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Review of Filtering

* Filtering in frequency domain

— Can be faster than filtering in spatial domain (for
large filters)

— Can help understand effect of filter

— Algorithm:
1. Convert image and filter to fft (fft2 in matlab)
2. Pointwise-multiply ffts
3. Convert result to spatial domain with ifft2

Did anyone play with the code?

Hays



Review of Filtering

* Linear filters for basic processing
— Edge filter (high-pass)

— Gaussian filter (low-pass)
[-11]

Gaussian

FFT of Gradient Filter FFT of Gaussian
Hays
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Things to Remember

Sometimes it makes sense to think of
images and filtering in the frequency
domain

— Fourier analysis

Can be faster to filter using FFT for large
Images

* N logN vs. N2 for auto-correlation

Images are mostly smooth

— Basis for compression | il

Remember to low-pass before sampling /f\\
* Otherwise you create aliasing \

Hays



EDGE / BOUNDARY DETECTION

Szeliski 4.2



Edge detection

e Goal: Identify visual changes
(discontinuities) in an image. i R

e What are some ‘causes’ of
visual edges?

Source: D. Lowe



Origin of Edges

surface normal discontinuity

. < depth discontinuity
AO ‘/;\ surface color discontinuity
&___JZ illumination discontinuity
~—____

* Edges are caused by a variety of factors

Source: Steve Seitz



Why do we care about edges?

 Extract information

— Recognize objects

* Vertical vanishing
. point
24 (at infinity)

* Help recover geometry v REEREEE | &

and viewpoint . & :
K - - /
Vams_hltng - Vanishing

point



Closeup of edges
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Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Closeup of edges
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Source: D. Hoiem



Closeup of edges

Source: D. Hoiem



Characterizing edges

e An edge is a place of rapid change in the
image intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Hays



Intensity profile
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With a little Gaussian noise
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Effects of noise

* Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(@)

i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f(z)e

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Source: S. Seitz



Effects of noise

e Difference filters respond strongly to noise

— Image noise results in pixels that look very
different from their neighbors

— Generally, the larger the noise the stronger the
response

e \What can we do about it?

Source: D. Forsyth



Solution: smooth first

Sigma = 50

—
Signal

(@]
Kernel

—|\
*
(@]
Convolution

—~
—_h
*%
(@]
~—
Differentiation

0 200 400 600

To find edges, look for peaks In %(f )

Source: S. Seitz



Derivative theorem of convolution

e Convolution is differentiable:

d a
—(fxqg)=f x—
dx( 9) o9

e This saves us one operation:

Sigma = 50

.................................................

—h
Signal

| 1 ; 1 | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| 1 1 1 | I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

o
P
Convolution

| 1 I I | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Source: S. Seitz



Derivative of 2D Gaussian filter
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Tradeoff between smoothing and localization

1 pixel 3 pixels 7 pixels

 Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

Source: D. Forsyth



Think-Pair-Share

What is a good edge detector?

Do we lose information when we look at edges?

Are edges ‘complete’ as a representation of
images?



Designing an edge detector

e Criteria for a good edge detector:

— Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

— Good localization

* the edges detected must be as close as possible to
the true edges

* the detector must return one point only for each
true edge point
* Cues of edge detection

— Differences in color, intensity, or texture across the
boundary

— Continuity and closure
— High-level knowledge

Source: L. Fei-Fei



Designing an edge detector

“All real edges”

e \We can aim to differentiate later on which edges
are ‘useful’ for our applications.

e |f we can’t find all things which could be called an
edge, we don’t have that choice.

e |s this possible?



Closeup of edges

Source: D. Hoiem



Elder — Are Edges Incomplete? 1999

e N - ~
A oo s f % = s,
A sl SRNEE NI N N ——

v, " —— T ——

Figure 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. The
original image contains edges over a broad range of contrasts and blur scales. In the middle are shown the edges detected with a Canny/Deriche
operator tuned to detect structure in the mannequin. On the right is shown the edges detected with a Canny/Deriche operator tuned to detect the

smooth contour of the shadow. Parameters are (¢ = 1.25, @ = 0.02) and (¢ = 0.5, @ = 0.02), respectively. See (Deriche, 1987) for details of
the Deriche detector.

What information would we need to
‘invert’ the edge detection process?



Elder — Are Edges Incomplete? 1999

e i

Edge ‘code’:

- position,

- gradient
magnitude,

- gradient
direction,

- blur.

