
CS1380 Distributed System Theophilus Benson

Project 3: Raft
Due: 11:59 PM, April 1, 2020

Contents

1 Getting Started 1

2 Introduction 2

3 Raft Overview 4
3.1 Leader Election . 4
3.2 Log Replication . 4
3.3 Log Commitment . 4
3.4 Client Interaction . 4

4 Implementation 4
4.1 Project Layout . 4
4.2 Raft Protocol Implementation . 5
4.3 CS 138 Specific Nuances . 6

5 Testing 6
5.1 Building and Running . 7

6 Style 8

7 Handing in 8

8 Capstone 8

1 Getting Started

Remember, if you write code on a department machine, you must
use go1.13 instead of just go (ie go1.13 install or go1.13 test). Add
alias go=go1.13 to your ~/.bashrc for convenience.

go1.13 get -u -d github.com/brown-csci1380-s21/raft-<TeamName>

CS1380 Distributed System Theophilus Benson

Use the command above to get your repo from GitHub Classroom. Fix the im-
port path in all files in the cmd directory, client directory, and raft/cluster.go.
Use go1.13 get -u ./... to fetch all dependency. Before you get started,
please make sure you have read over, set up, and understand all the support
code.

We highly encourage you to work in groups of two, but we understand that in
some situations a group of three may be necessary. If you work in a group of
three, you must implement an additional feature. These can be found in the
Extra Credit section at the end of the handout. Stop by TA hours to learn more
about what these are! If you work in a group of three, you must contact the
TAs and let them know you intend to work in a group of three, and if you will
be implementing additional features.

Working alone is not allowed for this project. If you do not have a partner for any
reason, please attempt to find one thru the piazza partner search functionality,
and if this is not successful please email the htas for assistance.

2 Introduction

An important part of creating total-ordered, fault-tolerant distributed systems
is providing the ability for multiple nodes to come to a consensus about state.

The problem of distributed consensus has been around for a long time and has
typically been solved using implementations of the popular Paxos algorithm,
which was initially published in 1998. Paxos, however, has been shown to be
difficult to fully understand, let alone implement. The difficulties related to
Paxos have spawned much work over the years in trying to make a more practical
protocol.

In this spirit, a group of researchers at Stanford (Diego Ongaro and John Ouster-
hout) developed the Raft protocol in 2014, which is what you will be imple-
menting in this project. Raft is a consensus protocol that was designed with
the primary goal of understandability without compromising on correctness or
performance (when compared to protocols like Paxos).

For this project, the Raft paper will serve as the central source of truth.
All implementation details are found in the Raft paper and this handout will
simply refer to relevant sections in the Raft paper for your guidance.

This project is also meant for you to experience what it’s like to implement an
algorithm directly described from a Raft paper. Raft is great for this in that it
is very thorough in describing all the details necessary for its implementation.
We hope that this skill will be useful for you in your future CS career.

https://en.wikipedia.org/wiki/Paxos_(computer_science)
http://raft.github.io/
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf

CS1380 Distributed System Theophilus Benson

Invoked by candidates to gather votes (§5.2).

Arguments:
term candidate’s term
candidateId candidate requesting vote
lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)
2. If votedFor is null or candidateId, and candidate’s log is at

least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

RequestVote RPC

Invoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:
term leader’s term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitIndex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:
1. Reply false if term < currentTerm (§5.1)
2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm (§5.3)
3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it (§5.3)

4. Append any new entries not already in the log
5. If leaderCommit > commitIndex, set commitIndex =

min(leaderCommit, index of last new entry)

AppendEntries RPC

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)
currentTerm latest term server has seen (initialized to 0

on first boot, increases monotonically)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:
commitIndex index of highest log entry known to be

committed (initialized to 0, increases
monotonically)

lastApplied index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

Volatile state on leaders:
(Reinitialized after election)
nextIndex[] for each server, index of the next log entry

to send to that server (initialized to leader
last log index + 1)

matchIndex[] for each server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)

State

All Servers:
• If commitIndex > lastApplied: increment lastApplied, apply
log[lastApplied] to state machine (§5.3)

• If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):
• Respond to RPCs from candidates and leaders
• If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
• On conversion to candidate, start election:
• Increment currentTerm
• Vote for self
• Reset election timer
• Send RequestVote RPCs to all other servers

• If votes received from majority of servers: become leader
• If AppendEntries RPC received from new leader: convert to
follower

• If election timeout elapses: start new election

Leaders:
• Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts (§5.2)

• If command received from client: append entry to local log,
respond after entry applied to state machine (§5.3)

• If last log index ≥ nextIndex for a follower: send
AppendEntries RPC with log entries starting at nextIndex
• If successful: update nextIndex and matchIndex for
follower (§5.3)

• If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry (§5.3)

• If there exists an N such that N > commitIndex, a majority
of matchIndex[i] ≥ N, and log[N].term == currentTerm:
set commitIndex = N (§5.3, §5.4).

