CS1380 Distributed System Theophilus Benson

Project 4: Puddlestore
Due: 11:59 PM, May 10, 2022

Contents
1 Code Exchange 2
2 Introduction 2
3 A Quick Diversion: File Systems 2
3.1 Files & Directories e 2
3.2 Reading & Writing 3
4 PuddleStore Architecture 3
4.1 DOLR 4
4.2 File Hierarchy o e 4
4.3 Updates o e e e e e 4
4.4 The Membership Server 5
4.5 File Locking oL 5
5 The Assignment 6
5.1 Requirements oL Lo e e 6
5.2 Implementing the File Hierarchy 6
5.3 Encoding and Decoding Messages oL 7
5.4 Capstone & Extra Features o 7
5.4.1 Read-Write locks & Pre-fetching 7
5.4.2 Access Control List 7
543 Web Client e e e 8
5.4.4 Tapestry Hotspot Caching and Reliability 8
6 Testing 8
7 Style 8

8 Handing in 8

CS1380 Distributed System Theophilus Benson

1 Code Exchange

Remember, if you write code on a department machine, you must use gol.17 instead
of just go (i.e. gol.17 install or gol.17 test). Add alias go=gol.17 to your ~/.bashrc for
convenience.

git clone github.com/brown-cscil380-s22/puddlestore-<TeamName>

Use the above command to clone your repo from GitHub Classroom, and use go1.17 install ./...
to fetch all dependencies.

You will also need to use your own or the TA implementation of Tapestry as part of your project.
If you choose to use the TA implementation, you and your partner will need to sign
this form as soon as possible.

2 Introduction

For your final project, you’ll be implementing a simple distributed filesystem called PuddleStore.
It’s based on OceanStore, a project that was developed at UC Berkeley in the early 2000s .

OceanStore is a utility infrastructure designed to span the globe and provide continuous
access to persistent information. Since this infrastructure is comprised of untrusted
servers, data is protected through redundancy and cryptographic techniques. To improve
performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring
of usage patterns allows adaptation to regional outages and denial of service attacks;
monitoring also enhances performance through pro-active movement of data.’

The specifications for PuddleStore are a bit more modest. We’d like you to implement the ba-
sic functionality for a distributed filesystem using some of the projects and labs you’ve already
finished this semester as a basis for a few of the essential components. In addition to the basic
functionalities, you are required to implement some additional features to receive full credit; see
the Capstone & Extra Features section for more information.

3 A Quick Diversion: File Systems

We know what you’re thinking. This isn’t CS167. How am I supposed to know how to implement
a file system? Don’t worry — you’re not expected to develop a sophisticated file system, and
we will describe everything you need to know to about file systems in this document. In the
following sections, we will suggest a way in which to implement the PuddleStore file system, but
it is important to remember that you have the freedom to design your implementation any way
you would like provided that it offers the basic functionality that is expected.

Usually, persistent storage utilities are backed by a disk. In this assignment, however, all data will
reside in memory and will be distributed among the nodes of your system.

The two primitive file system objects that ought to be available to users of PuddleStore are files
and directories. A file is a single collection of sequential bytes and directories provide a way to
hierarchically organize files. Directories are really just special files that are interpreted to contain
references to other files (and other directories, t00).

3.1 Files & Directories

In order to actually implement a file system, we’ll need to define a set of primitive objects to be
used internally. An obvious abstraction is the data block, which simply represents a fixed length

Ihttps://oceanstore.cs.berkeley.edu/
2https://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf

https://docs.google.com/forms/u/1/d/e/1FAIpQLSfkGCBeKENvwbHV4jWM7OABYQmg3nYE4zw_8sQwGl8biPuePg/viewform?usp=send_form
https://oceanstore.cs.berkeley.edu/
https://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf

CS1380 Distributed System Theophilus Benson

GUID: 333C7337

Data Block
4KB

GUID: 5B41423A

File Inode
File Name: /dir/myfile.txt Data Block
4KB
Size: 8.1K
GUID: 62225E46
Blocks: [...]
Data Block
4KB (0.1K used)

Figure 1: Inodes and data blocks

array of bytes. We can compose files of arbitrary length out of some number of data blocks. Some
of the space available in the last data block will be wasted if the size of the file is not a multiple of
the block size. The merits of storing files as collections of data blocks, rather than a single array
of bytes, will become apparent when we discuss copy-on-write operations.

We also need an object to store a file’s metadata. In file-system lingo, we call these objects inodes.
An inode stores information such as the name and size of the file, as well as a map of data blocks
associated with a file.

In a common linux system, directories are also represented by inode and have data blocks like files
to represent its children. However, we have simplified the directory implementation this year, so
that you don’t need to worry about directories at all.

