
CS1380 Distributed System Theophilus Benson

Get Going With Go
Spring 2021

Contents

1 Introduction 2
1.1 About Go . 2

2 Installation 2
2.1 Go Modules . 2

3 Code Organization 3

4 Learning Go 4
4.1 Standard Library . 4
4.2 Getting Help . 5

5 Building and Running 5

6 Testing and Benchmarking 6
6.1 Benchmarking . 6
6.2 Checking Test Coverage . 6

7 Recommended Tools 7
7.1 gofmt . 7
7.2 godoc . 7
7.3 IDE Plugins . 7

CS1380 Distributed System Theophilus Benson

1 Introduction

Welcome to CS 138! This guide will get you started with the programming language Go. We’ll
go over getting setup (which can be a little tricky), organizing your code, formatting it, building
and running it, as well as useful plugins for your favorite editors and IDEs.

We highly recommend getting set up correctly with Go before beginning on the assignments.
Also, while this is a relatively long guide, don’t feel like you have to read it all in one sitting.
Treat it more like a reference document!

1.1 About Go

Go is an open-source programming language created by a team at Google (and other outside con-
tributors). Go was initially started in 2007 by Robert Griesemer, Rob Pike, and Ken Thompson.
Go is a systems language with roots in C, C++, and other languages. Version 1 of Go was released
in 2012 and is under active development (v1.7 was released in August 2016). If you have more
questions about Go’s history there’s a wonderful FAQ on their website which we urge you to check
out.

2 Installation

The department machines already have Go installed as a contrib project (v1.13) at /contrib/bin/go1.13,
but in case you want to use your own machine, you can follow the official installation directions.
Note that the department machines also have go 1.7 installed, but this course uses 1.13. If you
want to run go commands on the department machine, you need to type go1.13 instead of just go.

If you’re on a Mac and use the Homebrew package manager, you can simply run brew install go@1.13

to install that version (or just brew install go to install the latest versin).

If you’re on Windows, this blog post by Wade Wegner is a great reference.

2.1 Go Modules

One of the hardest things for folks new to Go is structuring a Go project, as the Go compiler is
very opinionated about it.

In the past, Go required all Go projects on your system to be located under one folder, specified
by the GOPATH environment variable. The Go compiler would only build a project if source
code was in a folder under $GOPATH/src, would install external libraries and dependencies under
$GOPATH/pkg, and put compiled binaries under $GOPATH/bin.

In recent versions of Go, this dependence on GOPATH has been removed thanks to the advent of
Go’s module systems (also called just Go modules). Further, the community has standardized on
one specific project layout structure that minimizes tensions. (Note that GOPATH is still used
by Go internally, but is usually just left at its default valu — typically $HOME/go on Unix systems
and %USERPROFILE% on Windows).

At a very high level, the Go module system works by declaring your current folder a module. Mod-
ules can be thought of as virtual environments: they get their own private package management
system, and all Go dependencies are contained inside the module.

To create a new project using Go modules, go to any folder on your system.

First, pick a globally unique name1 for your module. Suppose you want to call your new module

1It is typically a best practice to use the remote URL from which the project can be downloaded e.g. a module
might get named github.com/user/example. This is important because it allows other Go modules to download
your module. For self-contained Go code which will never be downloaded by other modules (which includes all the

https://golang/doc/faq
https://golang.org/doc/install
http://brew.sh/
http://www.wadewegner.com/2014/12/easy-go-programming-setup-for-windows/

CS1380 Distributed System Theophilus Benson

example.

Next, run go mod init example. This will create a go.mod.

Let’s open up our go.mod file:

module example

go 1.13

Congratulations, you have made a Go module!

Now you can attempt to fetch packages. Try running go get google.golang.org/protobuf/cmd/protoc-gen-go.
This will install a Go package for you, making it available to your system to use. If you are familiar
with pip from Python or npm from Node.js, it is very similar.

You will note that your go.mod has now been updated and looks like:

module example

go 1.13

require google.golang.org/protobuf v1.25.0 // indirect

Additionally, a file containing checksums for each downloaded package has been created at go.sum.

A tutorial on how to work with Go modules in more depth can be found here. In particular, we
recommend looking at four aspects of the module system:

• The go mod tidy command. This cleans up unused packages and downloads newly added
packages to the go.mod file (as you can manually edit that if you want to).

• You can control the package version of any package just by updating the version indicated
in the require statement. Versions are somewhat haphazardly baked into the system —
version numbers resolve to Git tags on the remote URL for the repository, and you cannot
use version numbers with major version starting with 2 (owing to historical legacy). Go
version numbers follow https://semver.org/semantic versioning.

• The go clean -modcache command. This removes cached packages, useful if you’ve up-
dated the version for an already downloaded package and want to pull it in.

