
CS1380 Distributed System Theophilus Benson

WhatsUp (Protobuf and gRPC)
Spring 2022

Contents

1 Introduction 2

2 Getting Started 2
2.1 WhatsUp Overview . 2

3 Requirements 3

4 Specifying an API with Protocol Buffers 4

5 Implementing an API 4
5.1 Message Types have Become Go Structs . 5
5.2 RPC Definitions Have Become Go Interfaces . 6

6 Context and Metadata 8

7 gRPC Interceptors 9

8 Your Task 9

9 Handin 10

CS1380 Distributed System Theophilus Benson

1 Introduction

This lab is intended to get you more familiar with gRPC, which we will be using for the rest of
the assignments this year. The official docs are an excellent resource for learning gRPC concepts.
You can learn how to set up and install everything via this quickstart guide.

gRPC is Google’s RPC framework. An RPC framework allows you to execute functions remotely -
a function pointer (and arguments for said function) get passed to another computer that executes
it, and the result is sent back to your local computer. In practice, RPC frameworks look and behave
very much like traditional HTTP requests, and, in fact, gRPC uses HTTP/2 under the hood.

So why use gRPC instead of a vanilla HTTP request? Because

1. gRPC has higher throughput than regular HTTP

2. gRPC lets you specify the schema for your server’s entire API just once, and then automat-
ically generate code implementing your API in multiple programming languages

It takes away some of the pain of updating distributed systems components - if you make changes
to your server API, you can easily update clients by just having them import the newly generated
code.

gRPC itself is built on Protocol Buffers. Think of protocol buffers as an alternative to JSON or
gzip for formatting messages before they are sent over a network (the wire format). Protocol
buffers convert objects in a programming language to a highly-compressed binary representation
that can be sent over the network, allowing throughputs to be very high.

A consequence of this design is that both client and server must implement custom converters
(serializers and deserializers) to parse message formats back into objects for your programming
language - the good news is that these converters are automatically generated for you. All your
code has to do is call it. In this lab, you will implement the core functionality of a simple chat
application that utilizes gRPC and protocol buffers. You shall learn how to write an API speci-
fication using protocol buffers, how to generate code stubs implementing this API automatically,
how to create clients and servers that invoke gRPC methods, and how to use some extra goodies
(like metadata and interceptors) provided by gRPC - all while getting a nice distributed service
out of it too!

2 Getting Started

Here is the link to the Github Classroom assignment. This assignment can be done individually
or with your project partner1.

2.1 WhatsUp Overview

A brief high-level overview of the application we’re building (called WhatsUp) follows. We have
kept the design deliberately simple for pedagogical purposes:

1. At heart, it resembles a very naive email service.

• Users use a client to connect to a server, can send messages to users currently logged-in
with the server, and can check for new messages.

• No additional features - like push updates, folder organization, or message filters - are
provided.

1Download your assignment from Github Classroom. Don’t clone our stencil repo. You have to work on the
repo created by GitHub Classroom when you accept the homework. You will have to push your code to your own
repo to get grades.

https://www.grpc.io/docs/
https://www.grpc.io/docs/quickstart/go/
https://en.wikipedia.org/wiki/Protocol_Buffers
https://classroom.github.com/a/WIHEiQWG

CS1380 Distributed System Theophilus Benson

2. Our service is both stateful (users are either logged-in or not) and offers some security.

• You should not be able to log in from a different client as a user if that user is logged
in on a separate client.

• To implement this, we have a notion of authentication. When users connect, they are
given a unique authentication token that they must provide in all future requests.

• When they disconnect, they must explicitly invalidate the token. Our tokens never
expire - we expect our clients will never abruptly disconnect (an assumption you should
never rely on in production!).

In the assignment, you will find three folders / files:

1. client and pkg/client core.go: Contains code for a WhatsUp client. Its primary job is
querying the server and rendering query results for the command line.

2. server and pkg/server core.go: Contains code for a WhatsUp server. Its primary job
is to maintain state to verify authentication, and store messages from users until a client
retrieves them.

3. pkg/whatsup.proto: The protocol buffer definition. You will generate code from this file.

WhatsUp clients allow you to send and fetch messages. It also allows you to list all logged in
users. In this assignment, your task will be to implement sending and fetching messages, as well
as logging in and ensuring the received authentication token is used in every subsequent message
until logout.

3 Requirements

To receive full credit for this lab, we will build and run your binary against integration tests we’ve
written. If your code passes these tests on Gradescope, you should be fine! For your benefit, the
source code for these integration tests is included in this repository.

CS1380 Distributed System Theophilus Benson

4 Specifying an API with Protocol Buffers

Let’s take a look at a piece of our whatsup/proto file:

syntax = "proto3"; // required boilerplate - always have this at top

package whatsup; // used in the generated code, see example below

message Registration {

string source_user = 1;

}

message AuthToken {

string token = 1;

}

service WhatsUp {

rpc Connect(Registration) returns (AuthToken);

}

This simplified .proto file essentially says: there exists an API endpoint (belonging to our service
WhatsUp) called Connect. This endpoint accepts a message of type Registration and responds
with a message of type AuthToken. This information is all indicated by the rpc keyword in the
service WhatsUp object.

