
CS1380 Distributed System Theophilus Benson

Project 4: Puddlestore
Due: 11:59 PM (ETS.), April 12th, 2021

Contents

1 Code Exchange 2

2 Introduction 2

3 A Quick Diversion: File Systems 2
3.1 Files & Directories . 2
3.2 Reading & Writing . 3

4 PuddleStore Architecture 3
4.1 DOLR . 3
4.2 File Hierarchy . 4
4.3 Updates . 4
4.4 The Membership Server . 5
4.5 File Locking . 5

5 The Assignment 6
5.1 Requirements . 6
5.2 Implementing the File Hierarchy . 6
5.3 Encoding and Decoding Messages . 7
5.4 Capstone & Extra Features . 7

5.4.1 Pre-fetching and Client Caching . 7
5.4.2 Access Control List . 8
5.4.3 Web Client . 8
5.4.4 Tapestry Hotspot Caching and Reliability 8

6 Testing 8

7 Handing in 8

CS1380 Distributed System Theophilus Benson

1 Code Exchange

Remember, if you write code on a department machine, you must use go1.13 instead
of just go (ie go1.13 install or go1.13 test). Add alias go=go1.13 to your ~/.bashrc for
convenience.

go1.13 get -u -d github.com/brown-csci1380-s21/puddlestore-<TeamName>

Use the above command to clone your repo. You will also need to use your own or the TA
implementation of Tapestry as part of your project. If you choose to use the TA implementation,
you and your partner will have to sign an agreement that you will not share the code with anyone.

2 Introduction

For your final project, you’ll be implementing a simple distributed filesystem called PuddleStore.
It’s based on OceanStore, a project that was developed at UC Berkeley in the early 2000s 1.

OceanStore is a utility infrastructure designed to span the globe and provide continuous
access to persistent information. Since this infrastructure is comprised of untrusted
servers, data is protected through redundancy and cryptographic techniques. To improve
performance, data is allowed to be cached anywhere, anytime. Additionally, monitoring
of usage patterns allows adaptation to regional outages and denial of service attacks;
monitoring also enhances performance through pro-active movement of data.2

The specifications for PuddleStore are a bit more modest. We’d like you to implement the basic
functionality for a distributed filesystem using some of the projects you’ve already finished this
semester as a basis for a few of the essential components. In order to receive full credit on this
assignment you will need to research and implement an additional component of your choosing.

3 A Quick Diversion: File Systems

We know what you’re thinking. This isn’t CS167. How am I supposed to know how to implement
a file system? Don’t worry — you’re not expected to develop a sophisticated file system, and
we will describe everything you need to know to about file systems in this document. In the
following sections, we will suggest a way in which to implement the PuddleStore file system, but
it is important to remember that you have the freedom to design your implementation any way
you would like provided that it offers the basic functionality that is expected.

Usually, persistent storage utilities are backed by a disk. In this assignment, however, all data will
reside in memory and will be distributed among the nodes of your system.

The two primitive file system objects that ought to be available to users of PuddleStore are files
and directories. A file is a single collection of sequential bytes and directories provide a way to
hierarchically organize files. Directories are really just special files that are interpreted to contain
references to other files (and other directories, too).

3.1 Files & Directories

In order to actually implement a file system, we’ll need to define a set of primitive objects to be
used internally. An obvious abstraction is the data block, which simply represents a fixed length
array of bytes. We can compose files of arbitrary length out of some number of data blocks. Some
of the space available in the last data block will be wasted if the size of the file is not a multiple of

1https://oceanstore.cs.berkeley.edu/
2https://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf

https://oceanstore.cs.berkeley.edu/
https://oceanstore.cs.berkeley.edu/publications/papers/pdf/asplos00.pdf

CS1380 Distributed System Theophilus Benson

Figure 1: Inodes and data blocks

the block size. The merits of storing files as collections of data blocks, rather than a single array
of bytes, will become apparent when we discuss copy-on-write operations.