Rules for Servers

Figure 2: A condensed summary of the Raft consensus algorithm (excluding membership changes and log compaction). The server
behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2
indicate where particular features are discussed. A formal specification [31] describes the algorithm more precisely.

4

Figure 1: This figure is from the Raft paper, and helps summarize a lot of the
important details in the protocol. If you find a note particularly confusing, refer
to the section specified (e.g., §3.5).

https://raft.github.io/raft.pdf

CS1380 Distributed System Theophilus Benson

3 Raft Overview

The Raft protocol can be broken down into four major components that you
will have to implement: Leader Election, Log Replication, Log Commitment,
and Client Interaction.

For your reference we have included a cheatsheet summary of the consensus
algorithm in Figure 1.

3.1 Leader Election

Leader election consists of a Raft cluster deciding which of the nodes in the
cluster should be the leader of a given term. Refer to the cheatsheet, section
§5.2 and §5.4.1 for implementation details.

3.2 Log Replication

Log replication consists of making sure that the Raft state machine is up to
date across a majority of nodes in the cluster. Refer to the cheatsheet, section
§5.3, §5.4.2, and §5.5 for implementation details.

3.3 Log Commitment

Log commitment is responsible for ensuring consistency of data in the Raft clus-
ter since leaders are allowed to overwrite follower logs. Refer to the cheatsheet,
section §5.3, §5.4.2, and figure 8 from the paper for implementation details.

3.4 Client Interaction

Client interaction consists of a node outside the Raft cluster making requests
to modify the state machine of the cluster. Refer to the cheatsheet and section
§8 for implementation details.

4 Implementation

4.1 Project Layout

In the stencil code, you’ll see three high level packages:

• raft: the core Raft protocol

• hashmachine: a state machine based on a hash chain

• client: a client API for the raft package

You’ll see a cmd directory with three packages inside: raft-cli, which is a CLI
for a Raft client (it uses the client package above) and raft-node, a CLI to
create and control a Raft node, and raft-cluster, a CLI to simultaneously

CS1380 Distributed System Theophilus Benson

start a group of Raft nodes to test leader election. Note that the Raft client is
specific to the hash chain implementation we provide.

4.2 Raft Protocol Implementation

You should implement the following functions:

• utils.go

– func randomTimeout(minTimeout time.Duration) <-chan time.Time

• node follower state.go

– func (r *Node) doFollower() stateFunction

– func (r *Node) handleAppendEntries(msg AppendEntriesMsg) (resetTimeout,

fallback bool)

• node candidate state.go

– func (r *Node) doCandidate() stateFunction

– func (r *Node) requestVotes(electionResults chan bool, fallback

chan bool, currTerm uint64)

– func (r *Node) handleCompetingRequestVote(msg RequestVoteMsg)

(fallback bool)

• node leader state.go

– func (r *Node) doLeader() stateFunction

– func (r *Node) sendHeartbeats() (fallback, sentToMajority

bool)

Each function that returns a stateFunction should contain the logic for the
Raft node being in one of the three Raft states: Follower, Candidate,
Leader. You can transition to another state by returning that state func-
tion. For example, doLeader() could be written to always transition to the
Follower state:

func (r *RaftNode) doLeader() state {

return r.doFollower

}

When an RPC is received, the request is forwarded over a channel so that the
function of the appropriate state can determine how it should be interpreted.
For example, the following code would always reply successful to an AppendEn-
triesRPC:

for {

select {

case msg := <-r.appendEntries:

msg.reply <- AppendEntriesReply{

CS1380 Distributed System Theophilus Benson

r.GetCurrentTerm(),

true,

}

}

}

The full list of channels you should handle are:

• RaftNode.appendEntries

• RaftNode.requestVote

• RaftNode.registerClient

• RaftNode.clientRequest

• RaftNode.gracefulExit

Feel free to add whatever support code you need. DO NOT CHANGE THE
PUBLIC APIs.

4.3 CS 138 Specific Nuances

• DefaultConfig() specifies in-memory log storage by default. This means
that if you shutdown your raft node, all of its logs and state will be lost.
Raft requires persistence of logs and some state such as a node’s last vote,
so in-memory storage would violate those conditions. However, using in-
memory storage will actually be incredibly convenient when you start
testing your Raft implementation. When you would like to test a node
failing and restarting, set the config’s inMemory field to false.

• We use BoltDB, an embedded DB written in Go, as the underlying stable
storage for Raft. BoltDB is widely used across the software industry
and is featured in projects such as Consul, Hashicorp’s service-discovery
platform, and InfluxDB, a popular DB for metrics and analytics.