• The replace directive. This is a very powerful feature that allows you to replace what a
module name gets resolved to. You would use the replace directive, for example, to point all
imports of foo to a local directory. This allows you to transparently shim any package, as a
way of trying out changes or behaviour. It is absolutely necessary when working with forks
of a repository, as often all the import statements are pointing to the original source and
you wish to avoid renaming all the statements (as some imports may depend on the source
of the fork transitively, by depending on a package that depends on it).

3 Code Organization

A repository of Go code can contain one or more packages:

• A package is a collection of related .go files, usually implementing one particular algorithm
or utility.

• Most packages are designed to be shared, and will be imported into other files. Within
packages, you can decide which types and functions are “exported,” meaning they will be

projects you will be working on in this class), any globally unique name is fine.

https://golang.org/doc/tutorial/create-module

CS1380 Distributed System Theophilus Benson

available to code written outside of this package. In contrast, “unexported” types and
functions are only available for use within the package.

• Code in the special package main is designed to be compiled into an executable binary,
usually a command-line program run by end users.

• Note that a project or repository can have several main packages. Each of them may exist in
different directories, and will compile to different binaries (named after the directory). This
is a common pattern in projects with multiple executables or CLI programs (client and
server, for example.)

• See the Building and Running section for information on building packages and binaries.

Additionally, there are some standards on how to structure any Go project:

• The top-level cmd/ folder is meant to house any main packages. You can have multiple
unrelated main packages in separate subfolders.

• The top-level pkg/ folder is meant to house packages used by other applications (such as
those in cmd/ or remote code) — that is, public packages. Typically, you may put public
library code within this module anyone can download.

• The top-level internal/ folder is meant to house packages used only within the module
(including those in cmd/) — that is, private packages. This folder is unique in that the
privacy is guaranteed by the compiler — attempts to import code from another repository’s
internal folder will result in an error during compilation.

• Golang developers discourage the use of src/ folders. More standards are discussed and
found here.

Deciding when to put code within pkg/ or internal/ depends on your project’s usecases and
needs. For all of the projects in this course, we have opted to place core code within pkg/, on the
premise that Go compiler restrictions on package imports are one less thing to worry about as you
learn to master Go — real code in a real production setting may choose differently.

Note that in this class, for each project (except for Puddlestore) we provide the stencil code for
each runnable binary that you will want to generate. So you don’t have to worry too much about
the structure of your packages and code, and can focus on implementing the systems we ask you
to implement.

4 Learning Go

The best way to pick up the basics of Go is to walk through the Tour of Go.

In particular, look out for the difference between slices and arrays (hint: you should almost always
use slices in Go), exported vs. unexported names, channels, and goroutines.

If you prefer a more hands-on approach to learning Go, the Go by Example series is a great set of
practical code examples in Go representing some of the language’s unique features.

Current TAs of the class have had great results when learning Go by simply looking at the
corresponding example when they got to a part of the project code that required a particular
feature they hadn’t seen before.

4.1 Standard Library

Once you get up-and-running with Go’s syntax and actually start writing code, the most compre-
hensive reference for Go’s standard library can be found here.

https://github.com/golang-standards/project-layout
https://tour.golang.org/welcome/1
https://gobyexample.com
https://golang.org/pkg/

CS1380 Distributed System Theophilus Benson

Every package, along with all of their functions and types are very well documented in these pages,
including type signature and a description of what each function and type does.

4.2 Getting Help

Links to the Go forums, mailing list, Slack, and FAQ can be found on the help page.

If you get confused about a particular function you come across in CS138, or if you need to find out
how to do something you haven’t seen before, you can always search for “golang [your question]”.
Note that typing “golang” instead of “go” will usually give better results, since a lot of things on
the Internet are called “go” (like HBO Go!).

5 Building and Running

There are a few main commands you should be aware of to build and run Go code:

• go build

When you want to compile a main package into an executable (such as compiling your
CoinLite binary), navigate to the directory containing the main package, and run go build.
This will compile the binary, link any imports, and place the executable into your current
working directory.

When you want to compile a non-main package, navigating to the directory containing the
main package and running go build will compile all the files, link any imports, and exit
without any generated files. This is useful to see if your package compiles without errors or
warnings.

• go run

When you want to compile and quickly run a main package, but not save the resulting
binary executable, run it with go run ./path/to/file.go, where file.go is a file in the
main package.

• go install

When you want to compile a main package and add the generated binary to $GOPATH/bin
(which still exists even after using Go modules), run go install /path/to/main/package.
This means you can simply run the binary from anywhere, such as $ coinlite -mode ...

-addr ..., since the binary can be found from your $PATH.

• go 1.13

Remember, when you use ‘go‘ on the department machines, you need to explicitly refer to
go1.13 instead of just go. On the dept machines, go refers to go 1.7, which is not the version
this course uses.

You may also add alias go="go1.13" to /.bashrc so that you can refer to go1.13 simply
as go.