We also need an object to store a file’s metadata. In file-system lingo, we call these objects inodes.
An inode stores information such as the name and size of the file, as well as a map of data blocks
associated with a file.

In a common linux system, directories are also represented by inode and have data blocks like files
to represent its children. However, we have simplified the directory implementation this year, so
that you don’t need to worry about directories at all.

3.2 Reading & Writing

The simplest interface you can provide for reading from and writing to files will take a byte location
at which to start and a buffer of bytes. When reading, the buffer gets filled with the bytes of the
file, starting at the specified location. When writing, the buffer contains the data that should
replace the current file data, starting at the specified location. If the user writes past the end of
the file (or begins to write at a location beyond the end of the file), it is assumed that the length
of the file ought to be extended. When new data blocks are added to a file, the inode for the file
must be updated to reference those blocks.

Files are made up of many fixed length data blocks, so reading and writing with them isn’t quite
as simple as with an array of bytes. The block size, which will be provided as configurations, will
determine how the data that makes up a file is distributed. Given the starting location and the
number of bytes that you must read or write, you will need to figure out which blocks contain the
data and where to begin and end within the first and last blocks.

4 PuddleStore Architecture

PuddleStore isn’t just a file system; it’s a distributed file system. The infrastructure is meant
to allow data to reside anywhere on the network and be available everywhere. It also makes
guarantees about the order in which updates appear at clients. The implementation details of
these aspects of the system are described in this section.

4.1 DOLR

You will use a Distributed Object Location and Retrieval (DOLR) service, Tapestry, to store
and replicate file data blocks. Each data block should be accessible through a unique ID at

CS1380 Distributed System Theophilus Benson

Figure 2: Copy-on-write: append 3K data to a file

any Tapestry node. Your PuddleStore implementation will need to make choices about where to
replicate objects, as Tapestry does not automatically replicate them for you.

4.2 File Hierarchy

To simply the implementation of file hierarchy, We introduce zookeeper3, a highly reliable dis-
tributed coordination service by Apache. We will talk about Zookeeper in details later. For now,
you can think of it as a tree that stores our inodes as leaves. We put inodes (instead of the whole
data blocks) in zookeeper, because it is good at handling chunks of KBs efficiently.

When operating on files, your client will first consult Zookeeper for inode and block IDs, and then
query Tapestry for the actual data blocks.

4.3 Updates

In order to have a useful file-system, clients must be provided with a consistent view of files and
directories. In a traditional, non-distributed file system, standard locking primitives are used to
ensure that multiple threads do not leave the internal representation of a file in an inconsistent
state. For PuddleStore, this is a more difficult problem because the objects stored by the DOLR
are replicated to provide fault tolerance and therefore coordinating updates on them would require
designating a master Tapestry node for each object and in addition to locking. Some distributed
file-systems, like GFS, do this quite successfully but the sophistication required is beyond the
scope of the basic specifications of this project. For this reason, PuddleStore uses a copy-on-
write approach to maintain data consistency and a synchronous update system to update pointers
to data.

Copy-on-write means that there is no modification of data blocks in the DOLR. When modifying
a file, the client retrieves the data blocks it will update from the DOLR. It then makes changes to
those blocks locally, then stores those blocks as new objects in the DOLR. As a result, the client is
also responsible for modifying the file’s inode whenever it makes any changes to it. This is because
the file’s data block mapping must be updated to point to the new data block IDs. (See Figure 2)

This approach maintains data consistency as it provides atomicity for file modifications. Without
copy-on-write, we could run into a situation where two clients’ modifications to the same file both

3https://zookeeper.apache.org/doc/r3.4.8/zookeeperProgrammers.html#ch_zkDataModel

https://zookeeper.apache.org/doc/r3.4.8/zookeeperProgrammers.html##ch_zkDataModel

CS1380 Distributed System Theophilus Benson

partially succeed. For example, imagine Client A and Client B both try to modify Block 1 and
2 of the same file at the same time. Since we are not using copy-on-write in this example, we
directly modify the original data blocks and thus, should not change the inode of the file. Since
our DOLR doesn’t offer multi-object transactions, it is very possible that Client A writes to Block
1 after Client B, but Client B writes to Block 2 after Client A. The end result is a file where
Block 1 has Client A’s modifications but Block 2 has Client B’s modifications. This will make
both Client A and B very confused when they subsequently read from the file.

