(X, ]

\

Window function w(x,y) =

1 in window, O outside Gaussian

Source: R. Szeliski



Corner Detection by Auto-correlation

Change in appearance of window w(X,y) for shift [u,V]:




Corner Detection by Auto-correlation

Change in appearance of window w(X,y) for shift [u,V]:

E(u, v)




Think-Pair-Share:

Correspond the three
red crosses to (b,c,d).

As a surface



Corner Detection by Auto-correlation

Change in appearance of window w(X,y) for shift [u,V]:

E(u,v) =) w(x, y)[1(x+u,y+Vv)—I(X, ]

We want to discover how E behaves for small shifts

But this is very slow to compute naively.
O(window_width? * shift_range? * image_width?)

O( 114 * 112 * 6002 ) = 5.2 billion of these
14.6 thousand per pixel in your image



Corner Detection by Auto-correlation

Change in appearance of window w(X,y) for shift [u,V]:

E(u,v) =) w(x, y)[1(x+u,y+Vv)—I(X, ]

We want to discover how E behaves for small shifts

But we know the response in E that we are looking

for — strong peak.
'




Can we just approximate E(u,v) locally
by a quadratic surface?




Recall: Taylor series expansion

A function f can be represented by an infinite series
of its derivatives at a single point a:

f:'( ) fﬂ( ) fﬂ!( )

f(a) + (z —a) + (z —a)* + (z —a)® +
0. Wikipedia
i =0
As we care about window ol "
centered, we seta=0
(MacLaurin series) 10/

Approximation of 0 ————
f(x) = eX
centered at f(0)




Local quadratic approximation of E(u,v) in the
neighborhood of (0,0) is given by the
second-order Taylor expansion:

E(u,v) = E(0,0)+[u v]{E“(O’O)} 1 {Euu(o’o) Euv(O,O)}{U}

+—[u V]
E,(0,0)| 2 E,.(00) E,O0)]vV

Notation: partial derivative



Local quadratic approximation of E(u,v) in the
neighborhood of (0,0) is given by the
second-order Taylor expansion:

E (0,0 Euu 0,0 EUV 0,0
Euv) ~EQO)+u V]{Eugo o;}%[” V]{E EO 0; E EO Oﬂm

Ignore function ﬁ ﬁ

value; setto 0 Ignore first Just look at
derivative, shape of
setto 0 second

derivative



Corner Detection: Mathematics

The quadratic approximation simplifies to

E(u,v) =[u V]|: E.(0,0) E, (0,0):||:u:|

E, (0,0) E,(0,0) v

where M iIs a second moment matrix computed from image
derivatives:

_[snh L) _ (L _ T
M= lzfxfy ZIyIz] —Z[Iy]”ﬂy]_zw(w)



Corners as distinctive interest points

M= woon|

Xy y'y

2 X 2 matrix of image derivatives
(averaged In neighborhood of a point)

‘@

-Q/

Notation;

James Hays



Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a
quadratic form. Let’s try to understand its shape.

E(u,v) = [u v] M

120,
M = w(x,y) ) |2y
X,y

X"y y




Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.

N\E\
z / T X 17
L ( Vi ™ } |
\ {“ :
> ., ‘\ ) /;//
= ;&:ml“““————ffii’f--::f"



Visualization of second moment matrices




Visualization of second moment matrices
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Interpreting the second moment matrix

u
:| = const

Consider a horizontal “slice” of E(u, v): [u v] M {v

This is the equation of an ellipse.

0
Diagonalization of M: M=R" & R
0 A4,

The axis lengths of the ellipse are determined by the eigenvalues,
and the orientation is determined by a rotation matrix R.

direction of the
fastest change

direction of the
slowest change



Classification of image points using eigenvalues of M




Classification of image points using eigenvalues of M

Cornerness A
C=ih-allh+4)

a. constant (0.04 to 0.06)




Classification of image points using eigenvalues of M

Cornerness A
C=Ah-all+4)

a. constant (0.04 to 0.06)

Remember your linear algebra:

Determinant: det(4) =[] A =Mz An.

i=1

Trace: tr(4) =) A

C =det(M)—a trace(M)?




Harris corner detector

1) Compute M matrix for each window to recover
a cornerness score C.
* Note: We can find M purely from the per-pixel image derivatives!

2) Threshold to find pixels which give large corner
response (C > threshold).

3) Find the local maxima pixels,
l.e., suppress non-maxima.

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.



http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Corner Detector [harrisss]

0. Input image
We want to compute M at each pixel.

1. Compute image derivatives (optionally, blur first).

2. Compute M components
as squares of derivatives.

3. Gaussian filter g() with width o

4. Compute cornerness
C = det(M) — a trace(M)?
2
= 9(19%) ° 9(13%) - g(lx ° Iy)

2
—algUR) +9(13)]
5. Threshold on C to pick high cornerness

6. Non-maxima suppression to pick peaks.



Harris Detector: Steps




Harris Detector: Steps
Compute corner response C




Harris Detector: Steps
Find points with large corner response: C > threshold




Harris Detector: Steps

Take only the points of local maxima of C




Harris Detector: Steps




Invariance and covariance

Are locations invariant to photometric transformations

and covariant to geometric transformations?
* Invariance: image is transformed and corner locations do not change

« Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations




