.

Project 3: Scene recognition with bag of words

Vibhu Ramani
October 24th, 2011


Extremely brief summary

Starting with a small set of images from 15 scene database (described in Lazebnik et al. 2006), we picked up features at random and clustered them into a vocabulary of visual words using kmeans. After representing each training image in these visual words we trained a SVM and generated models for each category. Using these models we then classified the test images into 1 of those categories and calculated our performance

Base Level Performance (No Optimization)

Accuracy 0.6193
Confusion Matrix
    93     1     0     2     2     0     0     0     2     0     0     0     0     0     0
     2    80     0     5     0     3    10     0     0     0     0     0     0     0     0
     1     0    94     0     0     3     1     1     0     0     0     0     0     0     0
     2    10     0    78     3     2     3     0     0     0     1     0     1     0     0
     4     4     1     1    62     0     0     4     4     0     0     0    10     1     9
     8     1     4     2     0    79     3     1     1     0     1     0     0     0     0
     6    22     6     7     0    11    43     2     1     0     2     0     0     0     0
     2     0     0     9    21     3     0    53     3     0     0     2     0     3     4
     0     2     2     0     2     6     0     5    74     1     3     3     1     0     1
     0     0     0     0     0     0     0     0     0    90     2     0     8     0     0
     2     0     0     0     2     1     1     1     2    13    42     2    22    11     1
     6     4     1     8     8     4     3     3     9     2     2    33     4     4     9
     0     0     0     0     9     1     0     0     1    20     5     4    52     2     6
     1     0     0     1     2     4     0     2     3    25    25     1    17     8    11
     1     0     3     2    19     5     0     3     6     5     3     0     4     1    48
		 

(KD Tree, Sample 500 points/image)

Accuracy 0.6093
Confusion Matrix
    95     1     0     1     1     0     0     0     0     0     1     0     0     1     0
     2    79     0     6     0     4     9     0     0     0     0     0     0     0     0
     0     0    95     0     0     3     0     2     0     0     0     0     0     0     0
     2    10     1    76     3     3     3     0     0     0     1     0     1     0     0
     4     4     2     1    57     0     0     4     7     0     1     0    10     1     9
     8     0     3     2     0    82     2     2     1     0     0     0     0     0     0
     8    25     9     5     0     5    44     2     0     0     2     0     0     0     0
     2     0     0     8    20     2     1    55     2     0     0     3     0     2     5
     0     3     2     0     3     5     0     8    70     2     1     2     2     0     2
     0     0     0     0     0     0     0     0     0    88     3     0     9     0     0
     2     0     0     0     2     2     1     1     4    12    40     2    23     9     2
     6     4     1    12     8     4     5     3    10     2     1    27     4     3    10
     0     0     0     0     9     1     0     2     0    23     7     2    50     1     5
     2     0     0     2     3     3     0     1     3    22    25     5    19     5    10
     1     0     2     2    15     7     0     2     6     4     4     1     3     2    51
		 

(KD Tree, Sample 50 points/image)

Accuracy 0.6267
Confusion Matrix
    96     1     0     0     2     0     0     0     0     0     1     0     0     0     0
     1    79     0     6     0     4    10     0     0     0     0     0     0     0     0
     0     0    94     0     0     3     1     2     0     0     0     0     0     0     0
     0    11     1    78     4     1     3     0     0     0     1     1     0     0     0
     4     4     2     1    61     0     0     3     3     1     1     0    11     1     8
     9     0     3     1     0    81     3     1     1     0     1     0     0     0     0
     3    26     4     4     0    11    48     2     1     0     1     0     0     0     0
     3     0     0     7    21     2     1    49     5     0     0     4     0     3     5
     0     3     2     0     2     3     0     4    75     1     5     3     1     0     1
     0     0     0     0     0     0     0     0     0    88     3     0     9     0     0
     3     0     0     0     1     1     2     0     3    14    47     3    17     6     3
     5     3     0     9     8     5     5     5     9     2     1    32     4     5     7
     1     0     0     0    10     1     0     0     2    20     6     4    52     2     2
     2     0     0     0     2     4     0     3     6    22    24     2    20     7     8
     0     0     2     3    15     6     0     2     6     2     4     1     3     3    53
		 

Using gaussian(3 levels) to get features (KD Tree, Sample 50 points/image)