• A Raft node is uniquely identified by its listener port in this scheme. So if
you start up a new node that has the same port as a node that was running
before which had its state saved to disk, this new node will appear with
the same state. To avoid this, you can either use in-memory storage,
ensure that new nodes you start have distinct ports, or you can call func
(r *Node) RemoveLogs() to remove the persisted data.

5 Testing

We expect to see several good test cases. This is going to be worth a portion of
your grade. You can check your test coverage by using Go’s coverage tool.

To aid you with testing, we have provided sample tests inside example_client_test.go,
example_election_test.go, and example_partition_test.go. These are

https://github.com/etcd-io/bbolt
https://github.com/hashicorp/consul
https://influxdata.com/
http://blog.golang.org/cover

CS1380 Distributed System Theophilus Benson

not exhaustive, but test some core components of your implementation. Con-
sider them a starting point for devising more complete tests of your own.

We have also provided the helper functions used by our tests in test_utils.go.
Feel free to use them within your own tests.

To help you test out the behavior of your implementation under partitions, we
have provided you with a framework which allows you to simulate different net-
work splits. You can find the relevant code in network_policy.go, and see how
it can be used in cmd/raft-node/main.go and example_partition_test.go.

5.1 Building and Running

Once you’re in your repo’s higher level raft directory, to get Raft to build, you
must first update your dependencies, like so:

$ go get -u ./...

Then, you can build and install our three binaries, raft-node, raft-client,
and raft-cluster by running:

$ cd cmd

$ go install ./...

This generates three CLIs and places them in your $GOPATH/bin:

You are welcome to improve any of the CLIs as you see fit. For a list of available
commands in each CLI, type help after entering.

• raft-node

This is a CLI that serves as a console for interacting with Raft, creating
nodes, and querying state.

You can pass the following arguments to raft-node:

– -p <port>: The port to start the server on. By default selects a
random port.

– -c <addr>: Address of an existing Raft node to connect to.

– -d=true: Enable or disable debug. Default is false.

– -m=true: Enable or disable in-memory store. Default is true.

• raft-client

This is a sample client which allows you to connect to a Raft node and
issue commands to the hash state machine.

You can pass the following arguments to raft-client:

– -c <address>: A raft node address for raft-client to connect to

CS1380 Distributed System Theophilus Benson

• raft-cluster

This is a CLI that will simultaneously start up a cluster of raft nodes and
is meant primarily to test for leader-election

You can pass the following arguments to raft-cluster:

– -n <number>: The number of nodes in the raft cluster. Default is 3.

– -m=true: Use in-memory storage for raft cluster. Default is true

– -d=true: Enable or disable debug. Default is false

6 Style

You should use Go’s formatting tool gofmt to format your code before handing
in. You can format your code by running:

gofmt -w=true *.go

This will overwrite your code with a formatted version of it for all go files in
the current directory.

7 Handing in

About Checkpoint: There is a checkpoint available on Gradescope. You can
submit for checkpoint once, anytime before the final handin deadline. Make
sure to submit in group with ”add group member” in submission page. Your
code will be run against the partial test cases that will be used in final grading.
The grader will return the log back with your results. Based on the log, you
can make further improvements accordingly.

You need to write a README documenting any bugs in your code, any extra
features you added, the work distribution within your group, and anything else
you think the TAs should know about your project. Document the test cases
you created and briefly describe the scenarios you covered.

When you are done, submit your project to Gradescope. Each group should
submit only one copy. Make sure to add your partner name in the submission
page using ”add group member”.

8 Capstone

If you’re in a 3-person group, your group must implement one additional feature
and demonstrate it works (via tests, a CLI, or benchmarks). 2-person groups
can start thinking about these too, as you may want to implement them for an
A-level design of your final project, Puddlestore.

Capstone feature projects can be one of:

https://golang.org/cmd/gofmt/

CS1380 Distributed System Theophilus Benson

• Membership Changes (§6 of the Raft paper and §4 of the dissertation).

• Log Compaction (§7 of the Raft paper and §5 of the dissertation).

• Web application to control and interface with a Raft node (using gRPC).
(Refer to this repo for an example on node.js and grpc-web.)

• Snapshots, using the Chandy-Lamport.

If you choose to implement one of these, please drop by TA hours or email the
TA list to discuss your plan first and get any questions answered.

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing lan-
guage in this or any other CS138 document by filling out the anonymous feed-
back form.

https://raft.github.io/raft.pdf
https://github.com/ongardie/dissertation#readme
https://raft.github.io/raft.pdf
https://github.com/ongardie/dissertation#readme
https://github.com/blownhither/WebRPCHello
http://cs.brown.edu/courses/cs138/s20/feedback.html
http://cs.brown.edu/courses/cs138/s20/feedback.html