3.2 Reading & Writing

The simplest interface you can provide for reading from and writing to files will take a byte location
at which to start and a buffer of bytes. When reading, the buffer gets filled with the bytes of the
file, starting at the specified location. When writing, the buffer contains the data that should
replace the current file data, starting at the specified location. If the user writes past the end of
the file (or begins to write at a location beyond the end of the file), it is assumed that the length
of the file ought to be extended. When new data blocks are added to a file, the inode for the file
must be updated to reference those blocks.

Files are made up of many fixed length data blocks, so reading and writing with them isn’t quite
as simple as with an array of bytes. The block size, which will be provided as configurations, will
determine how the data that makes up a file is distributed. Given the starting location and the
number of bytes that you must read or write, you will need to figure out which blocks contain the
data and where to begin and end within the first and last blocks.

4 PuddleStore Architecture

PuddleStore isn’t just a file system; it’s a distributed file system. The infrastructure is meant
to allow data to reside anywhere on the network and be available everywhere. It also makes
guarantees about the order in which updates appear at clients. The implementation details of
these aspects of the system are described in this section.

CS1380 Distributed System Theophilus Benson

Copy-on-write: Append to “/dir/myfile.txt” (2K => 5K)

GUID: 333C7337

Q Idir2

File Inode

Data Block
4KB

File Name: /dir/myfile.txt

GUID: 5B41423A

File N Size: 5K
File gize:| Blocks: {+A26EABF Data Block
) [333C7337, 5B41423A] 4KB (1K Used)
SiZ Blocks: [...]
Blocks: [...] J\
f !
Figure 2: Copy-on-write: append 3K data to a file
4.1 DOLR

You will use a Distributed Object Location and Retrieval (DOLR) service, Tapestry, to store
and replicate file data blocks. Each data block should be accessible through a unique ID at
any Tapestry node. Your PuddleStore implementation will need to make choices about where to
replicate objects, as Tapestry does not automatically replicate them for you.

4.2 File Hierarchy

We will use Zookeeper to simplify our file hierarchy implementation and maintain linearizability
of file metadata. We put inodes (instead of the whole data blocks) in Zookeeper, because it is
good at handling chunks of KBs efficiently.

When operating on files, your client will first consult Zookeeper for inode and block IDs, and then
query Tapestry for the actual data blocks.

4.3 Updates

In order to have a useful file system, clients must be provided with a consistent view of files and
directories. In a traditional, non-distributed file system, standard locking primitives are used to
ensure that multiple threads do not leave the internal representation of a file in an inconsistent
state. For PuddleStore, this is a more difficult problem because the objects stored by the DOLR
are replicated to provide fault tolerance and therefore coordinating updates on them would require
designating a master Tapestry node for each object and in addition to locking. Some distributed
file-systems, like GFS, do this quite successfully but the sophistication required is beyond the
scope of the basic specifications of this project. For this reason, PuddleStore uses a copy-on-
write approach to maintain data consistency and a synchronous update system to update pointers
to data.

Copy-on-write means that there is no modification of data blocks in the DOLR. When modifying
a file, the client retrieves the data blocks it will update from the DOLR. It then makes changes to
those blocks locally, then stores those blocks as new objects in the DOLR. As a result, the client is
also responsible for modifying the file’s inode whenever it makes any changes to it. This is because
the file’s data block mapping must be updated to point to the new data block IDs. (See Figure 2)

This approach maintains data consistency as it provides atomicity for file modifications. Without

CS1380 Distributed System Theophilus Benson

copy-on-write, we could run into a situation where two clients’ modifications to the same file both
partially succeed. For example, imagine Client A and Client B both try to modify Block 1 and
2 of the same file at the same time. Since we are mot using copy-on-write in this example, we
directly modify the original data blocks and thus, should not change the inode of the file. Since
our DOLR doesn’t offer multi-object transactions, it is very possible that Client A writes to Block
1 after Client B, but Client B writes to Block 2 after Client A. The end result is a file where
Block 1 has Client A’s modifications but Block 2 has Client B’s modifications. This will make
both Client A and B very confused when they subsequently read from the file.

Thus, the key aspect of copy-on-write in our implementation is the atomic modification of the
file’s inode. Every time a file is updated, its contents will represent the exact data block mapping
that the modifying client had.

To facilitate copy-on-write, each data block in the file-system should be assigned a unique ID,
which we will call a GUID (Globally Unique ID). Unfortunately, in a distributed system,
there is no way to guarantee unique IDs without some global sequencer. The additional overhead
to implement a global sequencer just to provide unique GUIDs does not add much value to this
project so it is fine to just use some UUID library to generate probabilistic unique IDs.