Accuracy 0.5813
Confusion Matrix
    88     2     0     3     1     0     0     1     1     1     1     0     0     0     2
     5    74     0     6     0     5     9     0     0     0     0     0     0     0     1
     0     0    90     0     0     6     2     2     0     0     0     0     0     0     0
     0    15     0    70     4     4     3     1     0     2     0     0     1     0     0
     3     1     1     2    58     0     0     6    10     0     0     2     8     1     8
     5     0     5     2     0    81     2     4     0     1     0     0     0     0     0
    12    21     7     7     0    10    39     3     0     0     1     0     0     0     0
     1     0     0    10    23     4     1    51     1     0     0     2     0     3     4
     0     3     2     1     2     7     0     6    66     3     2     1     3     3     1
     0     0     0     0     0     0     0     0     0    93     0     0     7     0     0
     3     0     0     0     2     2     1     3     4    16    40     1    16     8     4
     7     3     1    14     6     9    11     5    12     3     2    13     4     4     6
     0     0     0     0    10     1     0     2     1    25     6     0    51     2     2
     4     0     0     1     2     5     0     3     3    26    17     3    16    15     5
     2     2     3     3    12     7     1     5     6     5     3     1     5     2    43
		 

Using gaussian(1 levels) to get features (KD Tree, Sample 50 points/image)

Accuracy 0.6027
Confusion Matrix
    90     1     0     2     2     0     1     1     1     0     1     0     0     0     1
     0    78     1     6     0     5     9     0     0     0     1     0     0     0     0
     0     0    92     0     0     5     1     2     0     0     0     0     0     0     0
     1    15     1    72     1     5     3     1     0     0     0     0     1     0     0
     3     2     1     2    55     0     0     5     7     1     0     2    10     0    12
     8     0     4     3     0    75     3     6     0     0     0     1     0     0     0
     3    23     8     7     1     8    48     2     0     0     0     0     0     0     0
     2     0     0     6    23     4     0    56     2     0     0     2     0     2     3
     0     3     2     0     2     4     0     5    71     1     3     1     2     1     5
     0     0     0     0     0     0     0     0     0    90     2     0     8     0     0
     0     0     0     0     1     3     1     1     5    11    44     3    22     7     2
     6     3     3    12     7     7     4     4     9     3     1    23     6     4     8
     0     0     0     0    10     1     0     0     2    22     6     3    52     1     3
     3     0     0     1     0     5     0     1     8    22    22     2    19     8     9
     3     1     2     3    12     8     0     2     7     4     2     1     4     1    50
		 

Vocab Size 10 words (KD Tree, Sample 50 points/image)

Accuracy 0.4427
Confusion Matrix
    17     2     1    26     8    13     7     3     2     0    12     2     1     1     5
     0    87     0     5     0     3     5     0     0     0     0     0     0     0     0
     0     0    95     0     0     4     0     1     0     0     0     0     0     0     0
     0    35     1    51     4     3     3     1     1     0     0     0     0     0     1
     2     3     1     0    46     1     0     4    11     5     1     0    14     2    10
     0     5    11     4     0    58    11     2     7     0     1     1     0     0     0
     0    22     7    16     1    15    35     0     2     0     2     0     0     0     0
     1     2     2     3    33     4     0    19    17     0     6     1     2     3     7
     0     0     3     0    16     2     0     3    62     1     3     1     4     0     5
     0     1     0     1     1     1     0     1     1    88     0     0     5     1     0
     4     0     0     0     6     6     0     8    10    20    24     3    12     2     5
     1     9     3     8     9    17     1     5    16     3     2     9     4     3    10
     0     0     0     1    13     1     0     1     4    32     7     0    40     0     1
     1     0     0     0     3     4     0     6     7    24    17     3    23     6     6
     1     3     4     5    20     6     0     1    19     3     4     3     3     1    27
		 

Vocab Size 20 words (KD Tree, Sample 50 points/image)

Accuracy 0.5147
Confusion Matrix
    53     1     0    15     5     6     5     4     1     1     1     3     1     2     2
     0    78     1    11     0     2     7     0     0     1     0     0     0     0     0
     1     0    93     0     0     5     0     1     0     0     0     0     0     0     0
     5    20     0    55     2    10     4     2     0     0     0     0     0     0     2
     2     3     1     1    49     0     0     9    19     1     1     3     9     0     2
     1     0     4     5     0    86     1     0     2     0     0     1     0     0     0
     5    25    10    11     0    13    33     3     0     0     0     0     0     0     0
     4     1     0     8    20     2     0    49     3     2     0     1     1     2     7
     0     2     1     0     1     3     0    12    67     2     2     6     4     0     0
     0     0     0     0     0     0     0     1     0    87     2     0     9     1     0
     0     1     0     2     2     0     0     6     8    19    30     5    18     4     5
     5     7     2     7     8     8     5     7    10     5     6    21     1     2     6
     1     0     0     0    10     1     0     3     7    28    11     1    38     0     0
     4     0     0     0     3     2     0     2     9    25    23     8    16     5     3
     0     5     3     3    16     7     0     4    13     2     4     4     7     4    28
		 

Vocab Size 50 words (KD Tree, Sample 50 points/image)