Thus, the key aspect of copy-on-write in our implementation is the atomic modification of the
file’s inode. Every time a file is updated, its contents will represent the exact data block mapping
that the modifying client had.

To facilitate copy-on-write, each data block in the file-system should be assigned a unique ID,
which we will call a GUID (Globally Unique ID). Unfortunately, in a distributed system,
there is no way to guarantee unique IDs without some global sequencer. The additional overhead
to implement a global sequencer just to provide unique GUIDs does not add much value to this
project so it is fine to just use some UUID library to generate probabilistic unique IDs.

In a file-system it is also necessary to uniquely identify the files and directory themselves. A
typical file system uses unique inode numbers to represent files and directories. I know what
you’re thinking, why not just use the file path as the unique ID for each file and directory? While
it’s true that two different files cannot have the same path in a file system, two different paths
can point to the same file via file-system links. Luckily for us, PuddleStore is not sophisticated
enough to support file-system links so using file paths as unique IDs for files and directories is
sufficient.

4.4 The Membership Server

Just as the underlying Tapestry system allows some nodes to be added and removed on the fly,
PuddleStore should be able to scale. The unified system should have a well defined mechanism for
manipulating the membership of the DOLR network. Any systems that require coordination not
provided by Tapestry should have a way to scale as well. Additionally, the API needs a mechanism
for balancing client requests across the many servers that will be available.

The simplest way to handle this is to maintain a well-known membership server. It can facilitate
scaling of the DOLR network by providing gateway servers for new Tapestry nodes to use to
join. Clients can also query the membership server to get access to existing Tapestry nodes when
performing operations. The membership server is not a focus of this project. You are only required
to provide enough functionality to add nodes to the system and try to ensure that, on average,
each Tapestry node is being used by some clients. A simple implementation might just return a
random Tapestry node at the request of a client and provide a way to add and remove nodes from
its member lists.

Zookeeper provides out-of-box membership service. Checkout this link.

... Another function directly provided by ZooKeeper is group membership. The group
is represented by a node. Members of the group create ephemeral nodes under the
group node. Nodes of the members that fail abnormally will be removed automatically
when ZooKeeper detects the failure.

4.5 File Locking

As we have described it, PuddleStore handles conflicting updates inadequately. For instance, if
two clients simultaneously attempt to modify different byte ranges of the same file, it’s likely
that the final version of the file will only contain the changes of one client. To prevent this from
happening, you need a file locking protocol that will ensure that each file is updated by a single
client at a time. Basic file locking could be very easy to implement, so your solution will need to

http://zookeeper.apache.org/doc/r3.6.0/zookeeperProgrammers.html#Ephemeral+Nodes

CS1380 Distributed System Theophilus Benson

incorporate some level of fault tolerance. Specifically, when a client with a lock crashes (or fails),
PuddleStore should reclaim its locks.

Zookeeper provides a nice algorithm for implementing distributed locks.

5 The Assignment

5.1 Requirements

You have two tasks for this assignment:

1. Setup the PuddleStore cluster: Fill out the structs and methods in cluster.go. This
simply entails creating a Tapestry cluster and ‘registering’ each node to Zookeeper. You will
also need to use the Tapestry wrapper struct in tapestry.go.

2. Implement the client interface: We provide an interface in client.go that PuddleStore
clients must implement (Open/Close/Read/Write/Mkdir/Remove/List). Your client will
operate on the provided Zookeeper server and tapestry nodes and provide the complete
functionality of a file system. (Capstone features will require additional FileSystem APIs)

The Client interface has documents on the expected behavior of each operation. Make sure
you follow the document.

