
CS1380 Distributed System Theophilus Benson

Project 1: LiteMiner
Due: 11:59 PM, Feb 18, 2021

Contents

1 Introduction 2

2 Cryptocurrencies 2
2.1 Decentralization . 2
2.2 Proof of Work . 2
2.3 Miners . 2
2.4 Pools . 3

2.4.1 Distribution of Work . 3
2.5 Edge cases . 3

2.5.1 Dynamic Addition and Removal of Miners 3
2.5.2 Miner Liveliness . 3
2.5.3 Slow Miners . 4

3 The Assignment 4
3.1 Code Overview . 4
3.2 Networking and Types of Messages . 5
3.3 Functions . 5
3.4 Performance Requirement . 6
3.5 FAQ . 6
3.6 Project Difficulty . 6

4 Handing In 7

5 Testing 7

6 Style 8

7 Getting Started 9

CS1380 Distributed System Theophilus Benson

1 Introduction

Welcome to CSCI 1380! This project is a self-contained introduction to many of the concepts that
you’ll be using frequently. You’ll be implementing a real distributed system while getting some
practice using concurrency control mechanisms in Go. Before you dive into this project, make sure
you’ve signed and turned in the collaboration policy and that you’ve read the coding guidelines
that we’ve posted on the website.

2 Cryptocurrencies

2.1 Decentralization

A cryptocurrency is a digital currency that enables trusted and secure financial transfer without the
involvement of a centralized entity. Many cryptocurrencies use a distributed consensus algorithm
called the blockchain which we will study later. Key to cryptocurrencies is the use of peer-to-
peer networking principles, the notion of proof of work, and the use of cryptography to maintain
security and authenticity. In this assignment, we will focus on the peer-to-peer and proof of work
aspects.

Central to peer-to-peer systems is coordination between a dynamically set of changing nodes. In
the case of cryptocurrencies, these nodes are miners which may drop in and out of the network for
various reasons: a miner may crash (or reboot), or a new miner may be added. These changes to
the network happen in an unscheduled and unpredictable manner and special care must therefore
be taken to ensure that no information is lost. To further complicate peer-to-peer systems, the
underlying networks used for communication between these nodes can be highly unpredictable:
messages can get lost, reordered, or duplicated. In designing a cryptocurrency mining system, one
must tackle all of these challenges.

2.2 Proof of Work

In cryptocurrencies, each transaction is validated by performing a computationally intensive task.
This is often referred to as proof of work. A common proof of work scheme involves finding a
random number, referred to as a nonce, that when concatenated to a string and hashed results in
a new string that has a certain property. In Bitcoin, for example, the proof of work entails finding
the nonce that, when concatenated with the transaction data and hashed, results in a string that
starts with a series of zeros. The fundamental insight is that doing the work to find such a nonce
is computationally difficult and requires a lot of resources. In order to “cheat” the system, one
needs to have significantly more resources than other participants.

2.3 Miners

A node in a cryptocurrency network that attempts to verify transactions by performing proof of
work is generally referred to as a miner. Given a financial transaction encoded as a string M and
an unsigned integer N , a LiteMiner miner will need to find the nonce between 0 and N , inclusive,
that, when concatenated with M and hashed, results in the lowest hash value. For example,
consider the following nonces for the transaction M = “msg”, N = 2:

• LiteMiner.Hash("msg", 0) = 13781283048668101583

• LiteMiner.Hash("msg", 1) = 4754799531757243342

• LiteMiner.Hash("msg", 2) = 5611725180048225792

In this case, nonce 1 generates the least hash value, and thus the final result consists of the least
hash value 4754799531757243342 and nonce 1. Note that you need not worry about the details

CS1380 Distributed System Theophilus Benson

of how these hash values are computed – the TAs have provided a function in the stencil code for
you to use to calculate these hashes.

2.4 Pools

A pool is a collection of miners that aggregate their resources and coordinate to ensure faster
mining. In essence, a pool is a divide-and-conquer approach to tackling proof of work as it splits
the proof of work problem among different miners, thus enabling it to solve the problem faster. In
this assignment, you will develop a pool and its corresponding miners with the following properties:

• The pool must keep track of the miners under its control and allow miners to come and go
at will.

• The pool must take client requests and shard these requests (distribute the work) across all
of its miners.