Accuracy 0.5767
Confusion Matrix
    82     2     0     6     2     0     1     1     0     0     1     1     0     1     3
     2    80     0     7     0     2     9     0     0     0     0     0     0     0     0
     1     0    94     0     0     5     0     0     0     0     0     0     0     0     0
     3    14     0    72     0     4     3     0     1     1     0     1     0     0     1
     5     3     0     1    52     0     0    10     5     1     0     1    13     2     7
     8     0     4     4     0    78     4     1     1     0     0     0     0     0     0
     4    31     7    12     0    10    33     2     1     0     0     0     0     0     0
     3     1     0     9    19     1     2    57     1     0     0     3     0     1     3
     0     2     1     0     4     5     0     5    64     1     4     5     5     0     4
     0     0     0     0     0     0     0     0     0    86     3     0    11     0     0
     2     0     0     0     3     1     1     0     4    17    37     5    23     5     2
     9     2     1    11     5     6     4     9    13     4     1    20     6     2     7
     1     0     0     0     9     1     0     1     2    17     7     2    55     3     2
     4     0     0     0     2     3     0     2     7    19    20     6    18    11     8
     4     0     2     3    15     7     2     1     8     3     3     1     6     1    44
		 

Vocab Size 100 words (KD Tree, Sample 50 points/image)

Accuracy 0.6053
Confusion Matrix
    88     1     0     2     3     0     2     0     1     0     1     1     0     1     0
     4    75     0     7     2     1    11     0     0     0     0     0     0     0     0
     1     0    94     0     0     4     0     1     0     0     0     0     0     0     0
     2    13     1    70     3     5     3     0     0     0     1     0     0     1     1
     3     2     0     2    62     0     2     5     5     0     0     0     8     1    10
     6     1     4     2     0    81     2     0     2     0     1     1     0     0     0
     3    26     9     8     1    11    39     2     0     0     1     0     0     0     0
     1     0     0     8    20     4     0    56     1     0     1     0     0     3     6
     0     2     1     0     2     4     0     3    80     1     2     3     1     0     1
     0     0     0     0     0     0     0     0     0    87     3     0    10     0     0
     2     0     0     0     0     2     1     0     2    11    46     3    21     9     3
     3     5     1    11     6     7     5     6    12     2     2    26     3     3     8
     1     0     0     0    10     1     0     1     2    23    10     2    44     3     3
     1     0     0     0     2     3     0     3     8    23    20     1    19    10    10
     0     0     2     4    16     5     0     2     7     2     4     0     6     2    50
		 

Vocab Size 400 words (KD Tree, Sample 50 points/image)

Accuracy 0.6107
Confusion Matrix
    94     1     0     1     1     0     0     1     1     0     1     0     0     0     0
     0    79     1     8     0     3     9     0     0     0     0     0     0     0     0
     0     0    95     0     0     3     0     2     0     0     0     0     0     0     0
     0     9     1    76     4     3     4     0     0     1     1     1     0     0     0
     4     3     1     1    60     0     0     4     5     1     1     1    12     0     7
     6     0     6     2     0    79     4     1     1     0     1     0     0     0     0
     4    23    16     6     0     7    39     2     1     0     2     0     0     0     0
     0     0     0    12    23     4     0    52     3     0     0     2     0     2     2
     0     3     2     0     1     3     0     8    74     2     3     3     0     0     1
     0     0     0     0     0     0     0     0     0    87     3     0    10     0     0
     1     1     0     0     2     1     2     0     3    14    41     2    23     8     2
     7     2     3     9     5     6     6     3     6     2     1    34     5     3     8
     1     0     0     0    12     1     0     1     2    20     8     1    52     1     1
     0     0     0     2     4     4     0     1     3    29    18     2    22     6     9
     0     1     4     1    17     6     0     3     5     4     3     1     5     2    48
		 

Vocab Size 1000 words (KD Tree, Sample 50 points/image)

Accuracy 0.6120
Confusion Matrix
    95     1     0     0     1     0     0     1     1     1     0     0     0     0     0
     3    80     1     4     0     3     9     0     0     0     0     0     0     0     0
     0     0    95     0     0     3     0     2     0     0     0     0     0     0     0
     1     9     0    78     4     3     3     0     0     0     1     0     1     0     0
     4     4     1     1    58     0     0     3     7     2     1     0    11     0     8
     5     2     6     1     0    79     2     4     0     1     0     0     0     0     0
     4    27    23     6     0     7    30     2     1     0     0     0     0     0     0
     0     1     0    12    19     3     1    55     3     0     0     0     0     1     5
     0     3     2     0     1     3     0     5    78     3     2     1     1     0     1
     0     0     0     0     0     0     0     0     0    91     1     0     8     0     0
     1     1     1     0     1     2     2     0     3    14    38     4    23     9     1
     3     4     2     7     8     9     4     5     9     2     1    33     5     2     6
     0     0     0     0    12     1     0     0     5    19     4     3    53     1     2
     0     0     0     0     2     5     0     3     6    33    15     3    18     7     8
     0     1     4     3    16     6     0     2     5     3     4     2     4     2    48