Figure 8. Top lefi: Original image. Top right: Detected edge locations. Middle left: Intermediate solution to the heat equation. Middle
right: Reconstructed luminance function. Bottom left: Reblurred result. Bottom righr: Error map (reblurred result—original). Bright indicates
overestimation of intensity, dark indicates underestimation. Edge density is 1.7%. RMS error is 10.1 grey levels, with a 3.9 grey level DC
component, and an estimated 1.6 grey levels due to noise removal.



Where do humans see boundaries?

image human segmentation gradient magnitude

* Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB slides: Hays


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Texture Brightness

Martin, Fowlkes, Malik 2004: Learning to Detect
Natural Boundaries...
http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

Figure from Fowlkes


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf
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pB Boundary Detector
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Figure from Fowlkes



Results

Pb (0.88)




Results

Pb (0.88)

Human (0.96)




Pb (0.63)

bl
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Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects
/CS/vision/bsds/bench/html|/108082-color.html



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection
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State of edge detection

* Local edge detection works well

— ‘False positives’ from illumination and texture
edges (depends on our application).

* Some methods to take into account longer
contours

* Modern methods that actually “learn” from
data.

* Poor use of object and high-level information.

Hays



Summary: Edges primer

* Edge detection to identify
visual change in image

e Derivative of Gaussian

and linear combination f
of convolutions o

* What is an edge?

What is a good edge? 7
) {M s,



Canny edge detector

e Probably the most widely used edge detector
In computer vision.

e Theoretical model: step-edges corrupted by
additive Gaussian noise.

e Canny showed that first derivative of Gaussian
closely approximates the operator that

optimizes the product of signal-to-noise ratio
and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

22,000 citations!
L. Fei-Fei


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Demonstrator Image

rgb2gray( ‘img.png’)




Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Source: D. Lowe, L. Fei-Fei



Derivative of Gaussian filter

X-direction y-direction




Compute Gradients

X Derivative of Gaussian Y Derivative of Gaussian

(x2 + 0.5 for visualization)




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

Source: D. Lowe, L. Fei-Fei



Compute Gradient Magnitude

sgrt( XDerivOfGaussian .2 + YDerivOfGaussian .2 ) = gradient magnitude

(x4 for visualization)



Compute Gradient Orientation

* Threshold magnitude at minimum level
« Getorientationvia theta = atan2(gy, gx)




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
— Thin multi-pixel wide “ridges” to single pixel width

Source: D. Lowe, L. Fei-Fei



Non-maximum suppression for each orientatior

At pixel g:
D We have a maximum if the
value is larger than those at

® ® q ® both p and atr.
Gradient /

Interpolate along gradient
* ¢ oo o direction to get these values.

Source: D. Forsyth



Before Non-max Suppression

Gradient magnitude (x4 for visualization)




After non-max suppression

Gradient magnitude (x4 for visualization)




Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

— Thin multi-pixel wide “ridges” to single pixel width

4. ‘Hysteresis’ Thresholding

Source: D. Lowe, L. Fei-Fei



‘Hysteresis’ thresholding

* Two thresholds — high and low

* Grad. mag. > high threshold? = strong edge
* Grad. mag. < low threshold? noise

* In between = weak edge

* ‘Follow’ edges starting from strong edge pixels

* Continue them into weak edges

 Connected components (Szeliski 3.3.4)

Source: S. Seitz



Final Canny Edges

0 =V2,t100 = 0.05, tyign = 0.1




Effect of o (Gaussian kernel spread/size)

N
s
)

Original o =2 o=42

The choice of ¢ depends on desired behavior

 large o detects large scale edges
« small o detects fine features

Source: S. Seitz



Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:

— Thin multi-pixel wide “ridges” to single pixel width
4. ‘Hysteresis’ Thresholding:

— Define two thresholds: low and high

— Use the high threshold to start edge curves and the
low threshold to continue them

— ‘Follow’ edges starting from strong edge pixels
Connected components (Szeliski 3.3.4)

* MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fel



Sidebar: Bilinear Interpolation
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http://en.wikipedia.org/wiki/Bilinear interpolation



http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

* imx2 = imresize(im, 2, interpolation_type)

* ‘nearest’
— Copy value from nearest known
— Very fast but creates blocky edges

e ‘bilinear’
— Weighted average from four nearest known
pixels

— Fast and reasonable results

e ‘bicubic’ (default)
— Non-linear smoothing over larger area (4x4)

— Slower, visually appealing, may create
negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation



http://en.wikipedia.org/wiki/Bicubic_interpolation