Usually, we recommend using go install while working on your projects. This is so that you
can compile and generate multiple binaries at once, and use them instantly from anywhere. For
instance, in a project that generates a binary for clients and a binary for servers, running go

install ./... (note the ellipsis) will build every main package Go can find in the current
directory downwards, and install them into $GOPATH/bin. Then you have immediate access from
anywhere on your machine to those compiled binaries.

https://golang.org/help/

CS1380 Distributed System Theophilus Benson

6 Testing and Benchmarking

You can write tests in Go by creating a file that ends with _test.go, and writing test functions
within these files. Test functions are simply functions that begin with “Test” and take only one
parameter, of type *testing.T.

You can run all the test functions for the current package using go test. Each test function will
run once, and give you a chance to programmatically test the rest of your code. Examples of good
tests include running different parts of your code, and verifying that the output or side effects
from the code are consistent with what you expect.

In a distributed systems context, good tests should include firing up several servers that collectively
make up the system, sending queries to this system, and most importantly taking down certain
servers to see if your system is degrading as gracefully as you expect.

Note also that it is common practice to make each test file part of the package it is testing. So a
file that tests the functionality of the foo package should itself be part of the foo package. Among
other reasons, this is done so that the test file can test both the exported and the unexported
functions of the package.

Full details on the Go testing package are available in the package docs.

6.1 Benchmarking

The testing library also supports running benchmarks on pieces of code. Similar to regular
testing functions, benchmark functions are simply functions that begin with “Benchmark” and
take only one parameter, of type *testing.B.

To run benchmarks, just run go test -bench=.

Benchmarks follow many of the same conventions and rules as regular testing functions. A few
important differences:

• The code under performance must be run multiple times in a single test execution. The
exact number of times is provided by b.N. Always wrap the code to measure in a for loop
that runs at most b.N times.

• A timer begins running from the moment the function begins executing the inner loop.
Control over the timer is provided by the b.ResetTimer, b.StopTimer and b.StartTimer

methods.

• If code requires expensive setup prior to being run, you can use b.CleanUp to run teardown
code automatically.

6.2 Checking Test Coverage

Go also provides a tool to check your current test coverage. If you’re unfamiliar with the term,
test coverage means the percentage of statements in your code that are executed when running
the test suite. In general, you want to aim for test coverage around 80% in this class, keeping in
mind that some boilerplate code (like printing out help messages when the user types in help into
the CLI) probably don’t need to be tested.

The best way to measure test coverage in Go is to visualize the coverage using the go test

-coverprofile=... command. This generates HTML files that show visually, using green and
red text, which lines of your code were run or not in your test suite. Every line of code that you
write yourself (i.e. code not originally in the stencil), should be tested!

Details on the tool and how to use it are covered in this excellent blog post.

https://golang.org/pkg/testing/
https://blog.golang.org/cover

CS1380 Distributed System Theophilus Benson

note: Some IDE plugins are quite powerful and show test coverage in your code editor! Make sure
to install them.

7 Recommended Tools

7.1 gofmt

Go provides a convenient command-line utility called gofmt that formats your code, altering in-
dentation and spacing rules to generate code that fits the Go style guide. However, we recommend
running gofmt on your code much more often (preferably each time you save) when working on
your projects! It’s a great, low-effort way of keeping your code looking manageable as you work
on it.

Note: You must run gofmt on all your code before you handin. This is part of the style grade for
each assignment.

7.2 godoc

Go provides the godoc command for quickly browsing package documentation. Running go doc

<package> can show the documentation available in the source code of packages you have installed
(often exactly what is in the online docs.) You can browse by package (go doc fmt or go doc

github.com/abiosoft/ishell), or by a specific symbol (go doc net.OpError.Temporary or go
doc github.com/abiosoft/ishell.Shell). You can even use it for your own code if you leave
comments before functions, struct members, or other declarations.

7.3 IDE Plugins

Using plugins for Go for your favorite editor will greatly improve your workflow, and as such we
highly recommend you install them. In particular, plugins exist to automatically run gofmt on
your code each time you save, show test coverage inline, and lint your code for style. Here are
some links:

• Vim: vim-go

• Emacs: go-mode.el

• Atom: go-plus

• Sublime Text 3: GoSublime

• Eclipse: GoClipse

• Notepad++: npp-golang

You can also try Gogland, a new IDE from JetBrains (still in beta), that comes with these tools
in-built.

Feedback

Please let us know if you find any mistakes, inconsistencies, or confusing language in this or any
other CS138 document by filling out the anonymous feedback form.

https://golang.org/cmd/gofmt/
https://github.com/fatih/vim-go
https://github.com/dominikh/go-mode.el
https://atom.io/packages/go-plus
https://github.com/DisposaBoy/GoSublime
https://github.com/GoClipse/goclipse/blob/latest/documentation/Installation.md#installation
https://github.com/tlowry/npp-golang
https://www.jetbrains.com/go/
http://cs.brown.edu/courses/cs138/s20/feedback.html