In general, all of the functions, structs, and interfaces you will be implementing are decorated
with copious comments. You should adhere to the specs in these comments as our grading relies
on these specs. Also, take a look at config.go for necessary cluster configuration.

5.2 Implementing the File Hierarchy

We’ve mentioned the necessity of inodes in file systems and using file paths as a way to identify
inodes, but we haven’t mentioned where to actually store this information. You shouldn’t store this
information in Tapestry since we require linearizable operations of file metadata. Linearizability
of file metadata is crucial for maintaining consistency across our distributed file system. You can
imagine how disastrous it would be if say, the deletion of a file was eventually consistent.

You previously worked on a system that accomplishes just this; Raft. However, we’re not gonna
be using Raft for this project. Instead, we’ll be using Zookeeper to implement the file-system
hierarchy, store inodes, and maintain cluster membership. The decision to use Zookeeper is
based on the fact that it already provides a file-system API and is necessary for keeping track of
cluster membership changes.

The stencil will provide some guidance on how to connect to a Zookeeper node so we will describe
below how to install and run Zookeeper on your local machine.

$ cd $HOME

$ wget https://downloads.apache.org/zookeeper/zookeeper-3.6.0/apache-zooke eper-3.6.0-bin.tar.gz

$ tar -xvzf apache-zookeeper-3.6.0-bin.tar.gz

$ cd apache-zookeeper-3.6.0-bin

$ cp conf/zoo_sample.cfg conf/zoo.cfg

$ bin/zkServer.sh start-foreground

If wget does not work for you, try curl instead.

$ curl https://downloads.apache.org/zookeeper/zookeeper-3.6.0/apache-zookeeper-3.6.0-bin.tar.gz >

apache-zookeeper-3.6.0-bin.tar.gz↪→

The above commands will set the data directory of zookeeper to be /tmp/zookeeper. If you want
to use a different data directory, edit the dataDir option in conf/zoo.cfg

To connect to a zookeeper node via the zookeeper-CLI, run the commands below:

http://zookeeper.apache.org/doc/r3.6.0/recipes.html#sc_recipes_Locks

CS1380 Distributed System Theophilus Benson

$ cd apache-zookeeper-3.6.0-bin

$ bin/zkCli.sh -server 127.0.0.1:2181

Now that you are in the CLI, try out this tutorial to explore various operations in Zookeeper:
ls/create/delete/get/set. You can see that zookeeper is really convenient for storing our file hier-
archy. Note that you can get/set data at any nodes in zookeeper, including directories.

If you have Docker on your machine, instead of manually installing the ZooKeeper, for people
using Mac and Linux, you could get a complete ZooKeeper instance by running

$ docker run --rm -p 2181:2181 zookeeper

For Windows, you have to use Docker for Desktop, but can not run the same command. We will
provide the instruction on how to install and use Docker for ZooKeeper.

Using Zookeeper in Go

To use zookeeper in go, we use a go client for zookeeper. In zk.go, we have already provided the
basic usage of zookeeper. For more operations, refer to go-zookeeper document.

5.3 Encoding and Decoding Messages

Since you will be storing inode information in Zookeeper, you will need to write functions that
can encode your inode struct into bytes and decode your inode struct from bytes. This is because
Zookeeper is a distributed store that maps file paths to byte data.

To do this, we recommend you take a look at two nifty functions in the Raft project titled:
encodeMsgPack and decodeMsgPack. You can see how we used it in the Raft project to encode
and decode LogEntries to store into Bolt. Note that you are not required to use these methods to
implement encoding and decoding.

5.4 Capstone & Extra Features

Students taking CS1380 as a capstone are required to implement 1 of the features below. Groups
of 3 are also required to implement 1 of the features below. These features are also available for
any group to implement for extra credit.

5.4.1 Pre-fetching and Client Caching

Given that our PuddleStore implemented is optimized for read only queries.