In a file system it is also necessary to uniquely identify the files and directory themselves. A
typical file system uses unique inode numbers to represent files and directories. I know what
you’re thinking, why not just use the file path as the unique ID for each file and directory? While
it’s true that two different files cannot have the same path in a file system, two different paths
can point to the same file via file-system links. Luckily for us, PuddleStore is not sophisticated
enough to support file-system links so using file paths as unique IDs for files and directories is
sufficient.

4.4 The Membership Server

Just as the underlying Tapestry system allows some nodes to be added and removed on the fly,
PuddleStore should be able to scale. The unified system should have a well defined mechanism for
manipulating the membership of the DOLR network. Any systems that require coordination not
provided by Tapestry should have a way to scale as well. Additionally, the API needs a mechanism
for balancing client requests across the many servers that will be available.

The simplest way to handle this is to maintain a well-known membership server. It can facilitate
scaling of the DOLR network by providing gateway servers for new Tapestry nodes to use to
join. Clients can also query the membership server to get access to existing Tapestry nodes when
performing operations. The membership server is not a focus of this project. You are only required
to provide enough functionality to add nodes to the system and try to ensure that, on average,
each Tapestry node is being used by some clients. A simple implementation might just return a
random Tapestry node at the request of a client and provide a way to add and remove nodes from
its member lists.
Zookeeper provides out-of-box membership service. Checkout this link.

... Another function directly provided by ZooKeeper is group membership. The group

is represented by a node. Members of the group create ephemeral nodes under the

group node. Nodes of the members that fail abnormally will be removed automatically
when ZooKeeper detects the failure.

4.5 File Locking

As we have described it, PuddleStore handles conflicting updates inadequately. For instance, if
two clients simultaneously attempt to modify different byte ranges of the same file, it’s likely
that the final version of the file will only contain the changes of one client. To prevent this from

https://zookeeper.apache.org/doc/r3.6.3/recipes.html#sc_outOfTheBox

CS1380 Distributed System Theophilus Benson

happening, you need a file locking protocol that will ensure that each file is updated by a single
client at a time.

For this, you can adapt the distributed lock that you implemented in the Zookeeper lab. Since we
are not providing a stencil file for this, you can do this however you’d like. Keep in mind that your
lock implementation likely won’t work without modifications. One important issue to consider
here is the existence of other znodes in Zookeeper. For example, if you want to lock the directory
\a, which has a file \a\b, calling Children on \a will return not only the ephemeral lock znodes
created for locking, but also \b.

Note: You are not allowed to use the built-in locking functions in go-zookeeper library; if you do,
the autograder will flag your submission.

5 The Assignment

5.1 Requirements
You have two tasks for this assignment:

1. Setup the PuddleStore cluster: Fill out the structs and methods in cluster.go and
tapestry.go. This simply entails creating a Tapestry cluster and 'registering’ each node to
Zookeeper. You will also need to use the Tapestry wrapper struct in tapestry.go.

You can assume that the centralized Zookeeper server in our filesystem is 100% reliable for
the scope of this project. Thus, all PuddleStore clients only need to connect to the address
provided in the single cluster’s config.ZkAddr.

2. Implement the client interface: We provide an interface in client.go that PuddleStore
clients must implement (Open/Close/Read/Write/Mkdir/Remove/List). Your client will
operate on the provided Zookeeper server and tapestry nodes and provide the complete
functionality of a file system.

The Client interface has documents on the expected behavior of each operation. Make sure
you follow the document.

Since one of the main goals of this assignment is to implement an API spec on top of fully-
implemented components (including the Tapestry project), Puddlestore clients should not
be able to directly access tapestry nodes in your implementation. Rather, they should
consult tapestry clients and make appropriate API calls on them.

In general, all of the functions, structs, and interfaces you will be implementing are decorated
with copious comments. You should adhere to the specs in these comments as our grading relies
on these specs. Also, take a look at config.go for necessary cluster configuration.

5.2 Implementing the File Hierarchy

We’ve mentioned the necessity of inodes in file systems and using file paths as a way to identify
inodes, but we haven’t mentioned where to actually store this information. You shouldn’t store this
information in Tapestry since we require linearizable operations of file metadata. Linearizability
of file metadata is crucial for maintaining consistency across our distributed file system. You can
imagine how disastrous it would be if say, the deletion of a file was eventually consistent.

You previously worked on a system that accomplishes just this: Raft. However, we’re not going to
use Raft for this project. Instead, we’ll be using Zookeeper to implement the file system hierarchy,
store inodes, and maintain cluster membership. The decision to use Zookeeper is due to the fact
that it provides a file-system API and an easy way to keep track of cluster membership changes.

https://pkg.go.dev/github.com/go-zookeeper/zk

CS1380 Distributed System Theophilus Benson

5.3 Encoding and Decoding Messages

Since you will be storing inode information in Zookeeper, you will need to write functions that
can encode your inode struct into bytes and decode your inode struct from bytes. This is because
Zookeeper is a distributed store that maps file paths to byte data.