• An rpc can accept only one input type and only one return type, and (if not otherwise
specified) will close the endpoint connection once one message of each type is exchanged,
exactly like a regular HTTP request.

• A message itself is just an aggregate containing a set of typed fields. In the above example,
Registration has a single string field called source user, and AuthToken has a single string
field called token. The = 1, = 2 etc. markers on each of these fields are required syntactic
sugar - under the hood, Protocol Buffers uses them to order these fields in the binary format
of the message. Tags must start from 1.

Many standard simple data types are available as field types, including bool, int32, float,
double, and string. You can also add further structure to your messages by using other message
types as field types, mark some fields as optional and even use enums. A field may be repeated
any number of times (including zero) if the repeated keyword is added before the type. The order
of the repeated values will be preserved in the Protocol Buffers. You can think about repeated
fields as dynamically sized arrays.

There is a lot more to Protocol Buffers that can be learned via the documentation. However this
information should be more than sufficient for this class2.

5 Implementing an API

Once we have our .proto file created, we need to convert it into something that we can use in our
Go code. That is where the magic comes in.

2Technically, only messages are part of the protocol buffers specification. Service objects and the rpc keyword
belong to gRPC, which extends the protocol buffers specification. While it is rare to use protocol buffers without
also using gRPC, knowing this will help you greatly when looking up documentation - in general, annotations
that seem network-specific (rpc, stream, service) will be found in the gRPC documentation; all others will be
in the protocol buffers documentation. The reason for this split is because protocol buffers are meant to be use
case-agnostic, while gRPC is not.

https://developers.google.com/protocol-buffers/docs/proto3#simple
https://www.grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/proto3##simple

CS1380 Distributed System Theophilus Benson

Download and install protoc if you haven’t. Be sure to add protoc to the PATH variable for your
environment, so that you can call protoc from the command line.

Assuming you are in the root of the assignment’s directory, we can run the following commands:

For the first time, get protoc-gen executable

On dept machines

go1.17 install google.golang.org/protobuf/cmd/protoc-gen-go@v1.26

go1.17 install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.1

Locally

go get google.golang.org/protobuf/cmd/protoc-gen-go@v1.26

go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.1

To generate go code from proto while in the root of this project

make build

make build will use the protoc binary to generate corresponding Go code for all proto files in
the current working directory. After running it, when you inspect the whatsup folder, you should
see two new files generated for you:

1. pkg/whatsup.pb.go: This file contains the generated code for all of the protocol buffer
messages.

2. pkg/whatsup grpc.pb.go: This file contains the generated client and server code for your
RPCs. It uses the message definitions given in whatsup.pb.go.

You don’t have to inspect these files too thoroughly - much of it is deep implementation code
needed for gRPC to work properly. There are a few key things you should take note of, though.

5.1 Message Types have Become Go Structs

In whatsup.pb.go, all of your message types have now been implemented as structs - for example,
the protobuf type

message Registration {

string source_user = 1;

}

has been converted into the Go struct definition

package whatsup // produced by the `package` keyword in .proto

...

type Registration struct {

state protoimpl.MessageState

sizeCache protoimpl.SizeCache

unknownFields protoimpl.UnknownFields

SourceUser string `protobuf:"..."`

}

This means you can now create Registration objects like any other Go object:

https://developers.google.com/protocol-buffers/docs/downloads

CS1380 Distributed System Theophilus Benson

import (

"whatsup/whatsup",

"fmt"

)

func main() {

r := whatsup.Registration{SourceUser: "foo"}

fmt.Println("%+v", r)

}

5.2 RPC Definitions Have Become Go Interfaces

In whatsup grpc.pb.go, your RPC call has now been implemented as interfaces satisfied by a
client and a server - for example, the RPC call

service WhatsUp {

rpc Connect(Registration) returns (AuthToken);

}

has been converted into the following Go interfaces and helper functions / structs:

package whatsup // produced by the `package` keyword in .proto

type WhatsUpClient interface {

Connect(ctx context.Context,

in *Registration,

opts ...grpc.CallOption) (*AuthToken, error)

}

// returns a struct that implements WhatsUpClient

func NewWhatsUpClient(_ grpc.ClientConnInterface) WhatsUpClient {...}

type WhatsUpServer interface {

Connect(context.Context, *Registration) (*AuthToken, error)

}

// this becomes important when implementing WhatsUpServer interface

type UnimplementedWhatsUpServer struct {}

For clients, the interfaces have already been implemented by gRPC, so you can just ask for a new
client using whatsup.NewWhatsUpClient():

CS1380 Distributed System Theophilus Benson

import (

"whatsup/whatsup",

"google.golang.org/grpc",

"context",

"fmt"

)

func main() {

// Establish a connection to the chat server

connection, _:= grpc.Dial(

// specify the address of the server - example below

"localhost:8000",

// indicate we should connect using plain TCP without SSL

grpc.WithInsecure(),

// block thread until connection is established

grpc.WithBlock(),

)

// create a new gRPC client over this connection

client := whatsup.NewWhatsUpClient(connection)

// send a message that returns an AuthToken; blocks until done

auth, _:= client.Connect(

// take a look at the `context` standard library

context.Background(),

// our payload

&whatsup.Registration{

SourceUser: user,

}

)

// should print whatsup.AuthToken{Token: \..."}

fmt.Println("%+v", auth)

}

Server code is slightly more complicated in two ways:

1. Before being used, it must be registered with a true server listening on a port.

2. gRPC does not let you use its default implementations for the server interface - you must
”subclass” UnimplementedWhatsUpServer and implement the methods yourself.