There are several approaches to optimize performance:

• The first is to implement client side caching. For caching, you will need fine-grained locks.
Specifically, read locks and write locks.

1. Write Lock: For each file, at most one client can acquire a write lock. With a write
lock, the client can freely, read/write to a file.

2. Read Lock: For each file, many clients can simultaneously hold a read lock. Each client
with a read lock can simultaneously read the file.

3. If a client holds a write lock, no one can hold a read lock.

• The second is to monitor the behavior of clients to determine the average number of blocks
that a client reads from a file. Based on this, you can pre-fetch these blocks and cache the
locally at the client. For example, your implementation notices that on average clients read
4 blocks from a file. When a client reads a block, you can pre-fetch the next 3 blocks.

https://zookeeper.apache.org/doc/r3.3.3/zookeeperStarted.html#sc_ConnectingToZooKeeper
https://godoc.org/github.com/samuel/go-zookeeper/zk

CS1380 Distributed System Theophilus Benson

5.4.2 Access Control List

The default implementation provides no security primitives. One option is to extend puddlestore
with features for access control list. This will require additional meta-data and additional calls.

In particular, you will need to add the following calls:

• Chmod(file, ACL) which sets the permission on the file. You only need to support two
permission levels: Owner (i.e., UserID of the client which created the file) and Everyone
(i.e., permissions for all other UserIDs). The ACL options are:

1. “44” – owner can read, everyone can read.

2. “55” – owner can read/write, everyone can read/write.

3. “54” – owner can read/write, everyone can read.

4. “45” – owner can read, everyone can read/write.

• Login(UserID) which specifies the userID for a client.

5.4.3 Web Client

Web application to control and interface with PuddleStore (using gRPC). (Refer to this repo for
an example on node.js and grpc-web.). This web application should support similar operations
and commands as the PuddleStore client.

5.4.4 Tapestry Hotspot Caching and Reliability

There are many techniques you may use to improve the Tapestry’s performance and reliability.
Because objects may be replicated anywhere in a Tapestry network, it makes sense to move copies
of an object to the nodes that request that object often (this is “hotspot caching”). The speed of
surrogate node lookups can also be increased by caching object location information at the nodes
along the publishing path from the object replica to the surrogate node. To protect against node
failures, you can salt the hash so that the information is sent to multiple nodes. Finally, objects
may be re-replicated as Tapestry nodes leave the network or fail, ensuring that the system remains
reliable over longer periods of time. If you do this, you may also want to implement erasure codes.
You can implement several of these five features together to receive an A on the project. Please
propose three of these features you would like to implement. If you choose three more challenging
features, please let us review your design and we may inform you that you only have to complete
two of them.

You should only implement this, if you did not implement hotspot caching for Tapestry
already

6 Testing

You are expected to thoroughly test your code. For this project, your testing will be a large
portion of your grade. You should provide exhaustive tests that demonstrate edge cases and
specific behaviour within your PuddleStore implementation. As with previous projects, you might
find it useful to check your test coverage by using Go’s coverage tool.

You are expected to reach 80% test coverage.

7 Handing in

About Checkpoint: There is a checkpoint available on Gradescope. You can submit for check-
point anytime before the final handin deadline. There is no limit on the number of checkpoint

https://github.com/blownhither/WebRPCHello
http://blog.golang.org/cover

CS1380 Distributed System Theophilus Benson

submission you can make. Make sure to submit in group with ”add group member” in submis-
sion page. Your code will be run against the partial test cases that will be used in final grading.
The grader will return the log back with your results. Based on the log, you can make further
improvements accordingly.

You need to write a README documenting any bugs in your code, any extra features you added,
the work distribution within your group, and anything else you think the TAs should know about
your project. Document the test cases you created and briefly describe the scenarios you covered.

When you are done, submit your project to Gradescope. Each group should submit only one copy.
Make sure to add your partner name in the submission page using ”add group member”.

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form.

http://cs.brown.edu/courses/cs138/s20/feedback.html