• The pool must aggregate miner responses and return the proof of work to the client.

• The miners must take work distributed by the pool, perform the work, and return proof of
work to the pool.

2.4.1 Distribution of Work

In order to find the nonce that yields the lowest hash value for a given message, you will need
to perform a brute force search of all nonces between 0 and the upper bound, inclusive. In a
centralized system, this process can take a considerable amount of time. In a distributed system,
you will be able to divide up the work, but you must take care when dealing with faulty miners
(i.e., miners that drop in and out). One reasonable approach to this is for your pool to divide each
transaction request from a client into a discrete set of intervals, each interval having a lower and
upper bound which together represent a subset of the entire search space. A potential algorithm
for your pool to divide up the work for a transaction request is to distribute these intervals to
available miners and record the lowest hash within each of them. Once all intervals have been
accounted for, you can then return the nonce which corresponds to the lowest of those hashes.

2.5 Edge cases

2.5.1 Dynamic Addition and Removal of Miners

Pools would be far less useful if they were not designed to withstand the dynamic addition and
removal of miners. Thus, your pool should be able to cope with the intermittent failure of various
miners and take advantage of the addition of new miners. We will be testing for this functionality!

2.5.2 Miner Liveliness

A pool needs a way to keep track of which of its miners are avalible for work and which have
crashed or are unreachable due to network partitions or outages. One way to accomplish this is
through status updates from miners while they are working.

These updates act as a heartbeat that the pool can listen for to ensure that a particular miner is
still alive and performing work. These heartbeats are sent by miners at a set interval (in the case
of LiteMiner, every second). Your pool should consider a miner to be dead if it has not received
a heartbeat from them in 3 seconds.

In the stencil code for LiteMiner, we have provided a set of helper functions to facilitate the
sending of heartbeats, however, it is your job to actually implement the logic detailed above.

CS1380 Distributed System Theophilus Benson

2.5.3 Slow Miners

Some miners may have more or less processing power than others, and may therefore run slower or
faster than them. You do not need to consider this to have a pool which works properly, but it is
a problem a real pool would probably want to solve. For the performance part of the assignment,
finding a reasonable solution to this will probably be necessary to receive full credit.

3 The Assignment

You will be implementing a simple pool and its corresponding miners. The TAs have writ-
ten a significant amount of support code for you. The code you must write is marked with
// TODO: Students comments.

3.1 Code Overview

There are three main moving parts to this assignment, and each part has a very specific set of
responsibilities. These three parts are as follows:

Client The client is responsible for receiving user-specified transactions and forwarding these
transactions to the set of pool(s) it is connected to.

Pool The pool is responsible for receiving transactions from the client, dividing up the corre-
sponding work and distributing it to its connected miners, and aggregating and returning
the final proof of work.

Miner The miner is responsible for receiving work from the pool, performing that work, and
sending the resulting proof of work back to the pool.

For your convenience, the TAs have provided a fully-functional client. As mentioned above, you
will be implementing the core pool and miner logic.

A more detailed overview of the project structure can be found below, with short descriptions of
each file in the repository.

• cmd/

– liteminer-client/

∗ liteminer-client.go: Implements a CLI for the client so that users can issue
mining requests. Running go install will create a liteminer-client executable
in $GOPATH/bin.

– liteminer-miner/

∗ liteminer-miner.go: Implements a CLI for the miner so that users can spin
up new miners from the command-line and view debugging statements. Running
go install will create a liteminer-miner executable in $GOPATH/bin.

– liteminer-pool/

∗ liteminer-miner.go: Implements a CLI executable for the pool so that users
can spin up new pools from the command-line, query the state of a pool, and
view debugging statements. Running go install will create a liteminer-pool

executable in $GOPATH/bin.

• pkg/

– client.go: Implements the client logic for LiteMiner.

– hash.go: Implements the hash function you will be using when mining.

CS1380 Distributed System Theophilus Benson

– interval.go: Contains the Interval struct and a method to divide up an interval,
which you will be implementing.

– listener.go: Implements all network listener logic.

– logging.go: Implements serveral loggers which you may find useful.

– miner.go: Contains the core miner logic, most of which you will be implementing.

– network_manager.go: Contains functions for creating connections and sending and
receiving messages over the network.

– pool.go: Contains the core pool logic, most of which you will be implementing.