CS1380 Distributed System Theophilus Benson

import (

"whatsup/whatsup",

"google.golang.org/grpc",

"context",

"net",

"fmt"

)

// a new type that implements whatsup.UnimplementedWhatsUpServer

type server struct {

whatsup.UnimplementedWhatsUpServer

}

// an example implementation of our server interface

func (s server) Connect(_ context.Context, r *whatsup.Registration)

(*whatsup.AuthToken, error) {↪→

token := r.SourceUser + " has been authenticated"

return &whatsup.AuthToken{Token: token}, nil

}

func main() {

realServer := grpc.NewServer()

whatsup.RegisterWhatsUpServer(realServer, server{})

// example port and address

listen := net.Listen("tcp4", "localhost:8000")

if err := realServer.Serve(listen); err != nil {

fmt.Printf("failed to serve: %v", err)

}

}

6 Context and Metadata

Our generated client interface seems to ask for a context.Context object. What is this mysterious
entity?

context.Context is a struct that stores data pertaining to a specific, individual gRPC request.
Naturally, it can store arbitrary metadata - for example, a context might contain an authenti-
cation token that servers can inspect before honoring the request. But contexts do more than
just hold metadata. Cancelling a context is functionally equivalent to cancelling a request, and
context.Context gives an API (implemented as a channel) through which all the goroutines pro-
cessing the request can be alerted of this cancellation. Contexts can also have deadlines, killing
the gRPC request if it does not complete within a certain amount of time.

Furthermore, contexts enable an advanced distributed systems debugging technique known as dis-
tributed tracing, which allows you to collect performance data across all the servers and functions
touched by a single request, by storing all the performance data seen so far inside a context.

These properties make contexts very powerful, and can be used in many systems as a way to
coordinate work concurrently or at scale. A good overview of contexts is available in the official
docs.

https://opentracing.io/docs/overview/what-is-tracing/
https://opentracing.io/docs/overview/what-is-tracing/
https://golang.org/pkg/context/
https://golang.org/pkg/context/

CS1380 Distributed System Theophilus Benson

In our WhatsUp application, we store authentication tokens retrieved by Connect inside a single
context. This context is then passed on to all other requests within the users’ session. Contexts
erase the type of the keys and values stored in them, converting them to interface{} objects, so
we recommend gRPC’s official solution to this: the metadata, which ensures all values are stored
concretely as strings (keys) and a list of strings (values).

import (

"context",

"google.golang.org/grpc/metadata",

"fmt"

)

func main() {

ctx := context.Background()

// store a key-value pair inside a context

ctx = metadata.AppendToOutgoingContext(ctx, "key", "value")

// extract the key-value pair before being sent

md, _:= metadata.FromOutgoingContext(ctx)

// Note: to read the same data on the server, use

// metadata.FromIncomingContext

// prints a slice, not a string - []string{"value"}

fmt.Println("%+v", md["key"])

}

7 gRPC Interceptors

gRPC interceptors essentially serve as middleware for gRPC calls. Client interceptors capture
the request before the client sends it off to the server. Server interceptors receive the request
before the server processes it. Some use cases for interceptors could be setting default timeouts,
authentication, logging, and testing. See here for a more in-depth explanation of interceptors.

In our WhatsUp application, we have implemented and registered a server interceptor for you that
checks if the accompanying request has the appropriate authorization token. This interceptor then
inserts the actual username into the request’s context before calling the method it was originally
supposed to call. It’s not important to know too much about them, so we won’t touch too much
on them - just that they exist, and serve an important role in building many gRPC applications.

8 Your Task

You are expected to complete the core functionality of the WhatsUp application by implementing
two new RPCs (Send and Fetch) using custom message types. You are also expected to fill out
Register, a client function that calls our ConnectRPC and returns a context object populated
with the authorization token.

• Complete the whatsup.proto file that defines these two RPC services

• Generate .pb.go file from whatsup.proto

• Implement the RPCs on the server in the server core.go file

• Implement calling the RPCs on the client in the client core.go file

https://github.com/grpc/grpc-go/blob/master/Documentation/grpc-metadata.md
https://github.com/grpc/grpc-go/tree/master/examples/features/interceptor

CS1380 Distributed System Theophilus Benson

9 Handin

Once you finish the lab, you should submit to Gradescope from your Github repo. The autograder
will run and give you feedback. You can resubmit the lab multiple times.

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form.

http://cs.brown.edu/courses/cs138/s22/feedback.html