To do this, we recommend you use encodeMsgPack and decodeMsgPack in utils.go. These are
also used in Raft project, so you can see how we used them to encode and decode LogEntries to
store into Bolt. Note that these functions will be able to encode/decode only the public fields, so
make sure that you capitalize first letters of all the field names of your inode struct.

5.4 Capstone & Extra Features

Every group is required to implement at least one of these features. Students taking
CS1380 as a capstone or groups of 3 are required to implement two of these features.
You are welcome to implement more for extra credit.

5.4.1 Read-Write locks & Pre-fetching
Assuming a read-heavy access pattern, there are several approaches to optimize performance:
1. Separate read-write locks to allow multiple clients to read.

e Write Lock: For each file, at most one client can acquire a write lock. With a write
lock, the client can freely, read/write to a file.

e Read Lock: For each file, many clients can simultaneously hold a read lock. Each client
with a read lock can simultaneously read the file.

e If a client holds a write lock, no one can hold a read lock.

e The Zookeeper locking recipe provides detailed instructions on how to implement read
and write locks.

2. Monitor the behavior of clients to determine the average number of blocks that a client reads
from a file. Based on this, you can pre-fetch these blocks and cache the locally at the client.
For example, your implementation notices that on average clients read 4 blocks from a file.
When a client reads a block, you can pre-fetch the next 3 blocks.

5.4.2 Access Control List

The default implementation provides no security primitives. One option is to extend Puddlestore
with features for access control list. This will require additional meta-data and additional calls.

In particular, you will need to add the following calls:

e Chmod(file, ACL) which sets the permission on the file. You only need to support two
permission levels: Owner (i.e., UserID of the client which created the file) and Everyone
(i.e., permissions for all other UserIDs). The ACL options are:

1. “44” — owner can read, everyone can read.

2. “55” — owner can read/write, everyone can read/write.
3. “54” — owner can read/write, everyone can read

4. “45” — owner can read, everyone can read/write.

e Login(UserID) which specifies the userID for a client.

https://zookeeper.apache.org/doc/r3.6.3/recipes.html#sc_recipes_Locks

CS1380 Distributed System Theophilus Benson

5.4.3 Web Client

Web application to control and interface with PuddleStore (using gRPC). (Refer to this repo for
an example on node.js and grpe-web.). This web application should support similar operations
and commands as the PuddleStore client.

5.4.4 Tapestry Hotspot Caching and Reliability

There are many techniques you may use to improve the Tapestry’s performance and reliability.
Because objects may be replicated anywhere in a Tapestry network, it makes sense to move copies
of an object to the nodes that request that object often (this is “hotspot caching”). The speed of
surrogate node lookups can also be increased by caching object location information at the nodes
along the publishing path from the object replica to the surrogate node. To protect against node
failures, you can salt the hash so that the information is sent to multiple nodes. Finally, objects
may be re-replicated as Tapestry nodes leave the network or fail, ensuring that the system remains
reliable over longer periods of time. If you do this, you may also want to implement erasure codes.

Note: You should only implement this if you did not implement hotspot caching for Tapestry
already:.

6 Testing

You are expected to thoroughly test your code. For this project, your testing will be a large
portion of your grade. You should provide exhaustive tests that demonstrate edge cases and
specific behaviour within your PuddleStore implementation. As with previous projects, you might
find it useful to check your test coverage by using Go’s coverage tool.

You are expected to reach 80% test coverage.

Warning: When you run multiple tests while running a single instance of Zookeeper, previous
tests may influence later tests since non-emphemeral znodes will persist throughout different tests.
You may want to implement a util function that cleans up everything so that it can be called at
the beginning or end of every test.

7 Style

You should use Go’s formatting tool gofmt to format your code before handing in.
You can format your code by running:
gofmt -w=true */*.go

This will overwrite your code with a formatted version of it for all go files in the current directory.
You will be graded for this!

8 Handing in

You need to write a README documenting any bugs in your code, any extra features you added,
and anything else you think the TAs should know about your project. Document the test cases
you created and briefly describe the scenarios you covered.

When you are done, submit your project to Gradescope. Each group should submit only one copy.
Make sure to add your partner name in the submission page using “add group member”.

https://github.com/blownhither/WebRPCHello
http://blog.golang.org/cover
https://golang.org/cmd/gofmt/

CS1380 Distributed System Theophilus Benson

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form.

http://cs.brown.edu/courses/cs138/s22/feedback.html