– proto.go: Contains the LiteMiner protocol, some of which you will be implementing.

– basic_test.go: Contains an example test.

3.2 Networking and Types of Messages

In this assignment, we define a very simple type of network connection called a MiningConn

in liteminer/network_manager.go. A MiningConn consists of a Go network connection, an
encoder (for sending messages through the connection), and a decoder (for reading messages from
the connection). This MiningConn is how clients, miners, and pools communicate.

To facilitate consistent communication, we have also defined a Message struct and a set of different
message types (see MsgType) in proto.go. See below for more detail.

• Client → Pool

– ClientHello: { Type }

– Transaction: { Type, Data, Upper }

• Pool → Client

– ProofOfWork: { Type, Data, Nonce, Hash }

– BusyPool: { Type }

• Pool → Miner

– MineRequest: { Type, Data, Lower, Upper }

• Miner → Pool

– MinerHello: { Type }

– ProofOfWork: { Type, Data, Nonce, Hash }

– StatusUpdate: { Type, NumProcessed }

3.3 Functions

Below is a comprehensive list of all the functions you are responsible for implementing (either
partly or fully):

• pkg/miner.go

– func (m *Miner) sendHeartBeats(conn MiningConn)

– func (m *Miner) Mine(data string, lower, upper uint64) (nonce uint64)

• pkg/pool.go

– func (p *Pool) handleClientConnection(conn MiningConn)

CS1380 Distributed System Theophilus Benson

– func (p *Pool) handleMinerConnection(conn MiningConn)

• pkg/interval.go

– func GenerateIntervals(upperBound uint64, numIntervals int) (intervals []Interval)

• pkg/proto.go

– func StatusUpdateMsg(numProcessed uint64) *Message

– func MineRequestMsg(data string, lower uint64, upper uint64) *Message

– func TransactionMsg(data string, upper uint64) *Message

– func BusyPoolMsg() *Message

3.4 Performance Requirement

Performance Requirement: A small portion of your grade (5%) will be reserved for how well
your pool distributes work. This grade will just require that you beat the (very poor) TA solution,
which takes around 3 minutes and 20 seconds to complete the task. For full credit, you should
aim to be faster than 2 minutes and 30 seconds.

Note: We will test your code against both “good” miners and “bad” miners. Where bad miners
will help you explore edge-cases. For example, a “bad” miner may mine extremely slowly –
compared to a “good” miner. Also, a “bad” miner, may not disconnect or may wait an arbitrarily
long amount of time before disconnecting. Your pool should be able to handle these “bad” miners
and still perform correct (and faster than the TA implementation). Our pool takes about 3.5
minutes to mine all the nonces. This is a fairly poor result, since our pool is not well optimized
to cope with the slow miners. We think it is possible to get this time down to only a few seconds,
but again you do not need to do this well to get full credit (which you will receive if you are faster
than 2.5 minutes).

3.5 FAQ

Should incoming transactions be queued or ignored when the pool is busy?
These transactions should be ignored.

Does a pool ever disconnect the client, or does the client do that itself?
The client disconnects itself upon receiving a BusyPool message.

Should goroutine ‘handleMinerConnection‘ be killed immediately if the miner is shut-
down?
If there is a way for the pool to detect that the miner has been shut down other than the
heartbeat mechanism, you can return from handleMinerConnection immediately.

What happens if all of the miners die?
Clients do not specify timeouts so a mining txn should run until the end unless the txn itself
is lost.

What is the difference between p.busy and p.Client?
The pool can have a client but not be busy when it’s not currently mining but could still
accept a new Transaction from the current client.

3.6 Project Difficulty

The difficulty of this project lies in understanding how LiteMiner works and writing correct code
that is both thread-safe code and that accounts for faulty miners. Essentially, the difficulty is not
in the quantity of the code but rather the quality of the code.

CS1380 Distributed System Theophilus Benson

4 Handing In

About Checkpoint: There is a checkpoint a week before the project deadline. You can pick a
time for TAs to test your code against the test cases that will be used in final grading, and get
the log back with your results. Based on the log, you can make further improvements accordingly.

The directory structure of your assignment should include the following:

• README

– Please write up a simple README documenting any bugs you know of in your code,
any extra features you added, an overview of your tests and anything else you think
the TAs should know about your project.

Commit and push all your changes to GitHub.

5 Testing

We expect to see good test cases. This is going to be worth a portion of your grade. You can use
the provided CLI programs to test you project as you are developing it, but you are required to
submit more exhaustive tests with your handin. You can check your test coverage by using Go’s
coverage tool.

• cmd/liteminer-pool/liteminer-pool.go

This is a Go program that serves as a console for interacting with the pool, and to check its
state. We have kept the CLI simple, but you are welcome to improve it as you see fit.

You can pass the following arguments to liteminer-pool:

– -p(ort) <port>: The port to listen on

– -d(ebug) <on|off>: Toggle debug statements on or off

You get the following set of commands available to you in the terminal:

– miners

- Prints any connected miner(s)

– client

- Prints the currently connected client, if one exists

– debug <on|off>

- Toggle debug statements on or off

• cmd/liteminer-miner/liteminer-miner.go

This is a Go program that serves as a console for interacting with the miner. We have kept
the CLI simple, but you are welcome to improve it as you see fit.

You can pass the following arguments to liteminer-miner:

– -c(onnect) <pool address>: Mining pool address to connect to

– -d(ebug) <on|off>: Toggle debug statements on or off

You get the following set of commands available to you in the terminal:

– shutdown

- Shuts down the miner

http://blog.golang.org/cover
http://blog.golang.org/cover

CS1380 Distributed System Theophilus Benson

– debug <on|off>

- Toggle debug statements on or off

• cmd/liteminer-client/liteminer-client.go

This is a Go program that serves as a console for interacting with the client. We have kept
the CLI simple, but you are welcome to improve it as you see fit.

You can pass the following arguments to liteminer-client:

– -c(onnect) <pool addresses>: List of mining pool addresses to connect to (comma-
seperated)

– -d(ebug) <on|off>: Toggle debug statements on or off

You get the following set of commands available to you in the terminal:

– connect <pool addresses>

- Connect to the specified pool(s)

– mine <data> <upper bound on nonce>

- Send a mine request to any connected pool(s)

– pools

- Print the pools that the client is currently connected to

– debug <on|off>

- Toggle debug statements on or off

Go provides a tool for detecting race conditions, which can be helpful for detecting and debugging
concurrency issues. To run all Go tests in your current directory with the race detector on, run:

go1.13 test -race

Note that you can also use the race detector while building or running your Go programs.

Please put all of your tests into the \test directory, your test cases will not be graded if you put
them anywhere else.

6 Style

CS 1380 does not have an official style guide, but you should reference “Effective Go” for best
practices and style for using Go’s various language constructs.

Note that naming conventions in Go can be especially important, as using an upper or lower case
letter for a method name affects the method’s visibility outside of its package.

At a minimum, you should use Go’s formatting tool gofmt to format your code before handing in.

You can format your code by running:

gofmt -w=true */*.go

This will overwrite your code with a formatted version of it for all go files in the current directory.

http://blog.golang.org/race-detector
`https://golang.org/doc/effective_go.html
https://golang.org/cmd/gofmt/

CS1380 Distributed System Theophilus Benson

7 Getting Started

Before you get started, please make sure you have read over, understand, and have set up all the
common code.

Note: if you’re working on a department machine, use go1.13 instead of go for all the
following commands (e.g., go1.13 get or go1.13 test).

We are using GitHub Classroom for this project. Check out the piazza post for the invitation link.

It would automatically create a repository for you which contains the stencil code. Each team
only needs one repository. One of your team member should create the team and invite the other
member. The name of the team should be cslogin1-cslogin2. You should not invite any other users
to your team or share your repository outside your team. It might take GitHub Classroom up to
5 minutes to set up the repo. So be patient. Let us know if GitHub reports an error.

Use git clone github.com/brown-csci1380-s20/liteminer-<team-name>/... to clone your
repo.

Next, navigate to the project directory and run

go get -u ./...

You can ignore the error no Go files in

This will pull in all of the imports from the current package downwards.

Lastly, you can build the liteminer_client, liteminer_miner, and liteminer_pool binaries
from the cmd directory with:

go install ./...

then you can run these compiled binaries by $GOPATH/bin/liteminer miner and so on.

Note that if you’ve made any changes to your code, you must re-install for your binaries to be
up-to-date.

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form.

https://forms.gle/xKHafnjZCHx9BQEL6

